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Abstract: Background: The goal of this study was to monitor the microbial biodiversity in beach sand
that is heavily visited by tourists during the summer, and to determinate whether the high presence of
bathers (around 5000 per day) can modify sand microbial composition. Methods: Between 2016 and
2020, 150 sand samples were collected from nine different points at La Pelosa beach in Sardinia, Italy.
Non-culturing methods were used; DNA extraction and meta-barcode sequencing were performed.
All samples were analyzed with sequencing methods for 16S and ITS sequences. Results: Fungal
genera differ on the three beaches and in the winter/summer zones. The ITS sequence showed the
most common presence of Candida during summer and Paradendryphiella in the winter. The greatest
diversity was found in the dune during winter, while in other parts of the beach, there are differences
between bacteria and fungi, particularly in the wash zone during the winter, with high diversity for
16S sequences but low diversity for ITS sequences. Conclusions: It appears reasonable that the sands,
even on non-urban beaches, should be included in health monitoring programs in addition to the
waters, and that access to them should be regulated by limiting the number of bathers with the aim
of reducing the presence of pathogenic fungal species.
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1. Introduction

The microbiological quality of bathing water is one of the most important indicators
of a beach’s environmental and health quality available to users. In fact, most countries
have water monitoring programs in place to protect swimmers’ health. In reality, while
all of the skin is in contact with the water during a bath, almost all bathers spend more
time in contact with the sand during a day at the beach. A wide range of microorganisms
can be found in beach sand. Sand grains, in fact, act as a natural filter, creating a wide
variety of protected microhabitats rich in nutrients that favor the survival, and possibly
growth, of microorganisms known as micropsammon, which include viruses, bacteria,
fungi, and protozoa. This was confirmed by analyzing the sand from a large number of
recreational beaches in many countries around the world, from which numerous bacterial
and fungal species were isolated [1–22]. Some of these are potentially pathogenic and, at
high concentrations, can be harmful to humans’ health [18].

Pathogenic bacteria are typically the result of anthropogenic wastewater pollution,
and their presence correlates with a variety of factors. In fact, various indicators of fe-
cal contamination, including enterococci, Escherichia coli, coliform bacteria, Clostridium
perfringens, and staphylococci, have been isolated, particularly in the swash zones of
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beaches, including freshwater ones, which are very crowded and integrated within large
cities [1,4,10,11,13,15,16,20]. There is a well-established cause-and-effect relationship be-
tween the fecal pollution of recreational waters and outbreaks of gastroenteritis [23], ocular,
nasal, ear, and throat symptoms among swimmers [24,25]. There have been few studies
that link the levels of microbial contaminants in sand to risks to human health. One study
discovered that gastrointestinal symptoms would develop if all of the bacteria on the finger-
tip were ingested via hand-to-mouth transfer of E. coli present in sand [26]. Another study
discovered a link between fecal-derived microbes in sand and gastroenteritis in beachgoers
who dug or buried themselves in the sand [27].

Other potentially pathogenic fungi, such as yeasts (Candida sp.) [1,9,18], molds (As-
pergillus sp.) [9], and dermatophytes [3], have been discovered in the sand of some beaches,
in the presence or absence of bacterial indicators of fecal contamination. However, these
new findings do not tell us whether their origin is a simple contamination of the sand by
skin fungi or a result of environmental factors. Fungi can be found in the soil as well as in
the sea. They can reach the beach from the ground via wind or rainwater run-off from adja-
cent impermeable surfaces such as parking lots and sidewalks [28]. Their presence in the
sea can be attributed to wastewater, indicating that they are of intestinal origin [3,19,29,30],
or to their role in the decomposition of organic substrates, nutrient recycling, and hydro-
carbon biodegradation [31,32]. Despite their low concentration, fungi perform the same
functions of decomposition and nutrient recycling with a fertilizing action in the soil [33].
Some studies suspect that fungal contamination of the sand is caused by contact with
human skin; however, this hypothesis was developed indirectly by comparing beaches
with different anthropic pressures [3,7,8,14,17,18,20].

Beaches in Sardinia are very popular, so it is necessary to assess their healthiness.
Because they are primarily non-urban, far from important residential areas and industrial
waste, surrounded by Mediterranean scrub with reduced decomposition phenomena, and
have a low presence of seabirds and domestic animals, they can be used as a model to
demonstrate the possible contribution of sunbathers alone to the microbiological quality
of sand.

As a result, the goal of this study was to monitor the microbial biodiversity in the sand
of a beach in northern Sardinia that is heavily visited by tourists during the summer for
five years using methods independent of culture, with the goal of determining whether
a high presence of bathers can modify sand microbial composition by adding potentially
pathogenic species.

2. Materials and Methods
Sampling Site and Method

The annual monitoring beach, known as “La Pelosa”, is about 4 km from Stintino, a
small town in northern Sardinia with a population of about 1500 people. It was frequented
by a large number of bathers at the start of the study, with an average of 5000 daily presences
in the summer. Access to the beach is via wooden walkways, which are a long distance
from a paved road separated by sand dunes. La Pelosa beach is a cuspate foreland with a
surface area of 7080 m2 and a slope of no more than 2% throughout the study period. It is a
coastal deposit with medium and fine granulometry, with the majority of its sedimentary
contribution coming from the submerged marine sector. The sandy cusp is surrounded by
a dune system formed by sand blown by the wind, which primarily comes from the sea
(with a prevailing north–northwest direction) and has settled on the rocky slope behind it.

Between 2016 and 2020, 150 sand samples were collected from 9 different points. Three
points were in the wash zone (R) under the influence of the sea, three in the dry sand of
the beach center (C) where bathers usually live, and three more in the dunes (Ds) on the
beach’s outskirts (Figure 1). On non-high tide days, the samples were collected around
11 a.m. Sand was collected at 5 cm from the surface from each GPS-located point and
stored in a 50 mL sterile test tube. The date, time, GPS point, location, and sampling
temperature were all recorded for each sample. Monitoring was carried out during the
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winter (October–February) and summer (May–September) seasons. The samples were
immediately taken to the laboratory for processing after they were collected.
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Figure 1. Map showing the location of sampling points on the beach “La Pelosa”, Stintino, Italy.
Google Earth, earth.google.com/web/. The letter indicates the place on the beach, C: center; R: shore;
D: dune. The number is the position: south (1), middle (2), and north (3).

Beginning in 2019, events occurred that significantly reduced the number of bathers as
a result of municipal regulations and COVID-19. The most important regulations imposed
by the Municipality of Stintino were a maximum of 1012 bathers per day, no smoking,
and no pets. These new facts have enabled a different analysis of the data accumulated
over 5 years, dividing it into two groups: pre-municipal regulation period (2016–2018) and
post-municipal regulation period (2019–2020).

3. Methods and Statistical Analysis
3.1. DNA Extraction and Meta-Barcode Sequencing

A DNeasy PowerMax Soil Kit (QIAGEN, Inc., Valencia, CA, USA) was used to extract
DNA. Samples from the same beach location (D, C, and R) were pooled and processed
with minor modifications according to the manufacturer’s instructions. To obtain a greater
amount of DNA, 15 g of sand was extracted rather than 10 g. A Qubit fluorimeter was used
to analyze DNA using a QubitTM dsDNA HS Assay Kit (Life Technologies, Carlsbad, CA,
USA). The DNA was sent to BMR Genomics (Padua, Italy) for quality control and barcode
sequencing for bacterial (16S) and fungal (ITS) identification. In brief, primers V3–V4 and
ITS2 were used to amplify 16S rRNA and the internal transcribed spacer (ITS), respectively.
Illumina MiSeq Paired End sequences (2 × 300 bp) were used for sequencing. Unsuitable
samples for sequencing were discarded. Sequences were received and downloaded for
further examination.

3.2. Bioinformatics Analysis

All samples’ 16S or ITS sequences were merged and imported into the Qiime2 pack-
age. Sequences were filtered, merged, and chimeras were removed. Using the R v0.6.5
microecho package, high-quality sequences were processed for downstream analyses such
as taxonomy (in terms of ASVs, Amplicon Sequence Variants), alpha and beta diversity,
and assays of differential abundance. The sequences were compared with the Silva Release
132 and Unite 8.0 classifiers (ref.) for bacteria and fungi, respectively, and represented
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in terms of taxonomic abundance in the three parts of the beach (shore = R, center = C,
and dune = D) during the summer tourist season (between May and September = S) and
winter (non-tourist) (between October and March = W). The Shannon index was used
to calculate alpha diversity using a boxplot, whereas beta diversity was evaluated using
unweighted UniFrac and represented as a principal coordinate analysis (PCoA) plot. For
bacteria and fungi, diversity was calculated separately. Finally, a differential abundance
test was performed between the center before and after the limitations using the LEfSe
method [34].

4. Results
4.1. Bacterial and Fungal Taxonomy

Bacterial genera differ on the three beaches and in the winter/summer zones (Fig-
ure 1, left). During the summer, the most common genera in the center of the beach are
Gramella, Salimicrobium, and Salegentibacter, with Woeseia also present. Throughout the
year, Adhaeribacter, Blastocatella, and Flavisilibacter were identified in the dune. In the
Wash zone, Woeseia was always present, whereas Marinobacter was only found during
the summer. The ITS sequence-identified genera (Figure 1, right) show the presence of
Candida in the center during summer and Paradendryphiella in the winter. Stemphylium,
Peziza, Fusarium, and Alternaria were found in all dune samples, with the exception of
Vishniacozyma and Aspergillus, which were found primarily in the summer. Homalogastra
is the dominant genus found in the wash zone.

4.2. Alpha and Beta Diversity

The greatest diversity was found in the dune during winter, as measured using the
Shannon index in the 16S and ITS sequences (Figure 2, left and right, respectively). In other
parts of the beach, there are differences between bacteria and fungi, particularly in the
wash zone during the winter, with high diversity for 16S sequences but low diversity for
ITS sequences. Unweighted Unifrac beta diversity was calculated and visualized with a
PCoA plot (Figure 3, 16S left, ITS right). Bacteria and fungi clustered separately in the dune
while the center and the shore overlap, but with a small separation in the bacteria in the
center during summer (CS) (Figure 4, 16S left, ITS right).
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Figure 2. Taxonomy of 16S (left) and ITS (right) sequences. Each sample is labeled as follows: The
first letter indicates the place on the beach, C: center; R: shore; D: dune. The second letter is the season,
S: summer tourist season (between May and September); W: winter non-tourist season (between
October and March).
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4.3. Effect of Limiting the Number of Visitors to the Beach

During the summer, the differential abundance test with the LEfSe method was
used at the center to distinguish between pre- and post-limitation groups (Figure 5; AC:
pre-limitations, BC: post-limitations). Before the beach restrictions, the bacteria were
significantly differentiated and belonged to the genera Idiomarina, Salimicrobium, Salegen-
tibacter, and other higher ranks (AC). Gramella, Salinimonas, Alteromonas, Halobacillus,
and other genera were identified after the restrictions (BC) (Figure 5, top). Prior to the bans,
mushrooms, yeasts, and molds were discovered on the beach. The Candida parapsilosis
species is the most common pathogenic yeast (AC). We discovered several taxa after settle-
ment, including Aspergillus penicillioides and A. ruber (BC) (Figure 5, bottom). Table 1
depicts an examination of the species present in the skin microbiome in the literature, as
well as the average percentage values between periods of high and low anthropic pressure
due to restrictive municipal regulations.
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Table 1. The most common species commonly isolated from the skin microbiota. Each sample
is labeled as follows: R: shore; C: center; D: dune; Summer: tourist season (between May and
September); Winter: non-tourist season (between October and March).

Summer Winter

Species Localization
(Skin)

C
2016/18

C
2019/20

R
2016/18

R
2019/20

D
2016/18

D
2019/20

C
2016/18

C
2019/20

R
2016/18

R
2019/20

D
2016/18

D
2019/20

Candida
parapsilosis Foot 18.8% 0.10% 0.42%

Candida tropicalis Nails 1.33% 0.01%
Candida
orthopsilosis

Newborn
skin 0.80%

Candida albicans Foot 0.14% 0.02%
Candida boidinii Back 0.04%

Saccharomyces
cerevisiae Foot 0.39% 0.26% 0.03%

Rhodotorula
mucilaginosa Foot 0.14% 0.16% 0.01% 0.01% 0.02% 0.08%

Malassezia
restricta Foot, back 0.32% 0.03% 0.02% 0.09% 0.09% 0.04% 0.01% 0.04% 0.01%

Malassezia
arunalokei

Seborrheic
zone 0.04%

Malassezia globosa Back 0.03% 0.02%

Aspergillus
penicillioides

Head
(sebum) 0.48% 5.05%

Fungi of probable human origin: 22.51% 5.64% 0.45% 0.12% 0.01% 0.11% 0.08% 0.04% 0.01% 0.04% 0.01%
Candida 21.1% 0.13% 0.42%
Malassezia 0.40% 0.05% 0.02% 0.09% 0.09% 0.04% 0.01% 0.04% 0.01%
Other yeasts 0.53%
Molds 0.48% 5.05%

5. Discussion

Coastal tourism is Sardinia’s first economic activity, having supplied the traditional
products of sun, sand, and sea for decades, attracting tourists from all over the world
who visit Sardinian beaches every day for several hours, including lunch hours, during
the summer. We now know that sand, due to its structure, promotes the survival and
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possibly growth of microorganisms, and that some species found in it are potentially
pathogenic and can pose a health risk at high concentrations [18]. As a result, conducting
studies and performing microbiological analyses on beach sand are critical not only for
detecting potential sources of microbial pollution, but also for correctly assessing probable
risk situations and understanding how to prevent them, as well as understanding their
potential role and implications in human health. For these reasons, a study was conducted
from 2016 to 2020 to monitor all the microorganisms present in a recreational beach in
Sardinia during the winter and summer seasons using the metagenomics technique.

The overall analysis of the data obtained revealed an annual consistency of microor-
ganisms, both 16s and ITS, of environmental, marine, or coastal origin, with different
biological profiles in the three areas studied, and with greater biodiversity in the dunes.
In terms of human pathogens, no fecal indicators, S. aureus, or pathogenic dermatophytes
were found in any of the samples examined. We only found potentially pathogenic fungi of
human origin in summer samples taken from the dry sand of the central beach, which is
the most affected by human presence. In fact, pathogenic skin yeasts of the Candida genus
(21% of total fungi), Malassezia, Saccharomyces, and Rhodotorula, as well as traces of molds
of the Aspergillus genus, were isolated during the summer months of the years without
regulations (2016–2018). Candida parapsilosis was the most common Candida species isolated
(19% of the total fungi), followed by C. tropicalis, C. orthopsilosis, and C. albicans. Malassezia
restricta, Malassezia globosa, Malassezia arunalokei, Saccharomyces cerevisiae, and Rhodotorula
mucilaginosa were the other non-Candida species isolated (Table 1).

All of these forms are found in the skin microbiota (Table 1), particularly in the
feet [35], where they are thought to originate. Because these microorganisms are found on
the skin, they are likely to tolerate high salinity and thus can survive in dry sand during
the summer [18]. In vitro studies have shown that Candida and dermatophytes can survive
for a few weeks even when salinity and temperature levels exceed those of their natural
habitat [36]. Along with these, we discovered traces of other yeasts that have not yet been
isolated on human skin, such as C. quercitrusa, C. solani, and C. sanyaensis, only in the center
of the beach in the summer. These are environmental yeasts found in the soil, but their
presence in the summer suggests that they are spread by tourists via their clothing or beach
accessories. As a result, they could be the result of national/international travel affecting
soil yeast communities by transferring species and genotypes from one country to another,
which should be investigated further [37].

Again, in the summer, there was a clear reduction in yeasts of human origin in the
center of the beach over the years with restrictive municipal regulations (2019–2020). In
fact, the presence of only C. parapsilopsis and C. albicans resulted in a significant decrease
in the percentage of the genus Candida (0.1% of the total fungi). During all of the winter
months studied (2016–2020), there was a complete disappearance of pathogenic fungi in
all three sampling sites, with only the Rodotorula and Malassezia restricta species present
in traces (average 0.06%). The identification of the Candida species discovered on La
Pelosa’s non-urban beach is consistent with other studies conducted on beaches around
the world [1,3,7,8,15,18–22]. Candida albicans [1,3,7,8,15,18,19,22], C. tropicalis [7,18,19,21,22],
and C. parapsilopsis [8,19,21] were the most common yeasts identified in these studies.
However, all of these studies were conducted on urban beaches in metropolitan contexts
with high organic pollution of wastewater, where a significant positive correlation was
also demonstrated in various cases between yeasts and fecal coliforms present in the
sand [21,22]. With our findings, we can confirm that Candida sp., which is also found
on non-urban beaches such as La Pelosa, can be of cutaneous origin as a result of high
anthropic pressure, as evidenced by the fact that their presence tends to disappear when
the number of bathers is significantly reduced.

Malassezia sp. was rarely isolated from sea sand in previous studies [7], and in our
study, three of these species are present in low concentrations only during the summer,
with the exception of M. restricta, which is present in the sand all year. Until recently, it was
assumed that Malassezia sp. evolved to inhabit the skin of warm-blooded mammals, from
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which 18 species have been isolated, with M. restricta being the most prevalent on human
skin, particularly on the scalp [18]. They have also been isolated in other contexts in recent
years, and it is thought that M. globosa and M. restricta are cosmopolitan [38]. Identical
M. restricta DNA sequences have been found in a variety of habitats, including deep sea
sediments [39], hydrothermal vents [40], corals [40], lobster larvae [41], eel japonica intestine
and muscle tissue [42], Antarctic soils [43], soil nematode exoskeletons [44], and various
plant roots [45]. It is also not surprising that Malassezia sequences are common in human
habitation [46], where human skin contributes significantly to house dust. We believe
that the presence of the genus Malassezia restricta on La Pelosa beach is of marine origin,
as it has been found all year, whereas M. globosa and M. arunalokei are of human origin.
Malassezia yeasts are thought to cause Pityriasis versicolor, Malassezia-related folliculitis,
seborrheic dermatitis, and dandruff, but it is unclear whether these are contagious or can
be transmitted by sand [47].

Rhodotorula spp., particularly R. mucilaginosa, have been discovered on heavily used
urban and non-urban marine beaches [2,8,18,19,48]. Rhodotorula mullacinosa is widely
distributed in nature, and we believe it is of environmental origin because it is present in
the sand of La Pelosa all year. They have also been found in the sand of various beaches,
including those in Italy [5,14,48,49], and in some cases associated with the presence of
Penicillium sp. In the summer, we only found Aspergillus sp., whereas Penicillium sp.
was isolated only in the dunes all year and in the center of the beach only in winter.
Despite the fact that both are common contaminants in marine soils [50], the presence of
Aspergillus in the summer suggests that it is of human origin, whereas Penicillium is of
environmental origin.

Saccharomyces cerevisiae has been found on other Algerian beaches [48] and is only
present during the summer; we believe it is of human origin. In contrast to other sites,
we found no dermatophytes of the genera Microsporum, Epidermophyton, or Trichophyton.
Several authors isolated these on sand samples, confirming their presence on various
densely populated beaches only during the bathing season [8,17,20,22,51–55]. However,
dermatophytosis epidemiology shows that this species is becoming less prevalent as an
infectious agent [56], which could explain why we did not find it in La Pelosa sand.

Pathogens found on La Pelosa beach have been linked to numerous skin and sys-
temic infections, primarily in immunocompromised patients and with an increasing
frequency [32,57–60]. Furthermore, some Aspergillus species and Malasseziae species contain
numerous cell wall components, such as chitin, glucans, mannans, mannoproteins, and
galactomannan, which can cause irritation or hypersensitivity in susceptible individu-
als [8,9,61]. On the other hand, it is important to take into consideration that the weather
is different between summer and winter, so the differences in the fungi species could be
also due to weather effects and not only from beach visitors and bathers. A limitation of
the study is that culture-based methods were not use for comparison, which could be very
important for the design of the future studies.

In numerous works, the pathogens present on La Pelosa beach have often caused skin
and systemic infections mainly in immunocompromised patients and with an increasing
incidence [32,57–60]. Furthermore, some species of Aspergillus sp. and Malasseziae sp. con-
tain many cell wall components, including chitin, glucans, mannans, mannoproteins and
galactomannan, which may cause irritation or hypersensitivity phenomena in predisposed
individuals [8,9,61].

6. Conclusions

Our findings would support the human origin of some pathogenic fungi found in the
dry sand of Stintino’s La Pelosa beach during the summer. They are not marine in nature
because they do not lack a swash zone, nor do they come from the ground because they
are absent in the dunes behind the beach and in winter. Furthermore, the surrounding
flora is composed of evergreen plants that decompose slowly. This study is significant
because it confirmed that a large number of bathers alter the biodiversity of the sand with
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the appearance of fungi found in human microbiota, whereas a small number reduces
their presence to a minimum. In our case, we went from having one person per square
meter to having one every 7 m2. This resulted in a significant reduction in the number of
pathogens. Among these, C. parapsilosis is the most important yeast in percentage terms,
and it could be considered a parameter that can be used to evaluate whether a beach quota
has had the desired effects or to detect any changes in the microbial population over time,
allowing appropriate action. We agree with other studies that recommend examining dry
sand for monitoring fungi because they can survive in a saline sandy environment longer
than enteric bacteria, retaining their virulence and potential to cause diseases. As a result,
it appears reasonable that the sands, even on non-urban beaches, should be included in
monitoring programs in addition to the waters, and that access to them, particularly on
overcrowded beaches, should be regulated by limiting the number of bathers.
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Efstratiou, M.A.; et al. Mycosands: Fungal diversity and abundance in beach sand and recreational waters—Relevance to human
health. Sci. Total Environ. 2021, 10, 781. [CrossRef]

9. Steffen, H.C.; Smith, K.; van Deventer, C.; Weiskerger, C.; Bosch, C.; Brandão, J.; Wolfaardt, G.; Botha, A. Health risk posed by
direct ingestion of yeasts from polluted river water. Water Res. 2023, 231, 119599. [CrossRef]

10. Wheeler Alm, E.; Burke, J.; Spain, A. Fecal indicator bacteria are abundant in wet sand at freshwater beaches. Water Res. 2003, 37,
3978–3982. [CrossRef] [PubMed]

11. Elmanama, A.A.; Fahd, M.I.; Afifi, S.; Abdallah, S.; Bahr, S. Microbiological beach sand quality in Gaza Strip in comparison to
seawater quality. Environ. Res. 2005, 99, 1–10. [CrossRef]

12. Shibata, T.; Solo-Gabriele, H.M. Quantitative Microbial Risk Assessment of Human Illness from Exposure to Marine Beach Sand.
Environ. Sci. Technol. 2012, 46, 2799–2805. [CrossRef] [PubMed]

13. Brandão, J.; Valério, E.; Weiskerger, C.; Veríssimo, C.; Sarioglou, K.; Novak Babič, M.; Solo-Gabriele, H.M.; Sabino, R.; Rebelo, M.T.
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