
Citation: Li, K.; Cardoso, C.;

Moctezuma-Ramirez, A.; Elgalad, A.;

Perin, E. Heart Rate Variability

Measurement through a Smart

Wearable Device: Another

Breakthrough for Personal Health

Monitoring? Int. J. Environ. Res.

Public Health 2023, 20, 7146.

https://doi.org/10.3390/

ijerph20247146

Academic Editor: George Crooks

Received: 3 August 2023

Revised: 6 November 2023

Accepted: 27 November 2023

Published: 6 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Review

Heart Rate Variability Measurement through a Smart Wearable
Device: Another Breakthrough for Personal Health Monitoring?
Ke Li 1, Cristiano Cardoso 1, Angel Moctezuma-Ramirez 1 , Abdelmotagaly Elgalad 1,* and Emerson Perin 2

1 Center for Preclinical Cardiovascular Research, The Texas Heart Institute, Houston, TX 77030, USA
2 Center for Clinical Research, The Texas Heart Institute, Houston, TX 77030, USA
* Correspondence: aelgalad@texasheart.org; Tel.: +1-8323557245

Abstract: Heart rate variability (HRV) is a measurement of the fluctuation of time between each
heartbeat and reflects the function of the autonomic nervous system. HRV is an important indicator
for both physical and mental status and for broad-scope diseases. In this review, we discuss how
wearable devices can be used to monitor HRV, and we compare the HRV monitoring function among
different devices. In addition, we have reviewed the recent progress in HRV tracking with wearable
devices and its value in health monitoring and disease diagnosis. Although many challenges remain,
we believe HRV tracking with wearable devices is a promising tool that can be used to improve
personal health.
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1. Introduction

Smart wearable devices can play an important role in daily health monitoring. As com-
pared with traditional physician-prescribed monitors that offer only short-term recording,
smart devices can provide long-term monitoring, yielding valuable datasets in different
situations including exercise, sleep, or rest, regardless of age or health status. Analyzing
this extensive dataset could help establish baseline heart function variables in different
groups of people and evaluate variation in these variables in multiple scenarios.

In this review, we introduce heart rate variability (HRV), which measures the difference
in the amount of time between each heartbeat and can be tracked by most smart devices.
Because HRV is modulated by an individual’s autonomic nervous system (ANS), it can
be an indicator of an individual’s health status. We describe how smart devices track
HRV and the public health value of doing so. We believe HRV monitoring will provide
significant insight into evaluating heart function and can further reflect ANS health status.
Moreover, smart devices can be used to achieve long-term HRV monitoring by using a
person’s individual information to help healthcare researchers achieve individual and
precise monitoring.

2. Heart Rate Variability

HRV is modulated by the ANS and is a standard non-invasive marker for evaluating
ANS [1], which comprises the sympathetic nervous system (SNS) and the parasympathetic
nervous system (PNS). The SNS is often referred to as the “action system”, which readies
the body for challenges by increasing the heart rate and blood pressure. Conversely, the
PNS is responsible for the body’s recovery and relaxation after coping with challenges by
decreasing the heart rate and blood pressure. Thus, the HRV value reflects the balance
between the SNS and the PNS. Efficient autonomic mechanisms provide a high HRV,
which indicates good adaptation to intrinsic and extrinsic factors, whereas a low HRV
may indicate an abnormal, insufficient adaptation of the ANS. Therefore, measuring HRV
provides an indirect reflection of the ability of the ANS to adapt to challenges that may
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affect an individual’s health status [2]. For example, studies have suggested that HRV
is associated with stress, cardiovascular disease, diabetes, and inflammation [3,4]. Many
factors such as age, sex, fitness, smoking, stress, or medication can affect HRV (Figure 1) [5];
therefore, the normal value varies significantly among individuals. The wearable device’s
long-term tracking ability can provide a longitudinal HRV recording and may yield a “real”
individualized normal value.
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Figure 1. Factors that affect heart rate variability (HRV). Source: [5]. * HRV decrease as a result
of a physiological reaction to a physical stimulus. Provides a summary of the results referring to
the factors and covers the four main areas, i.e., non-influenceable physiological factors, illnesses,
influenceable lifestyle factors, and external factors.

3. Methods
Search Strategy

We conducted a systematic search of the relevant literature to gather information
on HRV measurement through smart wearable devices. To ensure a comprehensive and
thorough review, we used the following databases: PubMed, Scopus, Web of Science, and
Google Scholar. The search strategy was designed to capture studies that were related
to HRV and wearable technology. The primary keywords used in the search process in-
cluded heart rate variability, HRV measurement, wearable devices, smartwatches, wearable
sensors, and remote health monitoring. These keywords were combined using Boolean
operators (AND, OR) and adjusted according to the search requirements of each database.

The inclusion criteria were as follows:

• Device type: studies that analyze data from commercially available wearable devices
for HRV monitoring that were targeted for the personal use device market.

• Objective: studies with a primary objective to investigate HRV and its measurement
using wearable devices.

• Data: studies that included reports on HRV measurements obtained from wearable
devices, along with associated health or clinical outcomes.

The exclusion criteria were as follows:



Int. J. Environ. Res. Public Health 2023, 20, 7146 3 of 24

• Outdated technology: studies that exclusively used outdated or obsolete wearable
devices that do not represent current technology.

• Animal studies: any study conducted on animals.
• Objective: studies that did not focus on HRV or the use of wearable devices for HRV

assessment.

An initial search in PubMed using the keywords “heart rate variability” AND “mea-
surement” showed a total count of 26,945 articles published since 1939 (Figure 2).
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Figure 2. PubMed publication records when using keywords: heart rate variability AND measurement.

4. HRV Metrics

Measuring HRV can be complex because it can be expressed in many formats (Table 1).
Gaining a better understanding of its calculation requires breaking it down based on
heart rhythm.

The first factor to consider in measuring HRV is the amount of time for recording
the heartbeat, which can be recorded for more than 24 h, for 5 min (short-term), or for
less than 5 min (ultra-short-term). The length of the observation can affect the results,
as longer periods can capture slower fluctuations and responses to a wider range of
stimuli [6]; therefore, values from different lengths of recording are not interchangeable.
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Varying the recording period allows for comparing HRV during multiple activities (e.g.,
rest, sleep, exercise).

The next step is to identify each heartbeat in the recorded data (recording methods
are described later). Then, the interval between each heartbeat, known as the NN interval,
can be calculated. The average of the NN intervals during the recording period provides a
straightforward expression of HRV. In addition, the mean heart rate, the difference between
the longest and shortest NN interval, and the difference between the nighttime and daytime
heart rate can be calculated. There are also many more complex HRV expressions based on
mathematical transformation of NN intervals, such as SDNN, SDANN, the SDNN index,
and RMSSD (Table 1).

Having different recording times and modes of HRV expression is important because
multiple internal and external factors affect HRV. For example, when considering the record-
ing length, short-term HRV is influenced by the interaction between the SNS and the PNS
and breathing pattern [7]. In contrast, the 24 h HRV is affected more by circadian rhythms,
body temperature, metabolism, and sleep cycle [8]. Thus, they cannot be substituted for
each other because their underlying physiological nature can be completely different [9].

Similarly, the different mathematical expressions of HRV are affected by different
components of the ANS. For example, SDNN is a common indicator of both SNS and PNS
activity for short-term HRV [10]. However, for 24 h HRV, the SDNN reflects more SNS
activity [11]. Moreover, RMSSD and pNN50, primarily affected by the PNS, are used to
indicate the ability to cope with stress [6].

Table 1. Time-domain methods used to calculate HRV. Cited from [12].

Variable Units Description

SDNN msec Standard deviation of all NN intervals

SDANN msec Standard deviation of averages all NN intervals in all 5 min segments
of the entire recording

RMSDD msec Square root of the mean of the sum of squares of differences between
adjacent NN intervals

SDNN
Index msec Mean of standard deviations of all NN intervals for all 5 min segments

of the entire recording

SDSD msec Standard deviation of differences between adjacent NN intervals

NN50
count msec

Numbers of pairs of adjacent NN intervals differing by more than 50
msec in the entire recording; three variants are possible, counting all

such NN intervals in which the first or second interval is longer

pNN50 % NN50 count divided by the total number of all NN intervals

Because the methods used to calculate HRV (Table 1) are based on the time difference,
they are referred to as time-domain methods, which are easy to understand and widely
used in wearable devices. Frequency-domain methods are another way to calculate HRV
but are more complicated to understand because they involve the relationship between
frequency and power. Frequency refers to how often a certain pattern of variation repeats
over a given period, and power is the amount of variation within a frequency band. HRV
frequencies can be aggregated into three leading frequency bands: a high frequency band
(0.15 to 0.4 Hz, corresponding to a parasympathetic component reflecting respiration-
mediated HRV), a low frequency band (0.04 to 0.15 Hz, corresponding to both sympathetic
and parasympathetic components and influenced strongly by the oscillatory rhythm of
the baroreceptor discharge), and a very low frequency band (0.0033 to 0.04 Hz, which
may be affected by several physiological mechanisms, including the renin–angiotensin
system, vasomotor tone, and thermoregulation on heartbeats) [6]. The low frequency/high
frequency ratio reflects the balance between the SNS and PNS. A higher ratio may indicate
more stress or alertness, whereas a lower ratio may suggest relaxation or recovery.
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The power spectral density (PSD) analysis is an important method for performing the
frequency-domain calculation [13]. This approach breaks down a complex signal into its
basic frequency components and describes how the power (or variance) of the signal is
distributed across these different frequencies. The resulting plot, called a PSD plot, typically
shows frequency on the x-axis and power on the y-axis. Like the time-domain parameters,
frequency-domain parameters can be calculated in different recording durations. Figure 3
is an example of a PSD analysis.

Another area of science that has contributed to the analysis of HRV is chaotic and
nonlinear dynamics. The cardiovascular system is characterized by various forms of
behavior, including equilibrium, periodicity, quasi-periodicity, deterministic chaos, and
randomness [14], depending on its function. Fractal mathematics and chaos theory have
expanded our understanding of these behaviors. Fractal geometry is evident in the physical
structure of networks like blood vessels [15] and the heart’s His-Purkinje system, as well as
in time-based processes like HRV variability [14].

Chaotic dynamics, characterized by positive Lyapunov exponents [16] (a mathematical
concept used in the study of chaotic dynamic systems), may play a role in the complexity
of HRV. In a chaotic system, the heart rate variations may exhibit a higher degree of
irregularity and sensitivity to initial conditions. Lyapunov exponents may be used to
analyze the sensitivity of the ANS control system, which in turn can affect HRV patterns.
It is important to note that the relationship between Lyapunov exponents and HRV is
a subject of ongoing research, and the application of chaos theory to HRV analysis is a
complex and evolving field.
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5. HRV Analysis Methods in Smart Devices

The initial step in analyzing the HRV is to record the heart rate and then perform
the heart rate analysis based on that recording. Traditionally, these steps are performed
in clinical or laboratory settings by using equipment such as an ECG, a cardiac belt, or a
Holter monitor. These equipment pieces are designed for professional use and are not part
of daily life practices, thus hindering the continuous and routine monitoring of HRV. With
the development of smart devices, such as the Apple Watch, the Oura ring, and the Fitbit
band, two methods are currently available to conveniently track heart rate in the user’s
daily life: ECG and photoplethysmography (PPG).

5.1. ECG

The ECG function on smartwatches such as the Apple Watch and Samsung Galaxy
is based on the use of one positive electrode on the back of the watch and one negative
electrode at the digital crown to record a single-lead ECG. The standard procedure to record
the ECG requires the user to wear the watch on the left (right) wrist and launch the ECG
application on the watch by touching the digital crown with a finger on the opposite hand.
This creates a bipolar signal from the voltage difference between the left and right arms,
simulating the conventional ECG lead I record. Making a complete recording takes 30 s.
Then, the HRV analysis could be performed based on the recorded ECG. This method can
support only the ultra-short-term HRV analysis. Figure 4 shows an analysis report based
on an ECG recording from an Apple Watch.
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wall to continuously record an ECG for HRV analysis. Because this approach provides a
much longer ECG recording period than a watch or band, it is the preferred method for
long-period monitoring of HRV. ECG sensors are considered the gold standard for HRV
monitoring [17].

5.2. PPG

PPG is a non-invasive technology that uses a light source and a photodetector at the
skin’s surface to measure the volumetric variations in blood circulation [18]. Accordingly, on
all smart devices, the PPG sensor is located on the back of the device so that it can contact the
skin. Figure 5 shows the Apple Watch’s PPG sensor design and its working principle. When
the sensor starts to work, the light source emits light to the skin tissue. The photodetector
measures the reflected light from the tissue, thereby inferring changes in blood volume
by measuring changes in light absorption. The light absorption is proportional to blood
volume variations caused by the beating of the heart [8,18–21]. Thus, the intensity of the
reflected light is different during systole and diastole. Based on this change, the pulse-
to-pulse intervals determined in this manner are equivalent to the NN intervals from an
ECG, and this equivalency has been verified during sleep or rest conditions in numerous
studies [22–25].
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Figure 5. The PPG sensors on the Apple Watch that uses infrared sensors, photodiodes, and green
LEDs to measure heart rate. The Apple Watch uses green LED lights paired with light-sensitive
photodiodes to detect the amount of blood flowing through the wrist at any given moment. When the
wearer’s heart beats, the blood flow in the wrist and the green light absorption are greater. Between
beats, the absorption is less. By flashing its LED lights hundreds of times per second and calculating
the green light absorption variation, the Apple Watch can calculate the heart rate. Source: [26].

The tracking quality of the PPG technique depends on good contact between the
device and the skin, which can be challenging when used with watch and wristband straps,
especially during periods of activity. Skin color, tattoos, and moisture can also affect PPG
accuracy [27,28].

When referring to measurements of HRV that are obtained through non-invasive PPG
techniques, the most appropriate terminology is pulse rate variability (PRV) [24,29], which
is measured by analyzing the time intervals between consecutive pulses in the peripheral
arteries, such as the wrist or finger. Although the measurement site is different from
the ECG-based HRV, the underlying physiological principle is the same. The choice of
terminology often depends on the measurement context and the specific tools being used
for assessment.
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Various factors such as stress [30], breathing patterns [31], physical activity [32],
changes in posture [33], and environmental temperature [34] may affect PRV differently
compared to HRV. These factors are related to changes in hemodynamics, blood pressure,
or pulse transit. Because hemodynamics are primarily regulated by the ANS, it is plausible
that PRV is influenced by ANS responses to external stimuli. In a study of the effect of
cold temperatures on rate variability [29], hypothermia appeared to have distinct effects
on PRV, not only in comparison to HRV but also when comparing different anatomical
sites. Specifically, PRV tended to yield higher HRV indices, especially in cold conditions.
Additionally, autonomic balance tended to be better maintained in the core vasculature.
Although further investigation is warranted, the results in this study offer insight into the
impact of vascular changes on PRV that are not reflected in HRV.

PPG has also been used as a tool to assess blood pressure [35], although it is typically
not as accurate as traditional blood pressure measurement methods like sphygmomanome-
try. This measurement is accomplished via a pulse wave analysis, detecting the pulse wave
of each heartbeat as it passes through a specific location, and it records the changes in blood
volume with each heartbeat. The amplitude of the PPG signal can provide information
about the strength of the pulse. In hypertensive individuals, the pulse may have higher
amplitude due to increased pressure in the arteries. A consistently elevated amplitude may
suggest hypertension [36,37].

Arrhythmia is another area of opportunity. In the context of atrial fibrillation (AF),
HRV analysis has proven to be a valuable tool for several reasons. First, reduced HRV, often
seen as a decrease in the standard deviation of normal-to-normal intervals (SDNN), has
been correlated with an increased risk of AF development [38]. Studies have shown that
individuals with diminished HRV are more prone to arrhythmia episodes, highlighting
HRV’s potential as an early predictor of AF susceptibility [39]. Furthermore, HRV parame-
ters such as the root mean square of successive differences (RMSSD) and high frequency
power, reflecting parasympathetic activity, have been observed to decline in AF patients,
suggesting a loss of autonomic regulation. This insight can aid in risk stratification, as
patients with compromised HRV may require more intensive monitoring and intervention
strategies. Finally, HRV analysis provides a non-invasive and cost-effective means to assess
the efficacy of AF treatments and track disease progression over time.

6. Consumer Device Brands and Apps

Typically, the PPG sensor used to track the heart rate and calculate the HRV is auto-
matically running in the background, which means the wearer does not need to perform
any maneuver on the device to start or stop the recording. For example, on the Apple
Watch, the HRV can be measured randomly during the day and nighttime and shows the
value as SDNN in a one-minute heartbeat length. The Fitbit offers HRV monitoring during
sleep, calculates the value for the whole sleep period, and presents it as the RMSDD. Table 2
shows how the major brands of wearable devices record HRV. Considering the number of
smartwatches and bands sold, PPG technology has occupied much of the market.

The PPG sensors in many brands can record HRV only during sleep, whereas some can
track HRV during the day and on demand (Table 2). Some research suggests that devices
that use PPG techniques do not accurately track HRV during activity periods because of
the susceptibility of this approach to motion noise [40] and indicates that measurements
taken during rest or sleep are the most precise [41]. However, longer duration recordings
that include daily activities and night or resting situations offer a more holistic measure
of HRV. Morrin et al. [42] compared 24 h HRV recordings to resting 5 min measurements;
they found a significantly lower coefficient of variation in 24 h measurements in all HRV
parameters and superior reproducibility. Measuring the 24 h HRV is recommended for
interventional studies [43]. Furthermore, when assessing the response to different stressors,
measures from long-duration recordings can offer more granularity regarding the reaction
of the ANS to a range of stimuli (e.g., the magnitude of the reduction in parasympathetic
activity during increasing exercise intensity or before a cognitive task) [43]. Therefore, a
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device that can measure HRV during different situations is preferred for long-time data
tracking to set up a more accurate baseline level. Currently, only ECG-based devices can
provide continuous long-time HRV tracking, whereas PPG-based devices can be used for
continuous monitoring only during sleep.

Table 2. Major wearable device brands that offer HRV monitoring.

Device Recording
Method Recording Period Recording Length Analysis

Apple Watch PPG

Automatic when the wearer works out 1 min SDNN over the entire
recording

Automatic when the wearer starts the
Breathe app

Determined by user,
up to 5 min

SDNN over the entire
recording

Automatic every 10–15 min when the
wearer enables the AF history 1 min SDNN over the entire

recording

Fitbit Watch/Band PPG Automatic when the wearer sleeps Whole sleep RMSDD over the entire
recording

Garmin Watch PPG Automatic when the wearer sleeps Whole sleep RMSDD for every
5 min length

Oura Ring PPG

Automatic when the wearer sleeps Whole sleep RMSDD for every
5 min length

Automatic when the wearer starts
unguided sessions

Determined by user,
up to 180 min

RMSDD over the entire
recording

Whoop Band PPG

Automatic when the wearer sleeps Whole sleep
Average of RR intervals

over the entire
recording

Automatic when the wearer switches
the mode to “broadcasting” and

connects to third party HRV apps
Determined by user Beat-to-beat intervals

AIO Smart Sleeve ECG Manual start by the wearer Determined by user Beat-to-beat intervals

Firstbeat Sport Sensor ECG Manual start by the wearer Determined by user Beat-to-beat intervals

Polar H10 Strip ECG Manual start by the wearer Determined by user Beat-to-beat intervals

Zephyr Bioharness ECG Manual start by the wearer Determined by user Beat-to-beat intervals

In each device, the expression of the analysis of HRV, such as SDNN and RMSDD,
is in the apps. Most devices also provide raw data (RR intervals), which many third-
party applications such as Elite HRV, HRV4training, or Welltory could access. These apps
can deliver a more detailed analysis of the raw data, including most of the time-domain
parameters (Table 1) and the frequency-domain parameters (Figure 6). Moreover, these
apps can also be used to measure HRV in a PPG-based method, through the smartphone’s
camera. This camera-based measurement is an on-demand method that requires that the
user cover the phone’s camera and flashlight with a finger and keep still for several minutes
to record (Figure 7). The accuracy of camera-based HRV measurement has been verified [44],
giving individuals without a smartwatch or band an alternative way to track HRV.

HRV-focused biofeedback training (called heart rate variability biofeedback; HRVB) is
offered through third-party apps with camera HRV tracking. Some brands (Apple Watch
Breath, Oura unguided session) have on-demand measurements, and almost all ECG-based
devices can be manually started and finished by users (Table 2). Briefly, HRVB is a technique
that involves guided breathing at a frequency that will align the heart rate, breathing rate,
and other physiological processes into a synchronous state [45]. This technique is a self-
regulation therapy in which an individual can learn how to optimize ANS function. During
the training session, HRV is used as an indicator to give feedback to guide the trainee in
understanding how to control the body’s responses, and thus, the trainee can learn how to
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produce a much larger increase in HRV [46]. HRVB has been used in patients to improve
many conditions, such as pain [47], anxiety [48], depression [49], hypertension [50], and
even food cravings [51].
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side). (Analysis performed by the authors).
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7. Verification of Wearable HRV Measurement

Many studies have compared HRV measurements obtained by a wearable device with
those taken by a clinical ECG system [53–57]. A meta-analysis that included 23 studies of
HRV measurements from wearable devices showed that the HRV readings had a small
absolute error when compared to readings using a clinical ECG; however, this error was
considered acceptable, given the practicality and cost-effectiveness of acquiring HRV
through wearable devices [58]. Among the parameters used in the measurements, SDNN
had the greatest amount of error, whereas RMSSD and high-frequency bands did not
significantly differ in the error rates between methodologies [58]. Other verification studies
have been conducted for brands such as Oura [59], Whoop [60], and Apple Watch [38], and
for assessing the use of different apps to acquire camera-based HRV, including Welltory [61]
and HRV4 training [62]. These studies have suggested current consumer brands and
apps in the market can provide reliable HRV readings when compared with medical-level
ECG measurements. However, as each piece of equipment or app has its own recording
condition and new devices are released yearly, continuous verification is still critical.

8. Application of HRV Tracking through Wearable Devices

HRV is not a new concept and has been well studied over the past decades [59,63–65].
The accuracy of HRV measurements on wearable devices opens a new era for HRV tracking
in the general population. In 2020, Fitbit published HRV distribution results from 8 million
users based on age, time, sex, and activity; these results could be used as a framework for
individual-level interpretation in future research [66]. This vast data sample can be collected
primarily because of the measurement convenience and popularity of wearable devices.
Collecting such a sample would be challenging using traditional ECG measurements in a
clinic or hospital environment.
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8.1. Stress

As stated previously, HRV reflects the function of the ANS as well as the balance
between the SNS and PNS. The SNS releases epinephrine, which promotes rapid and
widespread physiological changes such as increased heart rate. PNS generally does the
opposite, such as decreasing the heart rate to promote relaxation. An overall high HRV
reflects the ability of the ANS to adapt to stressors, indicating good health and optimal
functional performance. Reduced HRV signifies poor ANS adaptability and is associated
with fatigue, stress, and overtraining [41,43,67]. A meta-analysis of current neurobiological
evidence suggests that HRV is affected by stress, and using HRV for the objective assessment
of psychological health and stress may be feasible [68].

The correlation between stress and HRV makes the stress monitor function the most
popular application across all wearable brands. This application increases the awareness of
stress, which is important in coping with stress. However, the ANS only partially accounts
for the stress response, as its role is limited only to the duration of the stressor. Another
pathway, the hypothalamic–pituitary–adrenal axis [69], produces cortisol to support the
SNS system and suppress other body systems, such as immune function and growth; the
effects of this axis may persist for up to 90 min after the stressor ends [70]. It is possible
that in some chronic stress conditions, the body may have a sustained cortisol response
without specific ANS activity. In fact, some research suggests that HRV is a more direct
reflection of transient physiological stress that is not aligned with perceived stress [71].
In other words, HRV is more likely to reflect the body’s instant burnout instead of stress
defined as a long-term physiological response to maintain homeostasis in unexpected
situations or when perceiving a threat. In a study of 657 participants wearing Garmin
fitness bands, HRV was associated with perceived stress in laboratory settings; the strength
of that association diminished in real-life settings. Thus, relying on wearable-derived
HRV alone might not be sufficient to detect stress in natural settings and should not be
considered a proxy for perceived stress but rather a component of a complex phenomenon.
The study also suggested the need for longitudinal research combined with multimodality
monitoring, such as sleep monitoring, to evaluate the correlation between the HRV trend
and stress [72].

One advantage of wearable devices is that sleep tracking is almost a standard function
and facilitates research on stress and HRV during sleep. Studies found that low HRV
during sleep is associated with more mental stress [73]. Another study of the Oura ring’s
HRV sleep tracking combined with a smartphone app that can log a user’s location and
activity demonstrated a strong positive correlation between HRV and anxiety caused by
stress [74]. The authors believe that wearable devices may provide valuable data for
predicting symptoms of anxiety, most notably data related to standard measures of sleep.
Continuous HRV tracking during sleep may be a promising way to further study the
correlation between HRV and stress.

In another popular method for tracking and addressing stress via a wearable device,
a professional trainer can help individuals cope with physical stress and improve body
fitness and performance while using an activity tracker. In a comparison study of HRV
acquired from a smart device and from a 12-lead EKG, smart device-derived HRVs were
valid and reliable for monitoring elite athletes’ stress and recovery process [75].

8.2. Mental Health

Although HRV may not ultimately reflect the body’s stress, much evidence [76,77] has
shown a strong relationship between HRV and post-traumatic stress disorder (PTSD). PTSD
is related to fear conditioning, which results in an overactive fear response to situations that
remind the individual of the original traumatic event. This triggers a robust physiological
stress response involving the ANS system. In a study of 38 healthy subjects, vibration
treatment (a type of low-frequency sound wave felt as a soothing vibration) from a wearable
device improved HRV within 3 min under stress [78]. This vibration technique has been
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tested in several ongoing clinical trials [79–81] in which investigators aimed to improve
PTSD in patients by increasing their average HRV after stress episodes.

HRV tracking can help patients improve mental health as shown by PTSD therapy.
Currently, biofeedback training combined with cognitive behavior therapy [82] uses HRV
as an indicator to identify the best interventional approach and as evidence of improvement
after therapy to help achieve mental health resilience [83]. A meta-analysis showed HRVB
improved depression symptoms in several psychophysiological conditions in adults and
should be considered a valid technique to increase psychological well-being [84].

HRV tracking could also be used to monitor migraines, which are often correlated
with mental health. HRV is significantly lower during the episode, suggesting the ANS is
unbalanced during a migraine [85]. In a randomized experiment, HRV was significantly
lower in the headache group and improved significantly after mindful practice, indicating
an effective recovery after the headache [86].

8.3. Heart Disease

In a study in 2003 of more than 10,000 individuals [87], those with a low HRV at baseline
were at increased risk of developing hypertension over 9 years of follow-up. The investigators
found that a decrease in ANS function precedes the development of clinical hypertension.
However, this study was based on only two HRV measurements taken 9 years apart, which
does not provide a picture of continuous change between HRV and blood pressure. Some
newer wearable devices are equipped with blood pressure monitoring functions, which could
be a powerful tool in further examining the correlation between HRV and blood pressure
and in developing better early prevention and treatment tools for hypertension. In a pilot
study, smartphone camera-based HRV biofeedback training in a two-week, paced breathing
intervention helped reduce heart rate and diastolic blood pressure and improve HRV in
individuals with a family history of cardiovascular disease [88].

Low HRV is an established cardiovascular risk factor [89]. The association of HRV
and prognosis for all-cause and cardiovascular mortality has been studied using ECG
at rest, with exercise and in an ambulatory setting. In a meta-analysis, Hillebrand and
colleagues used both resting and ambulatory ECG monitoring to show that a lower HRV
was associated with a 32% to 45% increased risk of a first cardiovascular event in patients
without known coronary artery disease (CAD) [89]. Additionally, they reported that an
elevated HRV had a protective effect, with a 1% increase in standard deviation of the
normalized NN interval, resulting in a 1% reduction in fatal or nonfatal cardiovascular
disease events. In 2019, a large prospective international clinical study of 1043 patients
showed that short-term HRV testing can be used as a novel digital-health modality for
enhanced risk assessment in low- to intermediate-risk individuals without known CAD [90];
this population comprised only those with an established risk of CAD. The popularity of
wearable devices will help in designing future trials for evaluating HRV and cardiovascular
disease outcomes in a larger healthy population. These types of large studies will present a
clearer picture of HRV’s correlation with heart health. In addition, HRV has been shown to
be significantly lower in patients with heart failure [91]. Thus, HRV could be a promising
tool for detecting and diagnosing heart failure, which opens a door to monitoring heart
failure digitally and optimizing its management.

HRV is also a valuable index for calculating the risk stratification of sudden cardiac
death (SCD) after acute myocardial infarction [92] and for predicting SCD in patients with
chronic heart failure [93]. These studies suggested low HRV may be an independent predic-
tor of increased mortality among patients with post-myocardial infarction and chronic heart
failure. If HRV research could be expanded to include low-risk or general populations,
investigators could assess its use as a screening tool to prevent SCD in specific groups, such
as athletes or those with a significant family history of cardiovascular disease. However,
this research has been limited by economic feasibility, applicability in mass screening, and
comfort of the measurements. Wearable devices could solve these problems and make
these studies feasible.
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The larger-scale application of wearable devices will help in further investigating the
correlation between HRV and heart disease in a widespread scope.

8.4. Cardiac Rehabilitation

Several large-scale trials and meta-analyses have documented the long-term survival
benefits of cardiac rehabilitation in patients with CAD [94–96]. It has been recently proposed
that these benefits may be due to an improvement in cardiac autonomic function; thus, HRV
may be a useful gauge of cardiac function during rehabilitation [97]. Furthermore, HRV may
help track the emotional experiences of patients with CAD. In a clinical trial, HRVB helped to
increase ANS recovery in CAD patients who experienced negative emotions such as anger,
suggesting it may be suitable for use in cardiac rehabilitation [98]. In another trial, HRVB
increased HRV and decreased expressive and suppressive hostility behavior in patients with
CAD after training [99]. These studies suggest that HRVB could be used as adjunct training
during cardiac rehabilitation to help CAD patients manage their stress [100].

8.5. Diabetes

Diabetes, a metabolic disorder characterized by chronic hyperglycemia, is associated
with ANS dysfunction, which correlates with decreased HRV indices. Moreover, decreased
HRV in patients with diabetes is a predictor of cardiovascular morbidity and mortality. In a
study of CAD patients with and without diabetes, patients who had CAD with diabetes
did not show improvement in HRV after 8 weeks of cardiac rehabilitation training [101].

HRV can also be used to monitor hypoglycemia. Because hypoglycemia stimulates
the SNS, HRV could be helpful for real-time early detection of hypoglycemia. In a pilot
study of 23 patients with type 1 diabetes [102], HRV was continuously measured through
a wearable device for 5 days. The results showed HRV patterns identified all but 18% of
hypoglycemia events, which suggests that measuring real-time HRV may be useful in early
hypoglycemia detection.

8.6. Inflammation

Since there is considerable interplay between systemic inflammation and ANS activity,
HRV may be a non-invasive and easy-to-use tool for early detection of a developing
systemic inflammatory response. Previous work has demonstrated that HRV analysis
can identify patients developing pancreatitis [103]. In this study, HRV measurement on
admission was a good predictor of necrosis and organ failure in patients with severe acute
pancreatitis. In a study [104] in which HRV was recorded by a wearable device, volunteers
were intravenously given lipopolysaccharide to induce systemic inflammation. Frequency-
domain HRV parameters showed a significant change shortly after plasma cytokine levels
increased, and the change preceded the onset of flu-like symptoms and alterations in vital
signs. These findings suggest monitoring HRV may be a promising tool for the early
detection of a systemic inflammation response. During the pandemic, tracking HRV via a
wearable device was used to identify a COVID response. In a study of 297 participants [105],
significant changes in HRV were seen before a positive PCR test from a nasal swab sample,
suggesting that longitudinally collected HRV metrics from a commonly worn commercial
wearable device may be able to predict the diagnosis of COVID-19 and identify COVID-
19-related symptoms. In a larger study of 2745 subjects [106], similar results from data
collected from wearable devices showed that HRV monitoring may improve early detection
of COVID-19. A study [107] of 141 critically ill patients with COVID-19 and 209 patients
with all-cause sepsis found that changes in HRV were statistically different between the two
groups, suggesting HRV levels could potentially differentiate between severe COVID-19
infection and bacterial sepsis. This finding was attributed to the cardiac involvement in
COVID-19 causing significant changes in HRV pattern.
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9. Advantages of Using Wearable Devices for HRV Tracking

HRV is a valuable indicator that reflects the overall health status of patients, as de-
scribed above. Previously, the Holter ECG was the principal way to perform longitudinal
heart rate monitoring with HRV analysis. However, the inconvenience of wearing a Holter
monitor limits its application in many situations, such as swimming. In addition, skin
irritation makes long-term wearing of the device problematic. In contrast, wearable smart
devices have been incorporated into an individual’s daily life and are designed to monitor
health status during many different activities, including resting, sleeping, walking, running,
or even swimming. By using these devices, individuals can track their health status for
years. Because of their popularity and widespread use, these devices can be used for
large-scale studies. In 2022, an estimated 67 million people were projected to use a wearable
device in the US; 50% of consumers were interested in tracking their cardiac health, and
68% of physicians intended to use a wearable device for patient monitoring [27]. This
extensive population will provide a significant sample pool that will create the opportunity
to examine and solve issues previously deemed challenging to study. In addition, smart
devices are closely connected to AI algorithms; therefore, monitoring and analysis can be
quickly scheduled and performed, dramatically improving the accuracy of the diagnosis
and user compliance. Successful examples include the multiple devices used for detecting
AF, which have ushered in a new era of personal health [108–110]. AI can also detect new
patterns that are difficult to recognize using human-based methodologies. For example,
AI has recently been used to analyze single-lead ECG data from wearable devices and has
predicted acute left ventricular dysfunction with an area under the curve of 0.88. This result
is slightly better than a medical treadmill diagnostic test [111]. More advantages of using
wearable devices to track HRV are described below.

Awareness of individual health and increased user compliance. People with and
without wearable devices have shown significant differences in activity level and physical
health awareness [112]. As wearable devices remain popular in the market and more apps
are being developed, healthcare workers have an excellent opportunity to promote health
education more efficiently. In turn, people will be more likely to follow instructions to record
health data in clinical trials, which will significantly improve participants’ compliance and
facilitate the performance of the trials.

Large-scale monitoring for personalized medicine. Longitudinal and large-scale moni-
toring to set up baseline data for individuals and populations is a pathway that will lead to
the development of personalized medicine. As daily mobile electronics, wearable devices
can substitute for expensive heart monitors that previously were accessible only in hospitals.
Moreover, some wearable devices can be purchased for $100. The ability to automatically
record data eliminates the need for trial participants to travel to research facilities and
thus decreases both the cost and complexity of clinical trials. These advantages make
long-term and large-scale trials possible. For example, in a recent study [113], investigators
analyzed nine million HRV readings through the HRV4training app from 28,175 users over
5 years. The study monitored HRV when the user responded to different stressors, such as
training, high alcohol intake, menstrual cycle, and sickness. The authors concluded that
measuring HRV upon waking by using a smartphone app could effectively be incorporated
into normal daily life to quantify individual stress responses across many scenarios. These
types of datasets can be used to monitor HRV trends over years and establish reference
points in different populations based on age, sex, race, and occupation.

In addition, wearable devices can record HRV during periods of physical activity in
many different sports and in other conditions such as rest and sleep. This feature can be
used to identify factors that may affect HRV and to correlate HRV changes with the user’s
physical condition and activities. Moreover, these data can help direct users in improving
their HRV. A higher and more consistent HRV from day to day is typically associated with
better health and improved fitness [114,115]. Thus, wearable devices can serve not only
as a tracking tool but also as a personal training tool to help users get positive feedback,
such as in HRVB, to improve their condition. In a meta-analysis of HRV-guided training
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studies [116], the authors concluded that HRV-guided training may be more effective than
predefined training for maintaining and improving vagal-mediated HRV, with a slight
margin of improvement in fitness and performance. Similarly, another meta-analysis
showed that in comparison to predefined training, HRV-guided endurance training had a
medium-sized effect on submaximal physiological parameters [117].

Efficient high-complexity analyses with AI algorithms and wearable devices. A deep
learning AI algorithm based on smart band HRV data (collected over 2 to 5 min periods)
has shown improved mental and general health predictive capability [118]. A simulation
algorithm using ensemble empirical mode decomposition-based entropy features has been
studied for analyzing HRV data to predict SCD; this approach predicted subjects at risk
of SCD up to 14 min before SCD onset with an accuracy of 96.1%, a sensitivity of 97.5%,
and a specificity of 94.4%. Once this novel algorithm can be integrated into wearable
devices, it could help in creating a protocol embedded in a mobile app to identify people
with SCD risk [119]. With the help of AI, investigators can not only collect and analyze
data automatically and more accurately, but also recruit patients worldwide without their
needing access to the hospital. For example, Apple’s ResearchKit app helps researchers
access raw data and develop clinical trials based on the iPhone, a convenient way to enroll
subjects worldwide. In 2019, Apple published its first large-scale research study [110]: The
Apple Heart Study collected data from over 400,000 Apple Watch users in 8 months. This is
the first-ever, large-scale virtual study conducted in a real-world setting based on a phone
app to recruit participants without hospital access. Based on this successful experience,
Apple has developed a research app to design clinical trials. Every user can download it
and easily enroll in studies they are interested in. Currently, three longitudinal trials are
running in these apps: Apple Women’s Health Study, Apple Heart, and the Movement and
Hearing Study. This new type of trial will facilitate data collection, contribute to large data
pools across a large population, and build a personal reference for future comparison of
individual trends.

10. Challenges

The biggest challenges to using wearable devices for tracking HRV are the poor stan-
dardization and lack of consistency in methodology among the brands. The PPG-based
tracking method, which dominates the consumer market, is unsuitable for continuous mon-
itoring because it is affected by many factors, especially the user’s activity. A few brands
achieve continuous recording during sleep. Although HRV tracking in sleep is important,
it cannot replace the 24 h recording for identifying long-term trends. The 24 h continuous
recording could represent the cardiovascular system’s response to various environmental
stimuli and workloads. Circadian rhythms, core body temperature, metabolism, sleep
cycle, and the renin–angiotensin system contribute to variability in 24 h HRV recordings [7].
Hence, 24 h HRV monitoring encompasses daily and nocturnal activities, and this type of
longitudinal recording may provide a more holistic measure of HRV and yield the gold
standard value for HRV. Currently, only ECG-based sensors provide good continuous track-
ing; however, the design of these sensors, such as a strip or patch, does not allow for easy
or popular daily wear. Thus, until the auto-continuous tracking technology is improved for
wearable device-derived HRV measurements, it will be difficult for researchers to record
reliable long-term trends in HRV, which are important for establishing a personalized
baseline and making correlations between HRV and chronic conditions.

Different brands offer different solutions for solving this issue. The Apple Watch has a
unique algorithm that provides intermittent automatic HRV measurements day and night,
even when the user is physically active. However, the readings last only 1 min every time,
which is not considered continuous tracking. In addition, the 1 min readings fall into the
ultra-short-term recording category and are easily influenced by external factors during
tracking, such as stress, physical exercise, coffee or alcohol intake, and hydration conditions.
Without a clear log, discerning whether a reading is baseline data or reflects some external
factor is challenging. Unfortunately, with this algorithm, it is unclear why the Apple Watch
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measures the HRV at these specific time points, making the recordings seem random. Thus,
correlating the HRV with the user’s activity is difficult (Figure 8).
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Figure 8. Heart rate variability data from Apple Watch automatic tracking in the Apple Health App
(from authors’ data). Because the time points are randomly distributed, it is difficult to ascertain the
wearer’s activity at the time of the recording.

In addition, the data sample strategies among the brands are different. Fitbit and
Oura have different HRV sample methods during sleep. In a study comparing readings
from six wearable devices with ECG-based HRV, the HRV agreement varied among the
brands [60] (Figure 9). If investigators do not consider this difference, they may ignore the
data variations. For example, baseline data from research with the Fitbit may not show
the same trend as studies using the Apple Watch. Therefore, more research is needed to
compare brands to eliminate data disagreement.

These limitations are seen in many studies, as true baseline HRV measurements
are challenging to collect. In most studies, the data collection is based on “snapshot”
measurements (short or ultra-short records, such as seen with the Apple Watch), which
could be significantly affected by external and internal factors, leading to inaccurate baseline
measurements. In some studies, measurement of “baseline” HRV has been conducted close
to the stimulus; therefore, responses to the stimulus may have already started to occur and
would affect the HRV [120]. Because HRV is unique to each person, the accuracy of baseline
HRV values is fundamental to ensuring confidence in subsequent measurements. Dobbs
et al. [58] concluded that meaningful interpretations of longitudinal HRV data are improved
by using weekly averages of consecutive day-to-day recordings, which are superior to
snapshot measures of HRV [121]. Unfortunately, there is currently no longitudinal study
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using wearable devices to record HRV continuously. Thus, the issue of standardized
baseline data remains and needs to be a significant consideration when designing studies
or evaluating data from wearable devices.
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of baseline HRV values is fundamental to ensuring confidence in subsequent measure-
ments. Dobbs et al. [58] concluded that meaningful interpretations of longitudinal HRV 
data are improved by using weekly averages of consecutive day-to-day recordings, which 
are superior to snapshot measures of HRV [121]. Unfortunately, there is currently no lon-
gitudinal study using wearable devices to record HRV continuously. Thus, the issue of 
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Figure 9. Bland-Altman plots of ECG-derived and PPG-derived heart rate variability measurements
(from six brands). The measurements took place simultaneously, and different brands presented
different reading variations. Source: [60]. * means manufacturers provided raw data.

Another hurdle is that many factors are connected to HRV. To get the best attribution,
the user needs to make an accurate daily log; this task may decrease users’ compliance and
prevent them from generating meaningful records. As previously discussed, the Apple
Watch automatically measures HRV during the day; however, users may not be able to
recall the circumstances under which the measurement was taken. To solve this issue, some
brands focus on measuring HRV only during sleep; although this approach excludes many
external stimuli, it cannot reflect changes in HRV during the day and thus does not provide
a holistic view of HRV. Some apps use on-demand measurements such as HRVB, which
asks users to take HRV measurements manually and records the user’s daily condition
and activities. In this way, users can log their activity and other factors more precisely, but
the approach relies heavily on the users’ cooperation (Figure 10). Therefore, it is difficult
to say that HRV tracking is currently an automatic function. In the future, devices or
apps must be developed to provide easier ways of helping users track their daily activities
and health conditions. Oura’s activity detection, which can automatically recognize the
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wearer’s exercise activity, is a good step toward improving the automatic tracking function
of wearable devices.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 19 of 25 
 

 

to recall the circumstances under which the measurement was taken. To solve this issue, 
some brands focus on measuring HRV only during sleep; although this approach excludes 
many external stimuli, it cannot reflect changes in HRV during the day and thus does not 
provide a holistic view of HRV. Some apps use on-demand measurements such as HRVB, 
which asks users to take HRV measurements manually and records the user’s daily con-
dition and activities. In this way, users can log their activity and other factors more pre-
cisely, but the approach relies heavily on the users’ cooperation (Figure 10). Therefore, it 
is difficult to say that HRV tracking is currently an automatic function. In the future, de-
vices or apps must be developed to provide easier ways of helping users track their daily 
activities and health conditions. Oura’s activity detection, which can automatically recog-
nize the wearer’s exercise activity, is a good step toward improving the automatic tracking 
function of wearable devices. 

 
Figure 10. (Left panel): HRV4biofeed asks users to choose their current mental status before a man-
ual session. (Right panel): after the manual session, the Welltory app asks users to choose the words 
that best reflect their mental status and activities (from the author’s iOS app). 

Designing large-scale longitudinal trials to achieve accurate results is challenging us-
ing current technology. Data collection should focus on short periods (1–2 weeks) of con-
tinuous tracking, using an ECG-based device in specific populations (e.g., athletes, pa-
tients who need remote monitoring). Technology is progressing daily, and we believe 
more mature tracking methods will soon be available. 

11. Conclusions 
HRV is a reliable indicator of ANS function. Its measurement has been built into al-

most every wearable device on the market, and HRV can be conveniently recorded and 
analyzed. Designing clinical trials to track HRV, monitor individual health, and improve 
mental and physical health status through HRVB is feasible. Although there are technical 
limitations, physicians should be aware of the importance of HRV and educate patients 

Figure 10. (Left panel): HRV4biofeed asks users to choose their current mental status before a manual
session. (Right panel): after the manual session, the Welltory app asks users to choose the words
that best reflect their mental status and activities (from the author’s iOS app).

Designing large-scale longitudinal trials to achieve accurate results is challenging
using current technology. Data collection should focus on short periods (1–2 weeks) of
continuous tracking, using an ECG-based device in specific populations (e.g., athletes,
patients who need remote monitoring). Technology is progressing daily, and we believe
more mature tracking methods will soon be available.

11. Conclusions

HRV is a reliable indicator of ANS function. Its measurement has been built into
almost every wearable device on the market, and HRV can be conveniently recorded and
analyzed. Designing clinical trials to track HRV, monitor individual health, and improve
mental and physical health status through HRVB is feasible. Although there are technical
limitations, physicians should be aware of the importance of HRV and educate patients
on its usefulness, especially considering the popularity of wearable devices. With some
progress in wearable devices, large-scale and longitudinal tracking of HRV will provide
valuable and precise insight into HRV trends and how they relate to health management.
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