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Abstract: Dementia is a progressive decline in cognitive functions caused by an alteration in the
pattern of neural network connections. There is an inability to create new neuronal connections,
producing behavioral disorders. The most evident alteration in patients with neurodegenerative
diseases is the alteration of sleep–wake behavior. The aim of this study was to test the effect of two
non-pharmacological interventions, therapeutic exercise (TE) and non-invasive neuromodulation
through the NESA device (NN) on sleep quality, daytime sleepiness, and cognitive function of
30 patients diagnosed with dementia (non-invasive neuromodulation experimental group (NNG):
mean ± SD, age: 71.6 ± 7.43 years; therapeutic exercise experimental group (TEG) 75.2 ± 8.63 years;
control group (CG) 80.9 ± 4.53 years). The variables were evaluated by means of the Pittsburg Index
(PSQI), the Epworth Sleepiness Scale (ESS), and the Mini-Cognitive Exam Test at four different times
during the study: at baseline, after 2 months (after completion of the NNG), after 5 months (after
completion of the TEG), and after 7 months (after 2 months of follow-up). Participants in the NNG
and TEG presented significant improvements with respect to the CG, and in addition, the NNG
generated greater relevant changes in the three variables with respect to the TEG (sleep quality
(p = 0.972), daytime sleepiness (p = 0.026), and cognitive function (p = 0.127)). In conclusion, with
greater effects in the NNG, both treatments were effective to improve daytime sleepiness, sleep
quality, and cognitive function in the dementia population.

Keywords: dementia; new technologies; physiotherapy; sleep quality; physical activity; neuromodu-
lation

1. Introduction

Dementia is a general term to describe a clinical neurodegenerative syndrome charac-
terized by neuronal and synaptic loss, forming a brain deposit of intra- and/or extracellular
insoluble protein aggregates [1,2]. In this disease, different domains are usually affected,
such as memory, language, executive functions, behavior, and conduct. Sleep disorders,
including reduced nighttime sleep time, sleep fragmentation, nocturnal wandering, and
daytime sleepiness, among others, are very common [3,4].

A high prevalence of sleep disorders in patients with dementia has been identified
for more than 30 years. Scientific evidence [5–7] estimates that between 25% and 66% of
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patients with dementia have a lower sleep efficiency and, consequently, fragmented sleep.
This is considered one of the main causes of institutionalization [8].

Sleep is a basic biological need for the proper functioning of the organism and is
essential for memory consolidation [9,10]. One of the mechanisms that coordinate sleep
are the circadian rhythms, which are natural processes through physical, mental, and
behavioral changes that follow a cycle of approximately 24.5–25 h. The main center of
regulation is the suprachiasmatic nucleus (SCN) located in the hypothalamus, which acts as
an endogenous clock in the sleep–wake cycle. When sunlight activates the SCN, it projects
to adjacent areas of the hypothalamus that are related to temperature and circadian rhythms,
and to the pineal gland [11,12]. As the usual sleeping hours approach, the stimulus of the
SCN and thus the circadian activity decreases, increasing the homeostatic need for sleep.
This is when, due to environmental darkness, endogenous melatonin (MLT) is synthesized,
a hormone secreted by the pineal gland that regulates the wake–sleep cycle [9–13].

An alteration of the circadian system has an impact on MLT secretion, and this leads
to a poor synchronization of biological rhythms such as the sleep–wake cycle. In people
with dementia, the suprachiasmatic nucleus (SCN) is impaired and, therefore, this leads to
a reduction in melatonin production, causing a disruption of the circadian rhythms, and,
therefore, in the quality of life [12,13].

Currently, pharmacological options in dementia should be used with caution, seriously
considering possible side effects before prescribing hypnotic and psychotropic agents [14].
When drug therapy is used, short-term use is recommended, since the occurrence of serious
adverse effects and the lack of evidence on their chronic use are limitations for the person
with dementia, given the absence of quality studies conducted in this population [14–18].

As for non-pharmacological strategies, there is currently a paucity of research in people
with dementia, but even so, they are emerging as alternative procedures to improve sleep
disorders in patients with dementia because of their minimal risk of side effects. These
include sleep hygiene measures, light therapy, physical activity, cognitive stimulation, and
auditory stimulation [19–28].

The need arises for effective non-pharmacological treatments backed by scientific
evidence to support their use for the cognitive function and sleep disturbances suffered by
this population.

In this sense, given that previous studies have shown that TE has demonstrated
benefits on these characteristics, albeit in other neurodegenerative diseases [29–31], but its
effect has not been studied in this population, it is of interest to check its possible benefit in
this type of patient.

Similarly, some studies have shown positive evidence in the improvement of ANS-
related dysfunctions in the field of multiple sclerosis [32] and cerebral palsy [33].

Therefore, the main objective of this study was to test the effect of two non-pharmacological
interventions, on the one hand, therapeutic exercise (TE), and, on the other hand, non-invasive
neuromodulation through the NESA device (NN), on sleep quality, daytime sleepiness, and
cognitive function in patients with dementia.

2. Materials and Methods
2.1. Subjects

The sample of this study consists of 30 patients diagnosed with dementia who belong
to two associations of Alzheimer’s and other dementias, where they perform daily classes
of 1 h of physiotherapy for elderly and cognitive stimulation 5 days a week. During
the study, patients in the different groups continued to receive these therapies. The new
variation was the introduction of the TE and NN protocols. The inclusion criteria were
obtaining a medical diagnosis of dementia equal to or greater than mild according to the
Reisberg Global Deterioration Scale (GDS) [34], having stable medical and pharmacological
conditions, as well as the ability to perform physical activity and follow verbal instructions.
Also, patients were excluded if they had contraindications for the experimental treatments,
such as: pacemakers, internal bleeding, ulcerated skin, acute febrile processes, cancer
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diagnosis, phobia of electricity, or comorbidity affecting sleep. This was in addition to
those patients who were receiving drugs that interfere with sleep and acted as confounding
factors. At the same time, the patients had the right of withdrawal; the voluntary decision
of the patients or their caregivers to withdraw from the study at any time during the
study, as well as any complication that might occur during the duration of the intervention,
were considered grounds for withdrawal. The recruitment procedure was carried out by
non-probabilistic convenience sampling.

2.2. Study Design

A randomized, single-blind, multicenter clinical trial was conducted in two associa-
tions of Alzheimer’s and other dementias to evaluate the effect of two non-pharmacological
treatments, TE and NN, on sleep quality, daytime sleepiness, and cognitive function in
patients with dementia. For this purpose, participants were randomly assigned to one of
the three study groups (TEG; NNG; CG), using a fixed-size block design generated by the
data manager to ensure a balanced randomization for each of the groups and in each of the
participating centers. The allocation process was performed using probability convenience
sampling [35]. The variables studied were collected at 4 different times during the study:
at baseline, after 2 months (after completion of the NNG treatment), after 5 months (after
completion of the TEG treatment), and after 7 months (after 2 months of follow-up). The
specific process is shown in Figure 1.
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Figure 1. Study design flowchart.

2.3. Procedures

A randomized, multicenter trial was conducted to compare the treatment of NNG and
TEG with a CG, and at the same time, both experimental treatments. The 10 participants of
the CG received recommendations about sleep habits through an information leaflet but
did not perform any active treatment [36,37].
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2.4. Therapeutic Exercise Protocol

The 10 TEG participants received 52 sessions, from 10:00 am to 11:00 am, of an adapted
cardiovascular exercise program in a small group format supervised by a physiotherapist.
For the first 16 weeks, 3 weekly one-hour sessions were performed. Then, up to week
20, 1 session per week was followed by a progressive decrease in the load. The structure
of the sessions was as follows: 1. active warm-up, 2. strength exercises, 3. balance and
coordination exercises, 4. aerobic exercises, and 5. relaxation and return to calm. The
sessions were gradually increasing in volume and intensity to achieve moderate intensity
exercise. In addition, the participants’ caregivers were instructed to have the patients walk
every day, gradually increasing their time, until they reached 30 min daily [38–40].

2.5. Nesa Non-Invasive Neuromodulation Protocol

The 10 NNG participants completed the protocol NESA [41–47] of 20 sessions of
60 min, three times a week. Each participant always had the same time for their session.

The non-invasive neuromodulation technique, NESA, is a non-invasive and easily
transportable monitoring device, which emits low frequency microcurrents (1.3–14.28 Hz,
depending on the program), low intensity (0.1–0.9 mA), and low voltage (±3 V) that are
introduced into the distal nerve endings of the limbs by means of 24 electrodes (6 electrodes
per limb, distributed between both wrists and ankles), producing a circulating bioelectric
circuit in the body, for an estimated time to stimulate the autonomic nervous systems and
enhance the recovery of those dysfunctional processes of the patient. In our case, dementia,
it is known that there is a desynchrony in the wake–sleep cycle due to neurodegeneration,
therefore, there is an alteration in the physiological processes of the circadian rhythm, this
being a dysfunction in the segregation of melatonin, produced by the pineal gland [32,48,49].
For this, the treatment was performed in a centralized way to cover the nervous system in
a general way, focusing the directional electrode in C7, and intensity “Low 3V” to favor the
hormesis of the treatment. This location is close to the central nervous system, vagus nerve,
and peripheral nervous system.

The NN protocol, administered by physiotherapists working in their respective centers,
consisted of the distribution of 4 phases: The first phase was to avoid adverse effects,
3 sessions with program 1 (P1) 30 min, program 7 (P7) 15 min, and program (P8) 15 min.
The second phase was to influence neuronal repolarization, 2 sessions with program 5 (P5)
30 min and P7 another 30 min. The third phase was to introduce the following, P5 15 min,
P7 30 min, and P8 15 min. Finally, the fourth phase was to improve sleep quality, 12 sessions
with P7 for 45 min and P8 15 min.

The microcurrents emitted by the different programs used were symmetrical biphasic
low frequency and limited intensity, and therefore imperceptible to the patient.

2.6. Recovery Measures

Sleep quality: This was evaluated using the Pittsburgh Sleep Quality Index (PSQI) [50].
It consists of 19 items that analyze 7 different sleep components (subjective sleep quality,
sleep latency, sleep duration, sleep efficiency, sleep disturbances, sleep efficiency, use of
sleep medications, and daytime dysfunction). Each item is scored from 0 to 3. The total
scale score ranges from 0 to 21 points where the lower end represents good sleep quality,
and the upper end represents poor sleep quality. Cronbach‘s alpha of 0.83 obtained in
Buysse et al. [50] for the PSQI components indicates a high degree of internal homogeneity.
Therefore, the clinical and clinical properties of the PSQI suggest its usefulness in both
psychiatric clinical practice and research.

Daytime sleepiness: This was evaluated using the Epworth Sleepiness Scale (ESS) [51].
It estimates the probability (0—never; 1—few; 2—moderate; 3—many) of falling asleep in
eight different situations. Depending on the total score, which can vary between 0 and 24,
the degree of sleepiness is determined. The higher the score, the greater the likelihood of
daytime sleepiness. As the Murray Johns et al. [52] study shows, factor and item analyses
have shown that the ESS is a unitary scale with high internal consistency (Cronbach’s



Int. J. Environ. Res. Public Health 2023, 20, 7027 5 of 18

alpha = 0.80). Daytime sleepiness has a high test–retest reliability over a 5-month period in
normal subjects (r = 0.822, n = 87, p < 0.001).

Cognitive function: This was evaluated by means of the Mini-Cognitive Examination
Test (Lobo’s MEC) [53]. Several studies recommend its use due to its effectiveness for the
evaluation and follow-up of cases in which there is suspicion of cognitive impairment,
obtaining reliable results, obtaining a sensitivity for dementia between 76–100%, and
specificity between 78–100% [54,55]. It consists of 5 cognitive areas: orientation (temporal
and spatial), fixation memory, concentration and calculation, delayed recall, and language
and construction. The maximum score that can be obtained in this test is 35 points. If
the patient obtains less than 24 points it is considered that there is some type of cognitive
impairment. In the study of Buiza et al. [56] where they use the Lobo MEC scale to assess
the cognitive status of patients with dementia, the test showed high internal consistency
(α = 88), and good test–retest (0.64–1.00; p < 0.01) and inter-rater (0.69–1.00; p < 0.01)
reliability, both for the total score and for each of the items.

2.7. Statistical Analysis

Measurement of the variables was performed in all study participants at 4 different
times: at baseline, 2 months (after completion of the NNG), 5 months (after completion of
the TEG, and 7 months (after 2 months of follow-up). Self-administered questionnaires
were used, but since our trial involved patients diagnosed with dementia, the responses
were made by the primary caregiver of each patient.

Categorical variables were summarized using percentages and relative frequencies.
Equality of proportions of the categories was compared using Pearson’s chi-square statistic.
In addition, a one-way ANOVA was performed on the three groups to test whether differ-
ences were found as a function of age, and Levene’s test was used to test the homogeneity
of variances of the groups.

The numerical variables were summarized using descriptive statistics (means, stan-
dard deviations pretest, at 2 months, at 5 months, and at 7 months). Since their distributions
did not follow a normal law and the sample size was low, we chose to compare the three
groups with the nonparametric Kruskal–Wallis H test. If the χ2 statistic was significant,
the two-by-two comparison between the groups was performed with the Dwass–Steel–
Critchlow–Fligner test to analyze the equality between the groups at each time point. The
significance level for all analyses was set at p < 0.05. However, given the low sample size,
the effect size (ES) was also calculated with Cohen’s typed mean difference. A low effect
size was obtained when ES = 0.20, medium when ES = 0.50, and high when ES = 0.80.
Statistical analyses were performed with SPSS v. 28.0 and JAMOVI v. 2.3.13.

2.8. Ethics

As this was a sample of patients with dementia, their caregivers gave written informed
consent before being assigned to a group and evaluated, and the rights of all partici-
pants were protected. All experimental protocols respected the fundamental principles
established in the 1975 Declaration of Helsinki [57] and were approved by the Clinical
Research Ethics Committee of the University of Murcia (registration number 3572/2021)
and registered in ClinicalTrials.gov with identification number: NCT05715866.

3. Results
3.1. Sample

A total of 30 participants met the inclusion criteria and were randomized in the data
collection process. Ten participants were assigned to the NNG, 10 to the TEG and 10 to the
CG. The age of the participants was as follows: NNG 71.6 (SD = 7.43); TEG 75.2 (SD = 8.63),
and CG 80.9 (SD = 4.53). (Table 1 shows the participants baseline clinical characteristics).
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Table 1. Participant baseline clinical characteristics.

Variable Option
Neuromodulation

No Invasive Group
(N = 10)

Therapeutic
Exercise Group

(N = 10)

Control Group
(N = 10) p-Value

Gender
Female 6 4 8

0.189
Male 4 6 2

Insomnia
No 4 5 5

0.875
Yes 6 5 5

Daytime sleepiness
No 6 4 5

0.670
Yes 4 6 5

SAOS
No 7 7 7

1.000
Yes 3 3 3

Parasomnias
No 4 8 5

0.171
Yes 6 2 5

Snoring
No 2 2 3

0.83
Yes 8 8 7

Type of dementia

Alzheimer 8 8 9
0.666Lewy bodies 1 1 1

Parkinson 1 0 0

Daytime walks
No 4 7 4

0.301
Yes 6 3 6

Sedentary life
No 7 6 8

0.621
Yes 3 4 2

Rheumatic disease
No 8 10 7

0.186
Yes 2 0 3

Symptoms of
gastroesophageal

No 9 9 10
0.585

Yes 1 1 0

Prostate disease
No 8 8 9

0.787
Yes 2 2 1

Cardiomyopathy
No 8 9 10

0.329
Yes 2 1 0

Depression
No 3 7 6

0.175
Yes 7 3 4

Anxiety
No 6 10 7

0.089
Yes 4 0 3

Parkinson’s disease
No 9 10 9

0.585
Yes 1 0 1

Stroke
No 9 10 7

0.133
Yes 1 0 3

Treatment with
bronchodilators

No 9 9 9
1.00

Yes 1 1 1
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Table 1. Cont.

Variable Option
Neuromodulation

No Invasive Group
(N = 10)

Therapeutic
Exercise Group

(N = 10)

Control Group
(N = 10) p-Value

Treatment with
thyroxine

No 9 9 6
0.153

Yes 1 1 4

Treatment with diuretics
No 9 8 6

0.271
Yes 1 2 4

Treatment with
antidepressants

No 3 6 3
0.287

Yes 7 4 7

Treatment with
neuroleptics

No 10 8 6
0.082

Yes 0 2 4

Treatment with
benzodiazepines

No 7 7 8
0.843

Yes 3 3 2

3.2. Effect of the Intervention on Sleep Quality

When comparing the three groups at each time point for sleep quality, using the
Pittsburgh Sleep Quality Index (PSQI), significant differences were found after 5 months
(p = 0.048) and after 7 months (p = 0.002). The NNG and TEG obtained improvements in
sleep quality by decreasing both the scores of the test after 7 months; therefore, it was the
NNG who showed a better evolution. In addition, the CG showed a worsening in sleep
quality (Table 2 and Figure 2).

Table 2. Means, standard deviations, effect size, and statistical significance for intergroup and
intragroup comparison of sleep quality in the different periods.

PSQI p-Value NNG
Mean (SD)

TEG
Mean (SD)

CG
Mean (SD)

Pairwise
Comparison d p-Value

At baseline 0.664 20.6 (8.32) 20.1 (8.75) 20.8 (6.30)
NNG–TEG
NNG–CG
TEG–CG

After 2 months 0.060 15.3 (5.50) 16.2 (9.07) 20.8 (6.11)
NNG–TEG
NNG–CG
TEG–CG

−0.12
−0.95
−0.60

0.980
0.141
0.102

After 5 months 0.048 15.4 (6.47) 13.0 (7.04) 20.1 (6.44)
NNG–TEG
NNG–CG
TEG–CG

0.36
−0.88
−1.20

0.609
0.203
0.059

After 7 months 0.002 10.5 (5.13) 11.2 (6.00) 20.6 (6.90)
NNG–TEG
NNG–CG
TEG–CG

−0.13
−1.99
−1.76

0.972
0.004
0.009
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It was found that in the NNG, statistically significant differences were obtained at
all measurement moments (p < 0.005) for sleep quality, except between months 2 and 5
(p = 0.129). Within the TEG, significant differences were obtained at all time points (Table 3).

Table 3. Two-to-two within-group comparisons of sleep quality at different time points.

PSQI Moments x2 p-Value d

NNG

At baseline–After 2 months 5.37 <0.001 1.556

At baseline–After 5 months 6.93 <0.001 1.150

At baseline–After 7 months 12.75 <0.001 2.328

After 2 months–After 5 months 1.57 0.129 −0.019

After 2 months–After 7 months 7.38 <0.001 1.384

After 5 months–After 7 months 5.81 <0.001 1.099

TEG

At baseline–After 2 months 6.09 <0.001 1.813

At baseline–After 5 months 11.63 <0.001 1.994

At baseline–After 7 months 15.51 <0.001 2.846

After 2 months–After 5 months 5.54 <0.001 0.863

After 2 months–After 7 months 9.42 <0.001 1.405

After 5 months–After 7 months 3.88 <0.001 0.818

CG

At baseline–After 2 months 0.000 1.000 0.000

At baseline–After 5 months 0.957 0.347 −0.098

At baseline–After 7 months 2.871 0.008 −0.422

After 2 months–After 5 months 0.957 0.347 −0.191

After 2 months–After 7 months 2.871 0.008 −0.767

After 5 months–After 7 months 1.914 0.066 −0.843
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3.3. Effect of Intervention on Daytime Sleepiness

When comparing the three groups at each time point of the variable, statistically
significant differences were found at the time points (p < 0.001). The NNG and TEG
obtained improvements in daytime somnolence by decreasing both the scores of the test
after 7 months. Therefore, it was the NNG who showed a better evolution, and, in addition,
the CG showed an increase in the test score, which led to a worsening in daytime sleepiness.
(Table 4 and Figure 3).

Table 4. Means, standard deviations, effect size, and statistical significance for the intergroup and
intragroup comparison of daytime sleepiness in the different periods.

ESE p-Value NNG
Mean (SD)

TEG
Mean (SD)

CG
Mean (SD)

Pairwise
Comparison d p-Value

At baseline 0.863 15.2 (2.39) 14.7 (1.83) 15.4 (3.13)
NNG–TEG
NNG–CG
TEG–CG

After 2 months <0.001 9.10 (2.13) 11.1 (2.64) 16.1 (3.51)
NNG–TEG
NNG–CG
TEG–CG

0.83
2.41
1.61

0.132
<0.001
0.007

After 5 months <0.001 7.50 (3.44) 9.90 (3.21) 17.6 (2.84)
NNG–TEG
NNG–CG
TEG–CG

0.72
3.20
2.54

0.278
<0.001
<0.001

After 7 months <0.001 6.40 (3.10) 10.1 (2.60) 16.5 (2.80)
NNG–TEG
NNG–CG
TEG–CG

1.29
3.42
2.37

0.026
<0.001
<0.001
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Likewise, statistically significant differences in daytime sleepiness were found in the
NNG at all measurement time points (p < 0.05), while in the TEG, significant differences
were found between all the time points, except in the comparison between months 5 and 7
(p = 0.65) (Table 5).
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Table 5. Two-to-two intragroup comparisons in daytime sleepiness at the different time points.

ESE Moments x2 p-Value d

NNG

At baseline–After 2 months 4.75 <0.001 1.707

At baseline–After 5 months 6.84 <0.001 1.579

At baseline–After 7 months 9.69 <0.001 2.052

After 2 months–After 5 months 2.09 0.046 0.663

After 2 months–After 7 months 4.94 <0.001 1.045

After 5 months–After 7 months 2.85 0.008 0.803

TEG

At baseline–After 2 months 4.084 <0.001 1.62

At baseline–After 5 months 6.958 <0.001 1.656

At baseline–After 7 months 6.504 <0.001 1.776

After 2 months–After 5 months 2.874 0.008 0.775

After 2 months–After 7 months 2.420 0.023 0.567

After 5 months–After 7 months 0.454 0.654 −0.124

CG

At baseline–After 2 months 2.027 0.053 −0.661

At baseline–After 5 months 6.081 <0.001 −1.938

At baseline–After 7 months 2.896 0.007 −0.919

After 2 months–After 5 months 4.054 <0.001 −1.273

After 2 months–After 7 months 0.869 0.393 −0.280

After 5 months–After 7 months 3.185 0.004 1.256

3.4. Effect of Intervention on Cognitive Function

With respect to the cognitive function of the patients, statistically significant differences
were found at the four measurement points. The NNG and TEG obtained improvements in
cognitive function reaching 7 months with a score of 30.7 (SD = 3.50) in the NNG, and 27.5
(SD = 2.92) in the TEG. This means that, although both groups improved in the cognitive
function scores, it was the NNG patients who showed a better evolution. With respect to
the CG, the results showed a small worsening in cognitive function (Table 6 and Figure 4).

Table 6. Means, standard deviations, effect size, and statistical significance for intergroup and
intragroup comparison in cognitive function in the different periods.

MEC de Lobo p-Value NNG
Mean (SD)

TEG
Mean (SD)

CG
Mean (SD)

Pairwise
Comparison d p-Value

At baseline 0.020 22.7 (3.27) 23.9 (3.60) 18.6 (5.10)
NNG–TEG
NNG–CG
TEG–CG

After 2 months 0.002 28.4 (4.48) 24.7 (3.13) 19.7 (4.83)
NNG–TEG
NNG–CG
TEG–CG

−0.96
−1.87
−1.23

0.231
0.005
0.044

After 5 months <0.001 29.5 (4.01) 26.3 (2.83) 19.2 (4.87)
NNG–TEG
NNG–CG
TEG–CG

−0.92
−2.31
−1.78

0.162
0.001
0.010

After 7 months <0.001 30.7 (3.50) 27.5 (2.92) 18.3 (4.27)
NNG–TEG
NNG–CG
TEG–CG

−0.99
−3.18
−2.52

0.127
<0.001
<0.001
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In the NNG, improvements in cognitive function were significant at all the time
points (p < 0.005), improving patients by 35%. However, in TEG, no statistically significant
differences in cognitive function were obtained at baseline compared to 2 months (p = 0.52),
but significant differences were obtained at all the other measurement time points (p < 0.04)
(Table 7).

Table 7. Two-to-two intragroup comparisons in cognitive function at the different time points.

MEC de Lobo Moments x2 p-Value d

NNG

At baseline–After 2 months 6.22 <0.001 −2.519

At baseline–After 5 months 10.20 <0.001 −3.750

At baseline–After 7 months 13.44 <0.001 −6.000

After 2 months–After 5 months 3.98 <0.001 −1.256

After 2 months–After 7 months 7.22 <0.001 −1.302

After 5 months–After 7 months 3.24 0.003 −0.976

TEG

At baseline–After 2 months 0.649 0.522 −0.402

At baseline–After 5 months 3.244 0.003 −1.057

At baseline–After 7 months 5.449 <0.001 −1.390

After 2 months–After 5 months 2.595 0.015 −1.488

After 2 months–After 7 months 4.800 <0.001 −1.729

After 5 months–After 7 months 2.206 0.036 −1.162

CG

At baseline–After 2 months 1.911 0.067 −0.575

At baseline–After 5 months 0.597 0.555 −0.254

At baseline–After 7 months 1.553 0.132 0.146

After 2 months–After 5 months 1.314 0.200 0.514

After 2 months–After 7 months 3.464 0.002 1.302

After 5 months–After 7 months 2.150 0.041 0.752
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4. Discussion

The main objective of this study was to test the effect of two non-pharmacological
interventions on sleep quality, daytime sleepiness, and cognitive function in patients with
dementia. The sample proved to be homogeneous, despite the clinical variability that may
present in this type of population and it being a multicenter intervention.

In this regard, the results obtained with respect to the sleep quality of patients with de-
mentia showed that the group treated with NESA noninvasive neuromodulation obtained
an improvement of 3.3% over the therapeutic exercise group, even from similar values in
the pretest with the therapeutic exercise group. Both treatments seemed to be effective for
the improvement of sleep quality; however, the efficacy of the treatment in the NNG stands
out, obtaining a lower score after 7 months than the TEG. In the study by Cao, S et al. [58]
an improvement in the overall PSQI score of ≥3 points was considered a minimal clinically
important difference. In our study, in the NNG group the score went from 20.6 to 10.5; in
the TEG from 20.1 to 11.2; and in the CG from 20.8 to 20.6.

Similar results were obtained when measuring daytime sleepiness in patients with
dementia, highlighting the score of the NNG, which obtained a lower score, and with an
improvement of 36.7% over the baseline. The TEG also showed an improvement of 19.17%
at the end of the study with respect to the baseline, however, with a smaller effect than
the NNG. On the ESS scale, the minimum clinically important improvement in the ESS
is estimated [59] to be between −2 and −3. Given this variance in the ESS, it is time to
reconsider the MCID to be between −5 and −6. In our study, the NNG went from a score
of 15.2 to 6.40; in the TEG from 14.7 to 10.1; and in the CG from 15.4 to 16.5.

Regarding the cognitive function of patients with dementia, the NNG modality ob-
tained better results than the TEG and CG. The results showed that the no intervention
group (CG) did not improve in cognitive function, and the TEG patients also obtained
some improvements in the cognitive function of the patients; however, it seemed that the
highest effect was in the NNG. In addition, J.S. Andrews et al. [60] involving a survey of
neurologists and geriatricians reported a mean MCID for the scale of 3.75 (95% confidence
interval: 3.5–3.95); in our study the NNG went from a score of 22.7 to 30.7, the TEG from
23.9 to 27.5, and the CG from 18.6 to 18.3.

Changes in sleep quality in people with dementia represent an important challenge
for the scientific community since, for example, sleep and circadian rhythm disturbances
are very common in patients with this pathology and up to 45% of patients experience
sleep problems. The clinical presentation is characterized by memory loss and cognitive
dysfunction [61], as well as increased health care costs and mortality. Current treatments
include traditional pharmacological and non-pharmacological approaches, with limited
efficacy [61–64]. Non-pharmacological interventions have been performed with mixed
results, such as aromatherapy (without significant results on the PSQI) [65], acoustic
stimulation [66], and transcranial stimulation [67]. Therefore, there is an urgent need to
develop new alternative techniques to the existing ones.

Non-invasive brain stimulation is of great interest in this context [66,67]. In our study,
we observed that 20 sessions of 60 min duration of noninvasive electrical neurostimulation
(located in the hands and wrists without the need for cranial electrodes) with the NESA
device generated greater relevant and lasting changes over time, in sleep disturbances and
cognitive function in the patients with dementia who participated in this study.

This is the first study to use the NESA noninvasive neuromodulation with patients
with dementia and yields similar results in sleep parameters to those obtained by Garcia
et al. [68] who used the same device to cause noninvasive brain stimulation in basketball
players. Regarding the use of noninvasive brain stimulation to facilitate sleep in patients
with sleep disorders, it has been used with different modalities in small samples, with
contradictory results. Thus, Jiang et al. [66] who used repetitive transcranial magnetic
stimulation (rTMS) in the dorsolateral prefrontal cortex for 30 min/day, for 2 weeks in
patients with chronic primary insomnia, achieved a greater increase in the duration of rapid
eye movement (REM) sleep than with pharmacological treatments. In contrast, Saebipur
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et al. [67] found no effect on REM sleep duration using the rTMS technique in patients
with insomnia. The strength of the device used in our study, NESA, lies in the use of
microcurrents imperceptible to the patient and without polar effects that modulate the
autonomic nervous system, obtaining benefits in sleep.

Where benefits in sleep quality like our study were also recorded were in those where
the intervention was oriented towards education in sleep habits [69], or in the prescription
of a physical exercise pattern [70]. These results are also consistent with the findings of
previous experimental studies, in which an exercise modality like our study was observed
with cognitive tasks/engagement in cognitively impaired older adults [71,72]. Perhaps the
major difference with our study corresponds to the number of weeks of training (20 weeks
vs. 12 weeks).

Although after the maintenance period, the result was below the level of minimum
poor sleep quality; we believe that this could be improved if after further research following
this line of treatment, a greater number of treatment sessions were done. Having found an
improvement in sleep in both the NNG and TEG we consider that to be a great advance
for this current problem. The next future goal should be to recover 100% sleep quality;
although, since this is a neurodegenerative disease and there is a dysfunction in melatonin
secretion, achieving optimal sleep quality could be a very complex goal [32,48,49]”.

Regarding physical exercise in people with dementia, according to the studies, it
appears that systematic exercise, through various mechanisms, can promote brain function
and maintain and improve both cognitive and physical functions [73]. Unfortunately,
several previous studies do not mention the level of intensity, duration, and frequency of
exercise needed for optimal exercise intervention in people with dementia [74,75]. Perhaps
this is one of the strengths of our study, in which the effort has been made to describe in
detail the dose of exercise prescribed.

Cognitive functions and their influence under noninvasive electrical stimulation in
people with dementia have been the subject of study in recent years, reporting results as
encouraging as in our study [76,77]. There are several techniques with variability of results,
such as vagus nerve stimulation, deep brain stimulation (DBS) and anticonvulsant magnetic
therapy (MST) [76,78–80]. One of the advantages in the use of NESA neuromodulation
is based on the non-occurrence of secondary events, as opposed to the detriment of DBS
which sometimes leads to the presence of hemorrhage, seizures, and infection, or of MST in
which, on some occasions, leads to cases of discomfort caused by muscle spasms of the scalp
or face, headaches, and seizures [72]. Therefore, NN could constitute a complementary
alternative for cognitive rehabilitation treatment in the dementia population since the
changes observed in the NNG have shown objective evidence of functional modifications
in cognition from baseline.

One of the keys in the possible neurophysiological explanation that we could hypothe-
size in the improvement of the drowsiness state and cognitive level of our patients, focuses
on the influence of the locus coeruleus (LC) [81], involved in many of the sympathetic
effects during stress due to increased production of noradrenaline, as well as being a key
center in the processes of wakefulness. In patients with dementia there is significant at-
rophy within the LC, which is the reason for neuronal and noradrenaline loss. With this
reasoning, different studies show a direct influence of non-invasive neuromodulation on
the LC, both in animals [82–84] and in human studies [83–87].

Given that this is the first preliminary study in the world using the NESA noninvasive
neuromodulation device in a dementia population with the aim of improving sleep quality,
daytime sleepiness, and cognitive function, it would be desirable to conduct further studies
using other more objective measurements to corroborate these satisfactory results. In this
sense, analyzing sleep–wake parameters by means of an actigraphy could be a reliable and
more precise indicator to evaluate the different phases of sleep and the changes during
the whole cycle, obtaining additional information on the total duration of sleep, actual
time of falling asleep, patient’s sleep conditions, etc. [88,89]. On the other hand, and given
the importance for sleep quality in evaluating the change between the sympathetic and
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parasympathetic balance of the ANS during the day, it could be useful to measure the
heart rate variability by means of an electrocardiogram, recording the electrical conduction
system, and myocardial contraction [90–93].

This study begins an interesting field of research in the neuromodulation of the
autonomic system, sleep, and cognitive function as a daily part of the recovery in patients
with dementia.

Limitations

The study had some limitations that we recommend solving in future interventions.
The study had a small sample size and was from a specific area, so the generalizability of the
results is limited. Future research should be conducted in a variety of settings with larger
samples to determine these measurement pathways in more detail. Since some results
were based on self-reports (PSQI, MEC) from face-to-face interviews, the recording model
should be further examined using other measures such as actigraphy or polysomnography,
although it is known that due to the cognitive limitations of patients these techniques are
complicated to perform. The variables included do not explain all the possible variance,
so other possible variables may also mediate the relationship, such as fatigue, self-efficacy,
stress, or even the influence of their social and/or family environment.

5. Conclusions

In conclusion, two non-pharmacological treatments, therapeutic exercise, and non-
invasive neuromodulation NESA, appear to be effective treatments to improve daytime
sleepiness, sleep quality, and cognitive function.
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