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Abstract: Is there sufficient scientific evidence for excess mortality caused by COVID-19? The German
population, similar to the population of many other countries, is subject to fluctuations caused by
multiple factors, including migration and aging. COVID-19 is one additional factor, superposing
natural or seasonal mortality fluctuations. To give scientific evidence for excess mortality caused by
COVID-19, it is essential to employ appropriate statistical tools. This study develops a score indicating
excess mortality and studies its evolution over time. Applied to data provided by governmental
authorities, the indicator discloses, without relating to causes of death explicitly, excess mortality at
the end of 2020, in 2021, and in 2022. In addition, the indicator confirms that COVID-19 particularly
impacted the elderly segment of the population.
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1. Introduction

This paper strives for a detailed analysis of excess mortality in Germany during
the Corona pandemic. Building on historical population statistics as well as official
death counts, the analysis employs a dedicated indicator to identify and substantiate
excess mortality.

Important institutions such as the German Federal Statistical Office compare the
number of deceased during COVID-19 seasons with the observed mean or median number
of deaths in previous years (cf. [1]). From these numbers, it seems evident that there were
more deaths during the COVID-19 seasons than in preceding years. However, comparing
the number of deceased in different years is problematic and questionable for several
reasons. The age profile of the population, for example, varies over time. Strong influenza
waves (cf. [2,3]) influence the comparison as well. The flu epidemic in the first weeks of
2018, e.g., the most severe ever in Germany, was accompanied by an extreme increase
in deaths. Comparing pure death counts with the average counts of previous years is
therefore not sufficient to substantiate excess mortality.

Parametric mortality models generally enjoy a high precision (cf. Zeng et al. [4] for
the four- and five-parameter lifetime distribution; Missov et al. [5] and Cohen et al. [6]
for Gompertz’s force of mortality involving the mode age at death). Precise and accurate
estimates for small portions of the population are more challenging, for example, for elderly
people, who seem to be affected and concerned most by COVID-19. Before the COVID-19
crisis, Gavrilov and Gavrilova [7] investigated human death rates of advanced ages. They
do not find deviations from Gompertz’s law, not even for very old people. In fact, their
abstract states:

Study of several single-year extinct birth cohorts shows that mortality trajectory at
advanced ages follows Gompertz’s law up to the ages 102–105 years without a noticeable
deceleration.
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Our model incorporates the life expectancy, which is increasing year by year, in
addition, since the COVID-19 pandemic occurred after several decades of continually
increasing life expectancy.

Numerous studies analyzing similar or related questions are based on regression
models (cf. [8–10] or [11]) or comparisons of death counts before and during the pandemic
(cf. [12,13]). Contrary to many other investigations, this study builds on an indicator, which
is suitable to disclose excess mortality. The main idea of the indicator is to adequately relate
observed mortality rates with estimated ones. For this, it is essential to estimate mortality
rates without COVID-19 from historical data, and to compare them with observed mortality
rates during seasons with COVID-19. In fact, we will detail below that the indicator
discloses excess mortality during the COVID-19 pandemic, especially among the elderly.

Many recent studies incorporate clinical data (like [9,14,15] or [16]), but these are not
publicly available for the whole of Germany. The basis of the comparison is an extrapolated
German life table, published by official authorities, as well as a supplementary life table,
which is based on data from 1990 to 2017.

COVID-19 mortality has been studied since the first appearance of the virus. For
comparable literature on national COVID-19 mortality rates, we may refer to El Fatinim
et al. [17], Kowall et al. [12], and Cairns et al. [18]. Our results complement this existing
stream of literature for Germany.

We estimate the baseline weekly mortality in 2020–2022 using a parametric model,
which includes the life-expectancy improvements in recent years. A dedicated indicator
substantiates excess mortality during COVID-19 seasons, particularly for elderly persons.

2. Materials and Methods
2.1. Available Data

The human mortality database provides access to documented deaths for different
populations, mainly of Western countries (https://mortality.org/ (accessed on 16 October
2023)). The webpage https://mpidr.shinyapps.io/stmortality/ (accessed on 16 October
2023) provides an impressive visualization tool as well (cf. Németh et al. [19]); or in Our
World in Data (https://ourworldindata.org/grapher/excess-mortality-raw-death-count
(accessed on 16 October 2023)).

The German Federal Office (cf. German Federal Statistical Office: Statistisches Bunde-
samt (Destatis) [20] and the German Federal Statistical Office: Population data by Statistis-
ches Bundesamt (Destatis) [21,22]) report even weekly data of deaths, adjusted life tables,
and population updates. Our analysis combines both sources. These sources report more
deaths in the COVID years 2020, 2021, and 2022, which gives evidence for excess mortality;
however, this observation does not prove excess mortality, specifically not for specific ages.

Compared to other populations, the German population is specific and unique for
historical and political reasons. Most individuals aged 35 or older were born in either the
German Democratic Republic or the Federal Republic of Germany: two different countries,
with differing mortality. For this reason, we confine our data to the fall of the Iron Curtain.

2.2. Mortality Model

Several mathematical models have been investigated in the academic (and particularly
the actuarial) literature to capture the peculiarities and specific features of mortality rates,
which vary with age, sex, progress in medicine, and presumably regions.

The literature distinguishes parametric and non-parametric mortality models. Non-
parametric models do not presume a specific shape of the distribution, and therefore are
more general and consequently require more data than parametric models to achieve
comparable precision. To estimate mortality with high precision, specifically for older ages,
we employ a parametric model and provide evidence for the model selection. Our model
accounts for the constant improvement of mortality over time, which has been empirically
observed during recent decades.

https://mortality.org/
https://mpidr.shinyapps.io/stmortality/
https://ourworldindata.org/grapher/excess-mortality-raw-death-count
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2.2.1. Parametric Mortality Model

Traditional life tables model the force of mortality (also known as hazard rate, or
hazard function in reliability theory), that is, the instantaneous rate of mortality at a
certain age on an annual basis. The force of mortality of the well-established Makeham (or
Gompertz–Makeham) model can be stated as

µϑ(x) = α + β eβ(x−M), (1)

where x is the individual’s age in years, from age x = 0 (infant) up to the age x = 80 and
further. The term α, termed Makeham term (cf. [5]), models age-independent causes of death
such as accidental death or serious illness. The parameter β is the rate of how mortality
increases year by year of life. The parameter M has the natural interpretation of the mode
age of death of the population, that is, the age with the highest probability to die. The
vector comprising all parameters in (1) is ϑ := (α, β, M). Based on the force of mortality,
the age-specific annual mortality rates are qϑ;x := 1− exp (−

∫ x+1
x µϑ(s) ds), as detailed in

(A1) in the Appendix A (cf. also Richards [23]).

2.2.2. Decreasing Mortality, Year by Year

COVID-19 appears at the end of a period with constantly increasing life expectancy.
Improving mortality is critical for our purpose to estimate the number of deaths as precisely
as possible. For this, the mortality trend thus must not be neglected. Figure 1 below depicts
empirical mortality rates qx for ages x = 0 up to x = 100, and different calendar years. The
figure apparently exhibits linear mortality improvements on the logarithmic scale from
age 25 on.
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Figure 1. German empirical mortality rates (qx for all ages on logarithmic scale) providing evidence
for parametric model (2): (a) women; (b) men.

Cohen et al. [6], Osmond [24] and [Sections 2.3 and 7.5.4] in Keyfitz and Caswell [25]
investigate the evolution of a population’s mortality over time, as well as the historical
development of these models. They conclude that the mode age M increases over time.
We follow these results and observations as well as the statements from Gavrilov and
Gavrilova [7] and incorporate mortality improvement into Model (1) via

µϑ(x, t) =
(
α + β eβ(x−M)

)
e−λ(t−2020), (2)

where mortality decreases with a rate λ per calendar year. In (2), t is the calendar year
(t = 2023, 2022, etc.), and the reference year 2020 (more precisely, the reference date 2020,
Jan. 1st) is chosen for convenience. It does not impact the mortality results. Note that (2) is
(with αt = α · e−λ(t−2020))

µϑ(x, t) = αt + β eβ(x−Mt), (3)
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where Mt := M + λ
β (t − 2020) is the life expectancy, growing with λ/β year by year.

Proposition A1 in the Appendix B relates the parameters of Model (2) with further charac-
teristics of the population as the mode.

2.3. Estimation of Parameters

The parameters describing the force of mortality in Model (2) are ϑ = (α, β, M, λ). The
least-squares approach involves Ex, that is, the number of individuals at age x, out of which
Dx die within the observation period. Model (2) with parameters ϑ = (α, β, M, λ) estimates
the probability of an individual at age x to die in the following year by qϑ;x, which relates
to the force of mortality by qx (cf. (A1) in Appendix A and Richards [23]). The least-squares
approach compares the observed deaths (Dx) with expected deaths (qx · Ex) and considers(

Dx − qx · Ex)2

qx · Ex
or

(
Ex − Dx − (1− qx) · Ex)2

(1− qx) · Ex
, (4)

where the symmetric, second term in (4) relates the observed survivals Ex − Dx with
the expected survivals (1− qx) · Ex. The least-squares objective to identify the optimal
parameters ϑ combines both and is

∑
x≥0

(
Dx − qx · Ex

)2

qx · Ex
+

(
Ex − Dx − (1− qx) · Ex)2

(1− qx) · Ex
= ∑

x≥0

(
Dx − qx · Ex√
qx(1− qx) · Ex

)2

, (5)

where the sum is among all ages considered in estimating the parameters. This estimation
technique to identify the parameters is consistent with the following analysis and complies
with the χ2 test and the G test, respectively.

2.4. Analysis of Excess Mortality

To investigate excess mortality in year t for specific ages, we consider the quantity
termed Z-score, which is genuinely present in (5). In contrast to the popular definition of
the Z-score, we define the score by involving the estimated mean and study

Zt
x :=

Dt
x − qt

x · Et
x√

(1− qt
x)qt

x · Et
x

(6)

(cf. (Equation (6.1)) in Cairns et al. [26] for a similar quantity) for individual ages x and
calendar years t.

The Z-score has the following properties, which are crucial for the analysis of excess
mortality:

(i) Zt
x > 0 if more deaths are recorded than expected, and Zt

x � 1 (i.e., Zt
x much greater

than 1), which indicates excess mortality for the group with age x;
(ii) The score in (6) is sensitive with respect to the estimated mean, and even vanishes for

the crude estimator q̂t
x = Dt

x
Et

x
;

(iii) As follows from the central limit theorem, the quantity (6) is asymptotically normally
distributed with standard parameters (Z ∼ N (0, 1)) for the true parameter qt

x;
(iv) For the estimate q̂ϑ;x, the score (6) is the crucial quantity in our following analysis, as

positive aberrations (i.e., Dx
t � qt

x Et
x) indicate excess mortality for the specific age x;

(v) The squared Z-score is the building block of the χ2 test, as building block of the χ2

test, as

Tt
x :=

(
Dt

x − Et
x q̂t

ϑ;x
)2

Et
x q̂t

ϑ;x
+

(
Et

x − Dt
x − Et

x(1− q̂t
ϑ;x)
)2

Et
x (1− q̂t

ϑ;x)
=
(
Zt

x
)2,
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cf. (5) above. It follows that the test quantity

Tt := ∑
x=0

Tt
x = ∑

x=0

(
Zt

x
)2 (7)

follows a χ2 distribution, where the degree of freedom is the number of groups of age
the sum in (7) takes into account.

3. Results
3.1. Estimators and Model Validation
3.1.1. Parameters Characterizing the Mortality of the German Population

The empirical mortality rates depicted in Figure 1 for different calendar years support
Model (2). Table 1 presents the parameters of the model found for the German population.
The parameters indicate that women live longer than men, as their mode age M exceeds
men’s mode. In contrast, the baseline probability α (the Makeham term) is somewhat
lower for men than for women, but this quantity only has a minor influence on the overall
mortality. Mortality gradually improves over time with rate λ = 1.73% for women and
λ = 2.26% for men, i.e., the survival probabilities improve faster for men, while survival
probabilities for women are more saturated. From the parameters in Table 1, it is evident
that the mortality rates of men and women differ. Our analysis gives plausible results, and
we investigate the sexes separately.

Table 1. Parameters describing the mortality of the German population.

Mode M in Years α β λ/ Year λ/β %

women 89.57 5.29h 12.56% 1.73% 13.74
men 86.09 5.86h 10.64% 2.26% 21.23

Explanations of parameters: M is the base parameter for population’s mode age of death. α is the base mortality
rate, independent on age x. β is the rate of mortality increase by age, cf. (Chapter 9 in [27]) or [5]. λ is the mortality
trend improving over time. λ/β is the population’s mortality improvement in years per century.

3.1.2. Mortality Trend

In a long-term study including many countries of the Western world, Rischatsch et al. [28]
(p. 2) report that mortality improves by approximately 1–2% per year for both sexes. This
trend is in line with our results for λ in Table 1, where the mortality of men in our sample
improves slightly faster. Moreover, we want to point out that, following Figure 1 in
Rischatsch et al. [28], the average life expectancy increased from roughly 40 years in 1860
to about 80 years in 2016 for countries of the Western world, which is an improvement of
approximately 26%, i.e., 26 years of improved life expectancy per century for both sexes.
Following (A2) in Proposition A1 (Appendix B), the mode improves at the rate λ

β , for which
Table 1 reveals the quantities

λ/β ≈ 14 years per century for women, and
λ/β ≈ 21 years per century for men

for Germany. These external sources thus confirm our results and conclusion that mortality
improvement rates must not be neglected.

Figure 2 displays derived 1-year mortalities q̂ϑ;x based on the parametric model (2)
for selected observation years together with the rough estimates q̂x from Figure 1. The
deviations for persons dying before reaching 30 years are small and in the range of a few
per million, while the deviations for very high ages are caused by the very few persons
dying at these high ages. These figures, along with the literature referenced above, provide
evidence for the modeling approach chosen, i.e., for Model (2).

The illustrations in Figure 3 highlight older ages. The rough estimator q̂x = Dx
Ex

and
the smoothed version q̂ϑ;x coincide up to the age of 90 for women and even up to the age
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of 100 for men. For extremely high ages, the rough estimators q̂x fluctuate more due to
narrowing data. The chart in Figure 3b for men displays a larger bandwidth than Figure 3a,
which is a consequence of the rate λ driving the trend of decreasing mortality.

Figure 4 highlights the mortality trend for specific ages (cf. Proposition A1). These
rates decrease mortality linearly over time on the logarithmic scale. Further, the decrease
observed is overall uniform among all ages displayed. Again, this provides evidence in
favor of the parameter λ in Model (2).
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Figure 2. One-year probabilities q̂x and the fitted model q̂ϑ;x, derived from the data source, displayed
on logarithmic scale: (a) women; (b) men.
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Figure 3. Empirical and estimated mortality rates of elderly people: (a) women; (b) men.
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Figure 4. Empirical and estimated trend of mortality rates over the time period 1990 to 2019 for
selected ages: (a) women; (b) men.
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3.2. Z-Scores of the Training Data

The histogram of age-specific Z-scores (6) for the parameter q̂t
x (Figure 5) exhibits

unobserved heterogeneity (i.e., overdispersion), specifically a standard deviation of ap-
proximately 12.4 for women and about 12.2 for men. Given that, the score in (6) can be
rearranged to

q̂x −
Dt

x
Et

x
≈ ±12

(
(1− q̂x) q̂x

Et
x

)1/2

.

This reveals a quantitative relation of the empirical estimator q̂t
x = Dt

x/Et
x and the

estimator q̂t
ϑ;x of the parametric model. Due to the term

√
q̂(1− q̂), it is apparent as well

that the estimators tend to deviate less with increasing Et
x and with the mortality parameter

close to the boundary, i.e., with young and very old people.
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Figure 5. Histograms of age-specific Z-scores of the training data, 1990–2017: (a) female; (b) male.

The following section relates the computational results to the COVID-19 years 2020
to 2022.

4. Discussion
4.1. Historic Mortality Rates, Compared to COVID-19 (2020 to 2023)

Figure 5 visualizes Z-scores for different age groups. The plots expose different
locations and widths for varying age groups. Recall that aberrations to the right indicate
excess mortality (cf. (6) and Points (i) and (iv) on page 4).

Figure 6 displays the evolution of the score over time. The figure exhibits excess
mortality due to
• COVID-19;
• heat waves in summer;
• flu waves in winter.

Over the years, the scores have fluctuated around 0, but the COVID-19 years have
notably changed this behavior. Except for one month in 2021, Figure 6 displays a strictly
positive Z-score in more than two years. Once again, it is a strict indicator for excess
mortality in the past years from 2020 to 2022. Analysis of the current year data 2023, which
is still incomplete, shows that excess mortality has regressed. The minor deviations of the
score from the zero line are negligible. In addition, however, the proposed score also shows
excess mortality during influenza waves in 2015, 2017 and in particular throughout the
severe flu season in 2018, as well as during periods of severe heat in the summer.



Int. J. Environ. Res. Public Health 2023, 20, 6942 8 of 11

COVID 1
heat

COVID 2

flu

COVID 3

COVID 4

flu

heat

COVID 5

flu heat

2020 2021 2022 2023

2016 2017 2018 2019

2012 2013 2014 2015

1 10 19 28 37 46 1 10 19 28 37 46 1 10 19 28 37 46 1 10 19 28 37 46

−25

0

25

50

75

100

−25

0

25

50

75

100

−25

0

25

50

75

100

week

sc
or

e

Figure 6. Excess mortality index of the entire population, 2000–2023. Highlighted are COVID-19, flu,
and heat waves.

4.2. Mortality of the Elderly Population

Figure 7 details excess mortality for different age groups. It is evident from the picture
that it is the elderly segment of the German population that is primarily impacted by excess
mortality. More specifically, excess mortality starts to affect the segment of people aged 60
or older.
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Figure 7. Weekly scores Zt
jx (2020–2023, cf. (6)) for individual age groups.

The first peak, being the highest at the end of winter 2018, originates from a heavy
flu epidemic, which caused excess mortality of 27,000 deaths within a week, compared
to 20,000 deaths in the same week in prior years. The second peak at the end of 2020 is
caused by COVID-19; this trend continues in the first months of 2021. During this period,
the mortality exceeds 24,000 deaths per week, which is unprecedented in the previous
decades. It should be noted that this excess mortality was documented despite the fact
that the country was in partial or full lockdown over several weeks. It is evident that the
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total mortality, without governmental countermeasures such as the lockdown, would have
been higher. Keeping in mind that fatal accidents related to traffic, workplace or leisure
were much lower during that time, yet, the mortality was higher than in comparable years
without COVID-19. For the integrity of the argument we emphasize that our analysis only
assesses total mortality, i.e., we do not take the medical cause of death into consideration.
In fact, we do not distinguish between individuals who were diagnosed with COVID-19 or
died of COVID-19 or of other causes. All conclusions are based on total mortality.

5. Conclusions

We investigated excess mortality during the COVID-19 pandemic in 2020 to 2022 in
Germany. For the analysis, we examined a specific indicator, the Z-score, which is designed
to uncover excess mortality. Based on the limited data available during the pandemic we
recorded, detected, and measured excess mortality, specifically for the elderly segment of
the population.
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Appendix A

The force of mortality (also known as hazard function in reliability theory) correspond-
ing to an R≥0-valued random variable with cumulative, differentiable distribution function
F with density f = F′ (the derivative) is

µ(x) :=
F′(x)

1− F(x)
= − d

dx
ln
(
1− F(x)

)
, (A1)

cf. Richards [23].

Appendix B

Proposition A1 (Mode). The mode of the distribution with time force of mortality (2) is

M− 2α

β2 +
λ

β
(t− 2020) + ε(α), (A2)

where the error |ε(α)| ≤ C · α2 for a real constant C (and hence negligible for small values of α, as
is the case in our application, cf. Table 1).

Proof of Proposition A1. The density attains its maximum at xm if F′′(xm) = 0 and the
characterizing equation

µ′(xm) = µ(xm)
2
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follows from
F′(x) = µ(x) eM(0)−M(x) (A3)

with M(x) :=
∫ x

x0
µ(s)ds. Based on the force of mortality (2), define the function

g(x; α) := µα,β,M,λ(x)2 − µ′α,β,M,λ(x)

=
(
α + β eβ(x−M)

)2 e−2λ(t−2020) − β2 eβ(x−M)−λ(t−2020) (A4)

and observe that
g
(

M +
λ

β
(t− 2020); 0

)
= 0.

It follows that xm = M + λ
β (t− 2020) is the mode.

The derivative of (A4) with respect to x is

∂

∂x
g(x; α) = 2

(
α + β eβ(x−M)

)
e−2λ(t−2020) β2eβ(x−M) − β3 eβ(x−M)−λ(t−2020),

and with respect to α

∂

∂α
g(x; α) = 2

(
α + β eβ(x−M)

)
e−2λ(t−2020).

Evaluated at x = M + λ
β (t− 2020) and α = 0, these quantities are

∂

∂x
g
(

M +
λ

β
(t− 2020); 0

)
= 2β3 − β3

and
∂

∂α
g
(

M +
λ

β
(t− 2020); 0

)
= 2β.

By the implicit function theorem, it follows that the solution xm(α) of g
(
xm(α); α

)
= 0

has derivative
d

dα
xm(α) = −

∂
∂α g
∂

∂x g
= − 2

β2

and hence the assertion (A2).
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