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Abstract: Although evidence for young children (<10) and older adults (>64) highlights an association
between physical activity (PA) and executive functions (EFs), there is a paucity of research on
adolescents aged 18–24 years. Thus, this study examined the associations between PA and EF and
the difference in EF between individuals who achieve the moderate-to-vigorous (MVPA) guidelines
and those who do not. Forty-seven participants engaged in a Stroop task, a reverse Corsi-block
test, and a task-switching test, to measure inhibition, working memory, and cognitive flexibility,
respectively. An ecological momentary assessment (EMA) was used to determine the participant’s
MVPA and step count, through the “Pathverse” app. Multiple regressions were run to predict the
task-switch cost, the Stroop effect, and the backward Corsi span from time spent in MVPA. A two-way
ANCOVA examined the effects of achieving the MVPA guidelines on EF. MVPA and step count
did not significantly predict EF. There were no significant differences in EF between participants
achieving the MVPA guidelines and those that did not. Time spent in MVPA and step count were
not significantly associated with working memory, cognitive flexibility, or inhibition in adolescents.
Further research is warranted to understand other factors that may significantly affect EF, within and
outside an individual’s control.

Keywords: physical activity; executive function; working memory; inhibition; cognitive flexibility;
ecological momentary assessment; guidelines; Pathverse

1. Introduction

Physical activity (PA) is any bodily movement produced by skeletal muscle that results
in energy expenditure [1]. More broadly, PA is promoted through individuals’ preferences,
feelings, and ideas via movement and performance within specific cultural contexts [2].
The WHO [3] has established that adults aged 18–64 years should engage in a minimum
of 150–300 min of moderate or 75–150 min of vigorous PA per week. Adolescence can be
understood as the time frame between childhood and adulthood, relating to individuals
aged 10–24 years [4]. In adolescents, engaging in PA and achieving the guidelines is associ-
ated with physiological benefits [5], such as a decreased likelihood of developing type 2
diabetes, obesity, and heart disease [6]. There is also evidence for a positive association
between PA and mental health [7]; however, a smaller emphasis is placed on the association
between PA and cognition or cognitive benefits in adolescents [4,8]. Therefore, research
into the effects of PA on cognition is warranted.

Ecological momentary assessment (EMA) studies aim to capture changes in momen-
tary behavior and experiences by capturing data multiple times [9]. Ecological momentary
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assessment encompasses various methods to obtain real-time data within a real-world
setting [10]. Ecological momentary assessment potentially alleviates the limitations of
autobiographical memory, whereby an individual recalls their past experiences, as re-
search surrounding autobiographical memory highlights how unreliable memory can
be [11]. Throughout EMA, an individual’s natural environment is emphasised to gather
the ecological element of behaviors (such as PA), enhancing the ecological validity, through
generalisation to the individual’s everyday life [10]. To assess PA behaviors, EMA focuses
on an individual’s current behavior, rather than recall [10]. This eliminates any margin
for error and bias associated with retrospection, highlighting the momentary element of
EMA [10]. Moreover, EMA considers time and intraindividual variability, which may
generate different perspectives on presenting PA behaviors [12]. Therefore, using EMA to
collect real-time PA data over retrospective methods is favored.

Within cognition, executive function (EF) is an umbrella term [13] for mental operations
involving focus and attention, to control our thoughts and behaviors, especially under
situations that are out of the ordinary [14–16]. Core EF incorporates neural functions
to control individual behaviors and produce preferred results [13]. The frontal lobes
of the brain are imperative in measuring an individual’s cognition, through three core
EFs: working memory, cognitive flexibility, and inhibitory control [8,17]. Memory stores
information when tasked with a mental activity [18]. This process comprises replacing
unnecessary data with relevant data, modifying retained information, and programming
new information that pertains to the task [19]. Inhibitory control alludes to the capacity to
suppress automatic reactions when necessary [15]. Cognitive flexibility enables individuals
to adjust their behavior to fit into the environment [20] and cognitively withdraw from
activities, plan a response, and apply it to a task [21]. Therefore, advanced EF can enhance
academic ability, develop teamwork and leadership expertise, and provide more efficient
stress responses and greater organisation [22].

The current literature on adolescents involves top-class sport athletes (known as
elite sport), which requires remarkable physiological, cognitive, and perceptive skills [23].
Within sports, individuals must process constant information within a limited time, while
under psychological pressure [23]. The mental construct of “perceptual-cognitive skills”
alludes to the ability to indent and recognize information concerning their environment [24].
This information is merged with pre-existing knowledge, which enables the selection and
execution of responses [23]. Elite athletes are found to perform better on processing speed
and attentional measures [25]. Therefore, those within elite sport demonstrate greater EF
abilities, and so the outcome of the sport is positively influenced [23,25]. It may be of benefit
for coaches to integrate cognitive testing as a tool to optimize athletic development [23]. The
comparative literature surrounding the EF abilities of athletes and non-athletes highlights
more efficient EF performance in those elite performers [25]. More specifically, non-elite
athletes have been found to perform poorly in tests of memory, attention, and decision-
making skills [25]. Although sport and EF research places a focus on elite athletes and the
influence of elite sport on EF [16,23,25,26], very little is known about whether an association
exists in non-athletes, as well as between PA levels, meeting the PA guidelines, and EF.
Thus, this study places a focus on PA and PA guidelines in hopes of widening this field.

Although evidence of a positive association between PA and EF exists [27–31], the
literature heavily focuses on children and older adults, so a deficit remains for adolescents
aged 18–24 years [32]. Within the UK adult population, only one study on university
students (with a mean age of 19 years) has investigated this association and found that
increased levels of MVPA were associated with greater task-switching performance [33],
which reiterates the potential benefits that PA may have on cognitions [34].

In addition, EMA within PA research is scarce [12], especially for adolescent studies.
Thus, the current study aimed to (1) investigate the associations between EMA-derived PA
and the core EFs (working memory, inhibitory control, and cognitive flexibility) of adoles-
cents and (2) examine the difference in EF between individuals who meet the recommended
PA guidelines and those who do not.
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2. Materials and Methods
2.1. Participants and Settings

This cross-sectional study in northwest England used convenience and snowball
sampling techniques to recruit 47 participants (76.6% females; age 20.1 ± 1.7 years). Con-
venience sampling involves the researcher announcing the study and participants self-
selecting if they choose to participate [35]. Snowball sampling enables participants to refer
new potential participants to the researcher [35]. Both sampling methods were a form of
non-probability sampling and were used as an efficient method to gain participants [35].
The sampling time frame was November 2022 to February 2023. The participants were
required to be an undergraduate student at university and aged between 18 and 24 years.
The study excluded individuals who could not be physically active or had conditions
impacting their memory or color-blindness. Ethical approval was granted by the Sport and
Physical Activity Department’s Research Ethics Committee at Edge Hill University (SPA-
REC-2022-093) before any research was undertaken. All participants provided informed
written and verbal consent before starting the study.

2.2. Measures and Procedures
2.2.1. Physical Activity

Habitual PA was measured for one week through the Pathverse app, version 1.31.0,
Canada (https://pathverse.ca/en/) (accessed on 10 October 2022). Pathverse is an online
tool that obtained undergraduate students’ PA levels through EMA. The use of the app
within the current study was divided into four phases: (1) researcher Pathverse training
and design features ideas, (2) formation of the mobile PA study, (3) pilot study of the app,
and (4) implementation of the study. This process can be seen in Supplementary Figure S1.

Data were extracted from the Pathverse app after one week and reviewed to determine
whether participants achieved the PA guideline. The logged physical activities included a
Borg rating of perceived exertion (RPE) (0–10) [36], a tool to measure the participant’s effort
toward an activity, their exertion, and breathlessness [37]. The category-ration scale (CR-10)
(0–10) was used to determine the intensity rate of participants’ physical activities, based
on their activity RPE. Light PA ranged from 1 to 3, moderate PA from 4 to 6, and vigorous
PA was rated 7–10 [38,39]. Grant et al. [40] compared this with various other linear scales,
including the Likert scale, and concluded that the reproducibility of the results aligned
with but also outperformed some linear scales [37]. The participants’ total amount of
moderate physical activity (MPA) and vigorous physical activity (VPA) were calculated and
compared with the MVPA guidelines. The guidelines alluded to a minimum of 150–300 min
of moderate or 75–150 min of vigorous PA per week [3]. The participants were stratified
based upon this criterion: those that achieved the MVPA guideline (group 1) and those that
did not achieve the MVPA guideline (group 2).

The participants’ daily step values were obtained via the Pathverse app, through the
synching of various fitness apps. Those apps included Apple Health, Google Fit, and Fitbit
and tracked the participants’ steps via their phone or fitness watch. The participants were
stratified based upon this criterion: those that achieved the step guidelines (group 1) and
those that did not achieve the step guidelines (group 2).

2.2.2. Executive Functioning

The participants’ core EFs were measured through a battery of cognitive tests via
the Psytoolkit online software (version 3.4.2) [41,42] (https://www.psytoolkit.org/c/3.
4.2/survey?s=BFThW) (accessed on 10 October 2022) on desktop computers in an ICT
laboratory at Edge Hill University. Before the cognitive tests, an online survey was coded
into the study to collate data that acted as covariates due to the possibility of a statistical
relationship with the dependent variables. The survey asked participants for their age,
sex, and average academic attainment (average grade percentage at university (%)). Home
address postcodes were also required to calculate the English index of multiple deprivation
(EIMD) deciles [43] to relatively measure deprivation across small areas within England.

https://pathverse.ca/en/
https://www.psytoolkit.org/c/3.4.2/survey?s=BFThW
https://www.psytoolkit.org/c/3.4.2/survey?s=BFThW


Int. J. Environ. Res. Public Health 2023, 20, 6944 4 of 17

The EIMD ranks every small area in England from 1 (most deprived) to 32,844 (least
deprived), and the deciles are calculated from these [43]. Once completed, the participants
proceeded with three cognitive tests that assessed cognitive flexibility, inhibition, and
visuospatial working memory. After each test, the participants were required to input their
scores into a data sheet.

2.2.3. Cognitive Flexibility

A task-switching test was implemented to assess the participants’ cognitive flexibil-
ity [44,45]. This task was used due to its high internal consistency, validity, and good
test–retest reliability [46]. This task involved two individual tasks (A and B), in which
participants carried out a trial of each and then a trial that was a combination of tasks A
and B presented on a grid format. Task A asked participants to respond to a letter when
presented next to a number (i.e., A3), and task B required a response to the number rather
than the letter. In the combination trial, participants had to respond to the stimuli based
on its location within the grid. The less time participants took to complete the task-switch
trials, the more proficient their task-switching ability.

2.2.4. Inhibition

A Stroop task was implemented to assess the participants’ inhibition through a com-
patible and incompatible trial [47]. For instance, one trial presented the color and meaning
of a word to be the same, e.g., the word “green” was in green font (compatible). The other
trial displayed a word with a different meaning and color, e.g., “green” was in red font
(incompatible) [48]. The task presented the name of a color (e.g., red) but asked participants
to identify the font color in which it was written. The participants’ greater performance
in the compatible trial indicated a lower level of interference in their reading ability and
greater overall performance [48].

2.2.5. Visuospatial Working Memory

A reverse Corsi block test was used to assess the participants’ visuo-spatial working
memory because it is a valid and reliable assessment strategy [49]. This task presented nine
blocks that illuminated in a sequence. As the trials progressed, the number of illuminated
blocks increased. The participants were required to retain the reverse order of the sequence
and input this by selecting the squares when prompted. This provided an indication of the
participant’s spatial span; the greater the sequence retained, the more efficient their spatial
span was.

2.3. Data Analysis and Statistical Analyses

Descriptive statistics, the mean and standard deviation, were obtained on all measured
variables (Table 1). A two-way analysis of covariance (ANCOVA) was conducted to assess
the differences in executive function (cognitive flexibility, inhibition, and visuospatial
working memory) between sex and achieving the PA guidelines or not, while controlling
for EIMD deciles, age, and academic attainment. The covariates highlighted were selected
to eliminate any extraneous variables measurement of EF, given that positive correlations
have been shown [27,50,51]. Two multiple regressions investigated the association between
EF (cognitive flexibility, inhibition, and visuospatial working memory) and MVPA and
between EF and step value, including academic attainment, sex, age, and EIMD decile in
each model. This enabled the analysis of the importance of each predictor on the above
potential association and determined whether the MVPA and step value predicted increases
in EF.
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Table 1. Descriptive characteristics of the participants: mean and standard deviation (M(SD)) unless
indicated otherwise.

Variables All Sex Physical Activity Guidelines

Males Females Achieved Not Achieved

n 47 11 36 11 36
Age (years) 20.1 (1.4) 20.2 (1.6) 20.1 (1.3) 19.8 (1.0) 20.3 (1.5)
Females (n) 36 - - 10 26
Males (n) 11 - - 1 10
Academic attainment (%) 64.2 (7.3) 59.9 (6.8) 65.2 (7.1) 63.1 (6.5) 64.6 (7.6)
IMD decile 5.4 (3.2) 5.6 (3.4) 5.3 (3.2) 4.3 (3.4) 5.7 (3.2)
Physical activity
MVPA (minutes) 78.1 (116.2) 38.6 (58.6) 90.2 (127.0) 255.6 (107.7) 23.9 (38.9)
RPE 3.9 (2.3) 3.3 (7.1) 2.3 (4.1) 4.9 (3.9) 2.0 (6.4)
Step value (number) 7688.5 (3516.8) 8362.4 (4368.7) 7495.9 (3283.6) 8562.3 (2985.7) 7438.8 (3654.8)
Executive function
Stroop effect (m/s) 74.4 (101.9) 88.7 (93.6) 70.0 (105.2) 68.8 (75.2) 76.1 (109.7)
Corsi-backward span
(number of items) 4.5 (2.3) 5.1 (2.1) 4.3 (2.4) 3.8 (2.7) 4.7 (2.2)

Task-switch cost
(response time in m/s) 440.4 (296.1) 346.6 (259.0) 366.3 (304.1) 456.2 (261.5) 435.6 (309.2)

3. Results

A multiple regression was run to predict the task-switch cost, Stroop effect, and
backward Corsi span from the MVPA, academic attainment, EIMD decile, sex, and age.
Partial regression plots and a plot of studentized residuals against the predicted values
identified no linearity. A Durbin–Watson statistic of 2.3 (task-switch cost), 2.2 (Stroop effect),
and 2.3 (backward Corsi span) confirmed the independence of the residuals. A plot of
studentized residuals versus unstandardized predicted values confirmed homoscedasticity.
The assumption of normality was achieved, as assessed by a Q–Q plot. The final model did
not statistically predict the task-switch cost, F (5,28) = 0.93, p = 0.475, R2 = 0.14, Stroop effect,
F (5,28) = 0.44, p = 0.817, R2 = 0.07, or backward Corsi span, F (5,28) = 1.87, p = 0.133, R2 = 0.25.
Regression coefficients and standard errors for the final model are displayed in Table 2.

Table 2. Multiple regression results for MVPA and Stroop effect, backward Corsi span, and task-
switch cost.

Model B
95% CI for B

SE B β
LL UL

Stroop Effect
MVPA 0.09 −0.22 0.40 0.15 0.11

Academic attainment 0.64 −4.73 6.00 2.62 0.05
IMD decile −4.38 −16.02 7.25 5.68 −0.15

Sex 38.03 −59.96 135.75 47.71 0.16
Age 12.19 −21.99 46.37 16.68 0.15

Backward Corsi Span
MVPA −0.01 −0.01 0.00 0.00 −0.24

Academic attainment 0.07 −0.05 0.19 0.06 0.22
IMD decile 0.19 −0.06 0.45 0.12 0.26

Sex 0.35 −1.80 2.48 1.04 0.06
Age 0.21 −0.54 0.96 0.36 0.10

Task-Switch Cost
MVPA −0.14 −0.96 0.69 0.40 −0.06

Academic attainment 13.32 −0.88 27.52 6.93 0.38
IMD decile −13.76 −44.54 17.02 15.03 −0.17

Sex 29.54 −228.99 288.07 126.21 0.05
Age −29.56 −119.97 60.86 44.14 −0.13

Note. Model = “Enter” method in SPSS Statistics; B = unstandardized regression coefficient; CI = confidence
interval; LL = lower limit; UL = upper limit; SE B = standard error of the coefficient; β = standardized coefficient.
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A second multiple regression was run to predict the Stroop effect, task-switch cost,
and backward Corsi span from the daily step value, academic attainment, EIMD decile,
sex, and age. Partial regression plots and a plot of the studentized residuals against the
predicted values identified no linearity. A Durbin–Watson statistic of 2.1 (Stroop effect), 2.2
(task-switch cost), and 2.4 (backward span) confirmed the independence of the residuals. A
plot of the studentized residuals versus the unstandardized predicted values confirmed
homoscedasticity. The assumption of normality was met, as assessed by a Q–Q plot. The
final model did not statistically predict the Stroop effect, F (5,28) = 0.63, p = 0.317, R2 = 0.10,
task-switch cost, F (5,28) = 1.03, p = 0.394, R2 = 0.16, or backward span, F (5,28) = 1.97, p = 0.510,
R2 = 0.26. The regression coefficients and standard errors are displayed in Table 3.

Table 3. Multiple regression results for the step count and Stroop effect, backward Corsi span, and
task-switch cost.

Model B 95% CI for B SE B β

LL UL

Stroop Effect
Step value 0.01 −0.005 0.16 0.005 0.22

Academic Attainment −0.07 −5.47 5.34 2.64 −0.01
IMD decile −4.78 −16.08 6.52 5.52 −0.16

Sex 15.56 −83.07 114.19 48.15 0.07
Age 17.91 −17.60 53.42 17.33 0.21

Backward Corsi Span
Step value 0.00 0.00 0.00 0.00 0.27

Academic Attainment 0.05 −0.07 0.17 0.06 0.17
IMD decile 0.23 −0.02 0.48 0.12 0.31

Sex 0.17 0.88 2.34 1.06 0.03
Age 0.42 0.29 1.20 0.38 0.20

Task-Switch Cost
Step value 0.01 −0.02 0.04 0.01 0.14

Academic Attainment 12.35 −2.07 26.77 7.04 0.35
IMD decile −12.62 −42.76 17.51 14.71 −0.15

Sex 10.64 −252.40 273.67 128.41 0.02
Age −18.31 −113.00 76.39 46.23 −0.08

Note. Model = “Enter” method in SPSS Statistics; B = unstandardized regression coefficient; CI = confidence
interval; LL = lower limit; UL = upper limit; SE B = standard error of the coefficient; β = standardized coefficient.

A two-way ANCOVA was conducted to examine the effects of MVPA on EF, after
controlling for age, EIMD decile, and academic attainment. There was a linear relationship
between the Stroop effect, task-switch cost, and backward Corsi span for each group, as
assessed by visual inspection of a scatterplot. There was homogeneity of the regression
slopes. The studentized residuals plotted against the predicted values for each group
confirmed homoscedasticity, and there was homogeneity of variances as assessed by Lev-
ene’s test of homogeneity of variance (p = 0.626 backward span, p = 0.922 Stroop effect,
p = 0.957 task-switch). The data had no outliers as there were no cases with studentized
residuals greater than ±3 standard deviations. The leverage values and Cook’s distance
confirmed no leverage or influential points. As assessed by Shapiro–Wilk’s test (p > 0.05),
the studentized residuals were normally distributed.

There was no significant two-way interaction between the Stroop effect p = 0.786,
backward span p = 0.598, and task-switch p = 0.915, with achieving the PA guidelines, while
controlling for age, EIMD decile, and academic attainment. Therefore, an analysis of the
main effects was not performed. The means, adjusted means, standard deviations, and
standard errors are presented in Table 4 for the Stroop effect, backward Corsi span, and
task-switch.
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Table 4. Means and standard deviations (M(SD)), adjusted means and standard errors Madj (SE) for
Stroop effect, backward Corsi span, and task-switch for groups.

Females Physical Activity Guidelines

Stroop effect
Achieved Not Achieved

M(SD) 69.0 (84.0) 42.0 (104.3)
Madj (SE) 67.0 (72.6) 42.3 (28.8)

Backward Corsi span
Achieved Not Achieved

M(SD) 3.0 (2.7) 5.0 (2.0)
Madj (SE) 3.6 (1.6) 4.6 (0.6)

Task-switch
Achieved Not Achieved

M(SD) 386.0 (260.7) 434.8 (281.1)
Madj (SE) 386.8 (192.4) 412.4 (76.2)

Males Physical Activity Guidelines

Stroop effect
Achieved Not Achieved

M(SD) n/a 81.4 (95.0)
Madj (SE) n/a 82.7 (44.0)

Backward Corsi span
Achieved Not Achieved

M(SD) n/a 4.7 (2.6)
Madj (SE) n/a 4.9 (1.0)

Task-switch
Achieved Not Achieved

M(SD) n/a 376.4 (269.8)
Madj (SE) n/a 439.5 (116.6)

4. Discussion

This study aimed to (1) investigate whether an association existed between PA and the
core EFs of adolescents and (2) whether a difference occurred in the core EFs of those who
achieved the PA guidelines and those who did not. Moreover, aligning with previous re-
search [27,31–39,52], it was hypothesised that individuals who achieved the recommended
PA guidelines would obtain greater working memory, inhibitory control, and cognitive flex-
ibility than those who did not achieve the recommended PA guidelines, while an increase
in MVPA would be associated with greater EF.

Overall, this study highlighted that a significant association did not exist between vi-
suospatial working memory, inhibition, and cognitive flexibility with MVPA in adolescents
aged 18–24 years. There were no significant differences in EF between those who met the
PA guidelines and those who did not meet the PA guidelines. This rejected the hypotheses
as a greater level of MVPA engagement did not associate with the visuospatial working
memory, task-switch, or Stroop effect testing scores. In addition, the participants’ daily step
count was also explored in relation to their EF, and it was also found that steps were not
significantly associated with greater EF. While the findings were unexpected and rejected
the hypotheses, it is important to understand the factors that withheld the potential to
explain the above findings.

4.1. Associations between Physical Activity and Executive Function

The literature highlights other studies that failed to demonstrate the potential associa-
tion between PA and EF within children and older adults [53–55]; in line with the current
study, Ho, Gooderham, and Handy [56] also failed to establish this association within
university students. Several methodological differences exist between this study and the
work of Ho, Gooderham, and Handy [56], which add depth to this field since the results
align. The first difference alludes to Ho, Gooderham, and Handy’s [56] use of the flanker
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task, which activates similar brain regions to the Stroop test, such as the anterior cingulate
cortex [57]. Moreover, Ho, Gooderham, and Handy [56] utilised the International Physical
Activity Questionnaire (IPAQ) long form to measure participants’ PA, whereas this study
opted for EMA. Given that the IPAQ can be subject to recall bias, which may provoke an
overestimation of PA [58], the use of EMA helped to broaden this field by providing a
new light on potentially more accurate PA measures. Thus, this study adds to the current
literature via a novel methodological approach.

Although not a key aim of the study, the ANCOVA results demonstrated no sig-
nificant differences in PA and EF between males and females within our sample. Thus,
males and females were placed into the same group for the multiple regression analyses.
Sex-related differentiation has been found to occur within associations between PA and
cognition [27,59,60]. Adolescence has been seen to be associated with a decline in PA as
age increases [61,62]. It has also been highlighted that adolescent boys undergo a decrease
in their PA levels much earlier and obtain a greater level of sedentary behavior than ado-
lescent girls [63]. This may be driven by psychological factors, such as life transitions,
i.e., completing mandatory schooling and starting a job [63]. This can also stem from
motivational differences and interests [64] and having access to sporting opportunities
given that curriculum-based PA ends once individuals leave school [65]. There is evidence
to suggest that biological sex has an influence on memory [27], which may be influenced
by physiological and psychological factors that can change in response to PA [66]. It has
been highlighted that females demonstrate greater cognitive outcomes that are associated
with PA [59,60]. For instance, there is evidence to suggest that the impact of acute PA on
episodic memory was found to be greater on females than on males [67]. Despite the litera-
ture highlighting these interesting findings, this study’s results did not align. Therefore,
sex-related differentiation was not found to play a key role in the findings of this study.

Further, the task-switching test is a measure of latency as opposed to absolute, due
to the difference in the mean reaction time between switch and non-switch trials being
the measure of task-switching ability [68]. However, this result is inaccurate as switch
costs can also occur [68], so considering alternative tests of cognitive flexibility, such as the
cognitive flexibility scale [69], may be warranted for future research. However, it should be
noted that other research [27] that found an association between PA and cognitive flexibility
utilized the trail-making test [70], which analyzes errors and speed combined. This suggests
that the task-switching test used in this study shines a new light on cognitive flexibility.
Therefore, the way in which cognitive flexibility is measured via cognitive testing should
be considered prior to those tests being carried out.

Moreover, research has demonstrated significant associations in terms of EFs and
elite sports. For example, higher EF abilities have been reported from elite athletes when
compared with non-athletes [71–73], and greater EF has been found in elite athletes when
compared with sports performers with less experience or expertise [16,26,74]. Within
adolescence, it has been found that elite soccer players obtained greater EF scores than
a standardized norm group of males and females [75]. An approach known as the “cog-
nitive component skills approach” investigates the association between sports expertise
and cognitive test performance that are relevant to the cognitive requirements in elite
sports [76]. Specifically, this approach investigates cognitive functions including working
memory, cognitive flexibility, and inhibition [76]. Some studies failed to align with these
results [77,78]. Although elite sports have demonstrated significance in terms of bettering
an individual’s EF [26,71,72], this factor was not accounted for in this study, as this study
placed a focus on non-elite athletes, PA level, and meeting the PA guidelines. Therefore,
participants were not questioned whether they participated in sport at an elite level, and
thus, the potential association between PA and EF may still exist if the confounding variable
was included.
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4.2. Exploring the Factors That May Influence Executive Function

While an association between PA and EF has not always been found [53,56], discussing
the potential reasons behind this is imperative to gain a more in-depth understanding of
the results obtained. The literature highlights the negative impact of sleep deprivation
on an individual’s cognition [79], yet evidence for this association is equivocal [80]. More
specifically, the impact of sleep duration and quality on EF performance is highlighted
as this was not accounted for in this study. This is important given that slow-wave sleep
(deep sleep) benefits the prefrontal cortex [79], which plays a main role in EF [81]. Wilckens
et al. [81] assessed this association on a population of similar age to this study and found
that longer sleep duration resulted in greater working memory and inhibition. Notably,
Wilckens [81] discovered an association between very short and very long periods of sleep
with poorer working memory. Although the measures of working memory differed from
Wilcken et al.’s [81] study, it should be noted that a Stroop task was also used as a measure
of inhibition, and the study concluded that there was a strong association between sleep
and inhibition in adolescents. Moreover, this was also highlighted by Anderson et al. [82],
who found that “sleepy” participants obtained poorer EF. Opposing this, longitudinal
studies have confirmed that obtaining 6–8 h of sleep per night as an adolescent is associated
with enhanced EF later in life [83]. Thus, researchers and health professionals should
consider sleep duration as a potential contributor to adolescent cognitive functioning. This
factor may explain the fact that there were no significant associations between PA and EF
in this study.

Moreover, an individual’s ability to direct their behavior toward achieving a goal is
imperative throughout academic tasks [84]. Therefore, it would be reasonable that EF would
be related to academic achievement (AA) [84]. Within school-aged individuals, it has been
found that poor EF abilities have been associated with lower academic achievement [85,86],
while greater EF performance has been associated with higher achievement in reading
and mathematics [87,88]. It is imperative to note that research surrounding the association
between EF and AA for the population of this study is scarce [89], and thus, very little is
known about whether an association exists. Notwithstanding, this study did not objectively
measure the participant’s AA and asked participants to note their “average” academic
attainment. This allowed social desirability bias to play a part, and so an association
between AA and EF may still exist. Further research is warranted to expand this field
within this population.

While this study did not highlight a significant association between PA and cognitive
flexibility or inhibition, it is imperative to note that the cognitive testing occurred at
scattered times throughout the day. Participants selected a session that best suited their
availability, to complete the battery of cognitive tests [41,42] and be enrolled onto the
Pathverse app. Although this made the data collection process more efficient, the literature
highlights negative impacts of the time of day and cognitive processing [90]. Folkard and
Monk [91] highlighted the impact of the time of day on the efficiency of an individual’s
working memory and the speed at which they can retrieve information from their long-
term memory [92]. This has been explained through circadian arousal changes that stem
from body temperature adaptations throughout the day, namely, an increase as the day
progresses, which is said to promote optimum performance on complex cognitive processes,
such as working memory [90]. Given that participants completed cognitive testing at
different times throughout the day, the literature is suggestive of potential inaccuracies
within the EF data of this study. Despite this, the evidence highlights that some individuals
report feeling most alert in the morning, and others report these feelings in the evening [93].
Thus, the potential inaccuracies of cognitive testing at various times throughout the day
may not be as prominent as first thought.

In addition, while previous results demonstrate the benefits of PA on cognitive per-
formance [94,95], executive capacities function parallel to the frontal lobe of the brain [96],
so it is unsurprising that the difference in EF between those who meet the PA guide-
lines and those who do not may be attributed to genetic variation, as opposed to their
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PA engagement [96,97]. Evidence highlights the genetic significance of working mem-
ory, with approximate heritability from 33 to 49% [98,99]. Key transmitters are critical
for optimal working memory, namely, excessive or very little dopamine [100] and nora-
drenaline [96]. The evidence indicates the role of serotonin in inhibition [101], whereby
a polymorphism in the serotonin transporter gene prevents serotonin uptake [102]. This
implies that genetic variation among participants may play a role in their cognitive abilities,
which is unknown to the researcher. However, some studies have failed to demonstrate
this association [103,104].

Furthermore, the literature highlights associations between sedentary behavior (SB),
sitting or lying down behaviors that incur <1.5 METs [105], and poorer EF [106]. Consider-
ing this study focused on achieving PA guidelines, individuals who did not achieve the PA
guideline included sedentary participants and those who engaged in little PA that failed to
achieve the guideline. This is noteworthy as participants in the “not achieved” group may
have engaged in SB, potentially negatively impacting their EF scores. Thus, further analysis
is warranted to explore this potential association between SB and EF in adolescents.

Although not the primary aim, this study concluded no associations between daily
step values and working memory, inhibition, or cognitive flexibility, after adjusting for
confounders, which contradicts previous research [107]. This study used Apple Health,
Google Fit, and Fitbit to measure step counts synched through Pathverse. Despite pop-
ularity, mobile health through wearable devices, such as watches or armbands, is being
questioned regarding the validity and reliability of metric data including step count and
heart rate [108]. The evidence implies that the daily step value varies across device brands
and types [109]. A review conducted by Bunn et al. [110] concluded that Fitbit wearables
underestimated the step count and heart rate, which impacted the participant’s energy
expenditure value. Although Fitbit obtains high interdevice reliability for steps, Fitbit
may only provide accurate values in very few circumstances [110,111]. Despite this, in a
systematic review of nine wearable device brands, Apple and Samsung obtained the great-
est validity for step count [108]. Thus, some brands may demonstrate more inaccuracies
than others, which may have presented false step data in this study. This suggests that
the inaccuracy of the step measurement technology may be responsible for no association
being concluded between daily step values and EF.

4.3. Strengths

The strengths of this study allude to the use of a novel mobile health app as a mode
of EMA to measure PA. Physical activity assessment relies on self-reported data, which
provokes recall bias [10]. Ecological momentary assessment therefore aims to reduce this
recall bias and strengthens the ecological validity surrounding the research of factors that
may impact behavior in real-life settings [10]. This is because EMA collects data on large
populations, which a is proximal to the time and location of the behavior occurrence and
so reduces the reliance on memory [112]. Thus, EMA may provide new insights into
PA measurements given that recall questionnaires may be less effective in discovering
phenomena that vary over time [12]. This study also objectively measured EF through the
Psytoolkit software (version 3.4.2) [41,42]. This occurred within a controlled environment,
with noise and distraction levels kept to an absolute minimum, which was imperative
considering the literature highlights greater cognitive performance in silent conditions [113].
A pilot study was conducted to assess feasibility, which provided insights into the study
protocol and methodological complexity [114].

4.4. Limitations and Future Directions

This study also had several limitations that warrant consideration. The cross-sectional
design did not permit cause and effect [115]. Although the population of this study was
under-researched, the availability of time to engage in PA may have been a constraint for
university students given their academic calendar [27]. During the recruitment process,
university students were discouraged by the PA aspect of this study, and it was found
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that more females opted in than males. This may stem from females obtaining differing
perceptions of risk than males [116] and trust being essential in research participation [117].
The final sample of participants was 47, which limits the generalizability of the results to
all university students across England [118].

Furthermore, the exclusion criteria of this study failed to consider the neurodevelop-
mental condition autism. While autism is characterized by a deficit in social interaction
ability [119], a primary phenotype of autism is executive dysfunction [120]. The literature
commonly discusses how this is largely present in adulthood [121,122]. This is impera-
tive as executive dysfunction presents brain abnormalities, negatively impacting complex
information processing [123]. Given that EF improves throughout adolescence [124], in
typical children, there is a call for future research to understand cognitive maturation and
the differences present when compared with individuals with autism [125]. Thus, this
is suggestive of inaccuracies within the EF abilities of those potential participants with
autism since this co-variable is unknown within this study. Future research should factor
in cognitive impairments when exploring the physical activity–cognition phenomenon.
Likewise, it may benefit this field to explore executive dysfunction concerning autism
more widely.

Technical Issues Surrounding the Pathverse App

The Pathverse app presented potential issues surrounding missing and/or false data.
For instance, the participants potentially did not log their PA engagement or falsely claimed
PA engagement, which may be apparent due to social desirability bias [126,127]. How-
ever, EMA within PA research somewhat overcomes this as this method involves honest
responses within a participant’s natural environment and relies on episodic memories, so
the influence of memory bias is reduced [128]. Ecological momentary assessment enables
the participants to privately record their PA engagement, which reduces the pressure to
provide answers that are socially desirable [128]. Therefore, EMA encourages more au-
thentically representable answers from the participants. Despite the Borg CR10 scale [38]
being deemed reliable [37,40], it is subjective, suggesting a potential underlying bias. The
participants were not informed of each value of light, moderate, and vigorous PA, due
to the Pathverse app study design prohibiting changes to be made to the pre-set survey
designs. Thus, the RPE rating may not be entirely accurate, which may influence the
categorisation of their PA. It may be beneficial for the Pathverse app to implement a design
feature allowing edits to be made to multi-option survey designs to allow for features,
such as RPE, to be used more efficiently. Thus, future research is warranted on improving
methods of PA measurement within EMA. Likewise, it would be beneficial to further the
measurement of PA through mobile health since this field is growing [129].

Furthermore, the step count accuracy may also be questioned due to technological is-
sues with the sync function, participants remembering to sync their steps, and the potential
of false data. Given that the participants’ daily step value data were synched via a watch or
mobile phone, there was the drawback of mobile phones failing to track the step count if
the device was not physically on/with the individual. Many occasions within this study
found synching errors with various apps, resulting in missing step count data. Thus, an
association between the daily step value and EF may not have been concluded due to an
inaccuracy in the step value.

Future research should use a pedometer given that they increase credibility and are
continually praised for their accuracy in step measurement [130]. A further consideration
should be aimed toward the use of accelerometers, given that they provide the step count,
accelerations, time spent in PA intensities, sleep quality and duration, and sedentary
behaviors [131]. Pathverse may wish to consider a future feature of enabling synching of
pedometer and accelerometry data to the Pathverse app, to allow for greater accuracy and
broader data in future research, as well as contextual PA data through EMA.
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5. Conclusions

This study adds depth to the physical activity–cognition phenomenon, by analysing
habitual PA through EMA (diminishing the recall biases presented in other self-report
measures), with objectively measured EF on a population that greatly warranted research
within this field. The role of meeting the PA guidelines in enhancing adolescents’ EF was
not found, and MVPA was not associated with greater working memory, inhibition, or
cognitive flexibility. Exploring other potential influences in improving an individual’s EF
is needed. Although the findings may not align with research within this field, the role
of PA in EF must not be dismissed in future research. Furthermore, a light needed to be
placed on adolescents, in the hopes that this research study provokes further analysis on
this population to diminish the existing deficit surrounding the role of PA in the EFs of
adolescents.
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