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Abstract: The new generation of nonvitamin K antagonists are broadly applied for stroke prevention
due to their notable efficacy and safety. Our study aimed to develop a suggestive utilization of
dabigatran through an integrated machine learning (ML) decision-tree model. Participants taking
different doses of dabigatran in the Randomized Evaluation of Long-Term Anticoagulant Therapy
trial were included in our analysis and defined as the 110 mg and 150 mg groups. The proposed
scheme integrated ML methods, namely naive Bayes, random forest (RF), classification and regression
tree (CART), and extreme gradient boosting (XGBoost), which were used to identify the essential
variables for predicting vascular events in the 110 mg group and bleeding in the 150 mg group. RF
(0.764 for 110 mg; 0.747 for 150 mg) and XGBoost (0.708 for 110 mg; 0.761 for 150 mg) had better area
under the receiver operating characteristic curve (AUC) values than logistic regression (benchmark
model; 0.683 for 110 mg; 0.739 for 150 mg). We then selected the top ten important variables as
internal nodes of the CART decision tree. The two best CART models with ten important variables
output tree-shaped rules for predicting vascular events in the 110 mg group and bleeding in the
150 mg group. Our model can be used to provide more visualized and interpretable suggestive rules
to clinicians managing NVAF patients who are taking dabigatran.

Keywords: cardioembolic stroke; arrhythmia; anticoagulant agents; machine learning; decision tree

1. Introduction

Non-valvular atrial fibrillation (NVAF) is a growing health issue in the aging
society [1,2]. Elderly individuals and those with comorbidities have an increased risk
of ischemic stroke and vascular events. Although new-generation nonvitamin K antago-
nists (NOACs) have demonstrated notable convenience and safety in the prevention of
cardioembolic strokes [3], clinicians still struggle to achieve intensive medical control in
NVAF patients with stroke risk [4–8]. Dabigatran etexilate, a direct thrombin inhibitor, is
one NOAC that showed superior efficacy in vascular prevention compared to the traditional
vitamin K antagonist, warfarin, when patients take high-dose dabigatran (150 mg twice
daily) based on the results of the Randomized Evaluation of Long-Term Anticoagulant
Therapy (RE-LY) trial [9]. Another approved low dabigatran dose (110 mg twice daily),
which was non-inferior to warfarin regarding efficacy, had safety benefits, with lower
rates of major bleeding. Patients with specific physical conditions and comorbidities have
different risks of vascular events and bleeding [10,11]. Achieving optimal personalized
medical prevention is desirable to balance the benefits and side effects of anticoagulant
therapy based on patients’ features. According to a post-hoc analysis of the RE-LY trial data,
European label-simulated dabigatran treatment, which recommends adjusting dabigatran
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dose according to patient’s age, risk of bleeding, or when patients are on verapamil, can
achieve superior efficacy and safety compared to warfarin [12]. Researchers validated a
prediction model for shared decision-making before starting dabigatran treatment [13,14].

Traditional evaluation tools such as the CHA2DS2-VASc and HAS-BLED scores have
provided concepts of the risk of ischemic stroke and bleeding in patients with NVAF. In
recent years, machine learning (ML)-based tools for analyzing data have shown efficacy in
identifying the influence and interaction of important factors in the medical context [15,16].
Unlike the popular logistic regression (LGR) method, which shows the binary results for
the target variable using a regression model, ML models have the advantage of being
able to explore complex hidden rules in massive, disorganized data between predictors
and the target variable presenting with diverse phenotype [17,18]. ML methods have
shown good performance for prediction and feature selection in cardiovascular, chronic
respiratory diseases, myocardial infarction, schizophrenia, tongue cancer, and colorectal
cancer [19–24]. Under the concept of collective intelligence, an integrated ML feature
selection and prediction scheme achieved advanced efficacy in selecting important variables
of vascular events and bleeding according to the RE-LY trial database [25].

However, the interpretability of ML is also a growing concern because many models
work in “black boxes” [26]. In clinical practice, every patient has a combination of diverse
characteristics and underlying diseases that require careful consideration before selecting
the appropriate therapy [27]. A transparent and explainable rule is essential to solve these
kinds of problems. Patients may have several risk factors for vascular events and bleeding.
More comprehensive information about the vascular event and bleeding risk may establish
suggestive guidelines to optimize the use of dabigatran.

A ML decision tree algorithm is a tree-based classifier composed of nodes representing
selected variables; the division of the tree into prognostic outcomes shows rules regard-
ing the combinations of these variables [28,29]. Decision tree models provide a good
structure for presenting medical rules that are similar to the clinician’s decision-making
process [30,31]. This study aimed to construct a multi-step ML decision tree scheme that
first identified important variables based on ML algorithms and then generated a tree-
shaped rule based on the selected important variables according to dataset of the RE-LY
trial. The classification and regression tree (CART) has been used in many medical condi-
tions, such as dementia, stroke, influenza infection, and malignancy, because it has good
visualizable and explainable information [32–35] for guiding clinical decision-making. Our
study proposes an integrated ML decision-tree scheme to achieve precision medicine in
deciding the appropriate dose selection for patients with NVAF.

2. Materials and Methods
2.1. Study Population

Our research adopted an ML method for secondary analysis based on the dataset of the
RE-LY trial. The Fu Jen Catholic University Hospital’s Research Ethics Review Committee
examined and approved this study (IRB No. FJUH111180). Since the data solely contained
de-identified content, informed permission was waived.

Dabigatran 110 or 150 mg twice daily or an adjusted dose of warfarin were the three
treatment options in the RE-LY trial. There were 18113 patients with newly diagnosed ar-
rhythmia and evidence suggesting secondary prevention randomly assigned to receive one
kind of anticoagulant with a median follow-up time of approximately two years. A history
of severe valvular heart disease, recent stroke, and renal failure was listed as exclusion
criteria. A stroke or systemic embolism was the primary outcome, as major bleeding was
the primary safety outcome [9]. The RE-LY trial was a multi-center, randomized trial with
99.9% of participants completing follow-up. Data from patients who received dabigatran
and finished the RE-LY trial’s follow-up were gathered for this study. Two study subgroups
of patients receiving dabigatran 150 mg and 110 mg twice daily were designed.
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2.2. Method

We proposed an integrated multi-step ML scheme (Figure 1) to construct a decision-
tree model for risk evaluation in patients with NVAF taking different doses of dabigatran.
Our protocol applied four ML algorithms: naive Bayes (NB), CART, random forest (RF),
and extreme gradient boosting (XGBoost), which have been widely used in various medical
informatics applications to select important variables [36–40]. LGR is a classic classification
method that uses data fitting to a logistic function to estimate the likelihood of an event
occurring [41]. The multivariate LGR model, which uses numerical or categorical predictor
variables, was commonly used in medical research and as the benchmark method for
comparing the performance of these ML methods. CART was used as the ML decision-tree
algorithm to create our rules in the second step.
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CART is a binary splitting decision tree method based on the Gini index, which could
be a classifier or regression predictive tool with an optimal tree size by applying a cross-
validation (CV) procedure [42]. NB is a well-known probabilistic classifier based on Bayes’
theorem with strong independence assumptions between individual features [43]. RF is an
ensemble classification method based on a decision tree [44]. Each tree grows to its best
set of explanatory variables by the bootstrap resampling technique. The majority vote of
these trees decide the model’s final prediction. XGBoost is another tree-based learning
algorithm with an interrelated base classifier [45]. Unlike RF, it adjusts the imperfections or
inadequacies of the previous model in building new models to accelerate tree construction
and prevent overfitting.

First step: Define variables and classify the study subgroups. Our study referred
to the recommendations of the American Heart Association and the European Society
of Cardiology [1,2]. The personal features, medical history and biochemical data of the
patients were defined as predictor variables. The target variable in the 110 mg group was
vascular events (stroke, systemic embolism, and vascular death) and the target variable in
the 150 mg group was bleeding. The description of our predictive variables (X1–X17) and
two target variables (P1, P2) are shown in Supplementary Table S1.

Second step: Construct an ML model to identify important variables of vascular
events and bleeding in the two study subgroups. In our study, the dataset was randomly
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divided into an 80% training dataset for constructing the acceptable model with the best
hyperparameter set and a 20% testing dataset for model testing. Our protocol applied
a 10-fold CV method to enhance stability for tuning the hyperparameters for the best
performance of NB, RF, CART, and XGBoost models based on the area under the receiver
operating characteristic (ROC) curve (AUC) values. Tenfold CV involves the modifying
the validation dataset ten times to generate the adequate validation performance [46]. The
performance of the model was compared according to the AUC value superior to the result
of LGR. We built each method with R software (http://www.R-project.org; accessed on
27 October 2022; https://www.rstudio.com/products/rstudio/; accessed on 27 October
2022) with the required installed packages. NB, RF, CART, and XGBoost were implemented,
respectively. The “caret” R package version 6.0–90 was used for each method to generate the
importance values of individual variables. Averaging the importance values of predictive
variables in the selected models, we chose the ten most important variables for vascular
events and bleeding in the 110 mg and 150 mg groups, respectively, as nodes in the decision
tree model.

Third step: Develop decision rules using CART based on the selected important
variables. Using the same model construction process in the previous step, the 10-fold
CV was used to train the CART model. The CART decision tree model with the best
performance was used to establish tree-shaped rules composed of the 10 selected variables
for predicting vascular events and bleeding in the 110 mg and 150 mg groups, respectively.

In the last step, the rules derived from the important variables in our scheme were
used to clarify what clinicians should avoid when selecting the dabigatran dose for NVAF
patients. The discussion of these rules may provide us with graphical information on the
precise dose of dabigatran.

3. Results

Our study recruited 5869 patients who took 110 mg dabigatran twice daily and 5933
patients who took 150 mg dabigatran twice. Table 1 shows the demographic data of the
110 mg and 150 mg groups. Vascular events and bleeding occurred in 185 (3.15%) and
1189 (20.04%) patients within the first year of follow-up in the 110 mg and 150 mg groups,
respectively.

Table 1. Clinical and demographic characteristics of the 110 mg and 150 mg groups.

Variables
110 mg 150 mg

Category N (%) Category N (%)

Gender
Male 3770 (64.24%) Male 3748 (63.17%)

Female 2099 (35.76%) Female 2185 (36.83%)

Age

<65 977 (16.65%) <65 1005 (16.94%)

≥65 and <75 2606 (44.40%) ≥65 and <75 2517 (42.42%)

≥75 2286 (38.95%) ≥75 2411 (40.64%)

BMI

<18.5 61 (1.04%) <18.5 62 (1.05%)

≥18.5 and
<30 3764 (64.13%) ≥18.5 and

<30 3824 (64.45%)

≥30 2044 (34.83%) ≥30 2047 (34.50%)

Body weight
<60 554 (9.44%) <60 544 (9.17%)

≥60 5315 (90.56%) ≥60 5389 (90.83%)

http://www.R-project.org
https://www.rstudio.com/products/rstudio/
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Table 1. Cont.

Variables
110 mg 150 mg

Category N (%) Category N (%)

Ethnicity
Arab/others 1798 (30.64%) Arab/others 1796 (30.27%)

European 4071 (69.36%) European 4137 (69.73%)

Hypertension history
Yes 1248 (21.26%) Yes 1254 (21.14%)

No 4621 (78.74%) No 4679 (78.86%)

Kidney function (GFR)

<30 13 (0.22%) <30 32 (0.54%)

≥30 and <50 1113 (18.96%) ≥30 and <50 1132 (19.08%)

≥50 4743 (80.81%) ≥50 4769 (80.38%)

Previous stroke
history

Yes 1166 (19.87%) Yes 1199 (20.21%)

No 4703 (80.13%) No 4734 (79.79%)

Previous bleeding
history

Yes 386 (6.58%) Yes 388 (6.54%)

No 5483 (93.42%) No 5545 (93.46%)

Concomitant use
of drug

Yes 1429 (24.35%) Yes 1415 (23.85%)

No 4440 (75.65%) No 4518 (76.15%)

History of MI
Yes 987 (16.82%) Yes 995 (16.77%)

No 4882 (83.18%) No 4938 (83.23%)

History of DM
Yes 1376 (23.45%) Yes 1362 (22.96%)

No 4493 (76.55%) No 4571 (77.04%)

History of CHF
Yes 2069 (35.25%) Yes 2056 (34.65%)

No 3800 (64.75%) No 3877 (65.35%)

Smoking

Never 2866 (48.83%) Never 2915 (49.13%)

Current 429 (7.31%) Current 438 (7.38%)

Former 2574 (43.86%) Former 2580 (43.49%)

History of SE
Yes 150 (2.56%) Yes 156 (2.63%)

No 5719 (97.44%) No 5777 (97.37%)

Liver function
abnormality Yes 49 (0.83%) Yes 35 (0.59%)

No 5820 (99.17%) No 5898 (99.41%)

Anemia Yes 20 (0.34%) Yes 10 (0.17%)

No 5849 (99.66%) No 5923 (99.83%)

Vascular events Yes 185 (3.15%) - -

No 5684 (96.85%) - -

Bleeding - - Yes 1189 (20.04%)

- - No 4744 (79.96%)
Abbr.: BMI—body mass index; GFR—glomerular filtration rate; MI—myocardial infarction; DM—diabetes
mellitus; CHF—congestive heart failure; SE—systemic embolism.

Table 2 shows the performances of LGR, NB, RF, CART, and XGBoost methods in
predicting vascular events and bleeding in each group with their best hyperparameters.
From the table, RF and XGBoost presented advanced predictive performance for vascular
events in the 110 mg group and bleeding in the 150 mg group according to their AUC
values. The ROC curves of the five methods in predicting vascular events and bleeding are
shown in Figure 2. RF and XGBoost were selected as the modes because NB and CART
showed inferior performance to LGR. Figure 3 shows the average importance values of
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variables in the RF and XGBoost models derived from the 10-fold CV. The top ten important
variables in the two groups based on the average values in RF and XGBoost models are
presented in Table 3.

Table 2. Performance of the LGR, NB, RF, XGBoost models in predicting vascular events in the 110 mg
group and bleeding in the 150 mg group.

Methods Sensitivity
Mean (SD)

Specificity
Mean (SD)

AUC
Mean (SD)

F1-Score
Mean (SD)

(A) Predicting vascular events in dabigatran 110 mg group

NB 0.606 (0.05) 0.680 (0.05) 0.683 (0.01) 0.740 (0.04)
RF 0.840 (0.03) 0.592 (0.03) 0.764 (0.01) 0.895 (0.02)
LGR 0.608 (0.05) 0.674 (0.05) 0.683 (0.01) 0.741 (0.04)
CART 0.830 (0.19) 0.271 (0.29) 0.553 (0.07) 0.866 (0.10)
XGBoost 0.665 (0.06) 0.650 (0.05) 0.708 (0.02) 0.782 (0.04)

(B) Predicting bleeding in dabigatran 150 mg group

NB 0.661 (0.04) 0.707 (0.04) 0.735 (0.00) 0.785 (0.03)
RF 0.860 (0.05) 0.555 (0.05) 0.747 (0.01) 0.908 (0.03)
LGR 0.640 (0.04) 0.731 (0.04) 0.739 (0.00) 0.770 (0.03)
CART 0.747 (0.15) 0.514 (0.28) 0.636 (0.15) 0.830 (0.09)
XGBoost 0.676 (0.04) 0.724 (0.04) 0.761 (0.02) 0.796 (0.03)

Abbr.: SD—standard deviation.
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Figure 2. ROC curves of the five methods for predicting vascular events and bleeding. (A) Vascular
events in the 110 mg group; (B) Bleeding in the 150 mg group.

The top ten important variables were used as inputs for rebuilding the CART decision-
tree models. Figure 4 shows the performance of the CART model after adjusting for
variables. The reconstructed CART model with 10 important variables generated better
AUC values predicting vascular events (0.624) and bleeding (0.717) than that of the CART
model with all 17 variables. After removing some variables, we obtained a more balanced
performance and better AUC values in the CART models after adjusting for variables
according to our feature selection scheme.
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Figure 3. Average importance values of variables in the RF and XGBoost models based on 10-
fold cross-validation. (A) Variables predicting vascular events in the 110 mg group; (B) Variables
predicting bleeding in the 150 mg group.

Table 3. Top ten important variables for predicting vascular events and bleeding.

Average
Ranking of
Variables

Variable of Prediction
of Vascular Events in
110 mg Group

Average
Importance
(%)

Variable of Prediction
of Bleedings in 150
mg Group

Average
Importance
(%)

1 History of MI 88.2 Age 99.8

2 History of CHF 87.5 Concomitant use of
drug 81.0

3 Kidney function 83.2 Kidney function 51.0

4 Age 80.2 BMI 46.9

5 Concomitant use of
drug 74.8 Smoking 46.9

6 Smoking 68.4 History of DM 40.9

7 BMI 63.0 Ethnic 30.4

8 Body weight 54.9 Previous stroke history 29.4

9 History of DM 49.2 History of CHF 28.4

10 Ethnic 47.4 History of MI 26.2
Abbr.: CHF—congestive heart failure, MI—myocardial infarction, BMI—body mass index, DM—diabetes mellitus.
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(A) CART predicting vascular events in the 110 mg group; (B) CART predicting bleeding in the
150 mg group.

Interpreting the CART-generated rules in the 110 mg group, patients with a combi-
nation of a history of congestive heart failure (CHF), MI, diabetes mellitus (DM), kidney
function abnormality, ethnicity, body mass index (BMI), and age feature had a tendency
towards vascular events (Figure 5). Patients with a combination of the concomitant use of
drugs, kidney function abnormality, smoking habit, history of MI, BMI, and age features
had a high risk of bleeding in the 150 mg group (Figure 6). Details regarding the decision
rules predicting vascular events in the dabigatran 110 mg group and bleeding in the dabi-
gatran 150 mg group are provided in Tables 4 and 5, respectively. The accuracy (ACC)
demonstrated in these tables and figures is defining as below.

Accuracy =
True positive + True negative

True positive + True negative + False positive + False negative
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Figure 6. Decision rules for predicting bleeding in patients taking dabigatran 150 mg twice daily
based on important clinical factors of the best CART model.

Table 4. Summarized decision rules of the combinations of important variables for predicting vascular
events.

Rules No. Combinations of Clinical Factors Stroke
(Yes/No) Accuracy

1 History of MI (No) + Kidney function (≥50) No 93.8%

2 History of MI (No) + Kidney function (<50) +
History of CHF (No) No 89.8%

3 History of MI (No) + Kidney function (<50) +
History of CHF (Yes) + History of DM (No) No 87%

4
History of MI (No) + Kidney function (<50) +
History of CHF (Yes) + History of DM (Yes) +
BMI (≥18.5)

No 79.5%

5
History of MI (No) + Kidney function (<50) +
History of CHF (Yes) + History of DM (Yes) +
BMI (<18.5)

Yes 100%

6 History of MI (Yes) + History of CHF (No) No 88.5%

7 History of MI (Yes) + History of CHF (Yes) +
Kidney function (≥50) + BMI (≥18.5) No 83.6%

8 History of MI (Yes) + History of CHF (Yes) +
Kidney function (≥50) + BMI (<18.5) Yes 100%

9 History of MI (Yes) + History of CHF (Yes) +
Kidney function (<50) + Ethnicity (European) No 74.4%

10
History of MI (Yes) + History of CHF (Yes) +
Kidney function (<50) + Ethnicity
(Arab/others) + Age (≥65)

No 66.7%

11
History of MI (Yes) + History of CHF (Yes) +
Kidney function (<50) + Ethnicity
(Arab/others) + Age (<65)

Yes 100%
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Table 5. Summarized decision rules of combinations of important variables for predicting bleeding.

Rules No. Combinations of Clinical Factors Bleeding
(Yes/No) Accuracy

1 Concomitant use of drugs (No) + Kidney
function (≥30) + Smoking (Never) No 98.1%

2
Concomitant use of drugs (No) + Kidney
function (≥30) + Smoking (Current or former)
+ BMI (≥18.5)

No 95.6%

3
Concomitant use of drugs (No) + Kidney
function (≥30) + Smoking (Current or former)
+ BMI (<18.5) + Age (<75)

No 100%

4
Concomitant use of drugs (No) + Kidney
function (≥30) + Smoking (Current or former)
+ BMI (<18.5) + Age (≥75)

Yes 66.7%

5 Concomitant use of drugs (No) + Kidney
function (<30) + Smoking (Never) No 100%

6
Concomitant use of drugs (No) + Kidney
function (<30) + Smoking (Current or former)
+ BMI (18.5–29.9)

No 75%

7
Concomitant use of drugs (No) + Kidney
function (<30) + Smoking (Current or former)
+ BMI (≥30)

Yes 100%

8
Concomitant use of drugs (No) + Kidney
function (<30) + Smoking (Current or former)
+ BMI (<18.5)

Yes 100%

9 Concomitant use of drugs (Yes) + Age (<65) No 96.6%

10 Concomitant use of drugs (Yes) + Age (65–74)
+ Kidney function (≥30) No 93%

11 Concomitant use of drugs (Yes) + Age (65–74)
+ Kidney function (<30) + History of MI (No) No 100%

12 Concomitant use of drugs (Yes) + Age (65–74)
+ Kidney function (<30) + History of MI (Yes) Yes 100%

13 Concomitant use of drugs (Yes) + Age (≥75) +
History of MI (No) + BMI (≥18.5) No 86.1%

14
Concomitant use of drugs (Yes) + Age (≥75) +
History of MI (No) + BMI (<18.5) + Smoking
(Never)

No 72.7%

15
Concomitant use of drugs (Yes) + Age (≥75) +
History of MI (No) + BMI (<18.5) + Smoking
(Current or former)

Yes 100%

16 Concomitant use of drugs (Yes) + Age (≥75) +
History of MI (Yes) No 80.1%

4. Discussion

To the best of our knowledge, our study is the first to apply an ML-based decision-tree
model to NVAF patients taking dabigatran. Clinicians need to determine the balance point
between preventing vascular events and avoiding bleeding. Although NOACs possess
prior safety than warfarin, approximately 9–39% of patients had off-label low-dose NOACs
in real-world research for concern about risk of bleeding or other side effects [27,47,48].
Many studies have identified risk factors and evaluation systems according to the LGR
results [1,2]. An integrated ML scheme helped to identify important risk factors for vascular
events and bleeding by analyzing the RE-LY trial data [25]. This kind ML scheme had more
promising performance when we targeted vascular events in the dabigatran 110 mg group
and bleeding in the dabigatran 150 mg group. RF and XGBoost were the best ML models
in our analysis (Table 3).

Among ML techniques, decision tree models are more able to demonstrate clear rules.
Like in most clinical settings, this method recursively partitions the data into subsets based
on the values of the input features. The final work generates a tree-like model that can be
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used to make predictions by traversing the tree from the root to a leaf node, and the decision
rules are the conditions at each node that determine which branch to follow. This allows
the establishment of personalized suggestions and protocols to achieve precision medicine.
CART is a popular tool for creating tree-shaped medical rules with realistic visualization
and interpretability. It is a classifier and decision tree algorithm, but it showed inferior
prediction performance in the second step of our study. We improved its AUC value
by selecting fewer important variables with our integrated ML feature selecting scheme.
Thus, we obtained explainable tree rules with acceptable predictive values. Figure 5 shows
the decision rules for predicting vascular events, with five layers of nodes and 11 leaves.
Figure 6 shows the decision rules for predicting bleeding, and it had five layers of nodes
and 16 leaves. According to these suggestive medical rules based on important variables,
clinicians may have a more detailed view and assistance in making decisions.

In the tree-shaped rule, the most important variables may be used to classify patients
into high-risk and low-risk groups. We may notice that it is challenging to predict patients
who may be free from vascular events in the next year when taking dabigatran 110 mg.
Most rules indicating freedom from events demonstrated accuracy of 60–90%. However, we
may surmise that 110 mg dabigatran was a relatively acceptable dose in patients without a
history of MI, CHF, and kidney function abnormality. The risk of stroke and vascular events
in patients with NVAF is determined by coexisting systemic diseases and age. The annual
stroke risk was approximately 2–3% in low-risk patients based on the CHA2DS2-VASc
score. In many national cohort studies, most clinicians prescribed off-label reduced doses
of NOACs in consideration of age, body weight, kidney function abnormality, and medical
history. Our research offers another viewpoint that may help in the prescription of reduced-
dose NOACs to patients with a low risk of vascular events. However, more critically, the
decision tree demonstrated that patients with certain variables had an extremely high risk
of vascular events while taking 110 mg dabigatran twice daily.

MI and CHF are important comorbidities and risk factors in NVAF patients, which
greatly influence stroke and vascular death. This might be the result of different vas-
cular risk factors, such as hypertension, DM, smoking, and dyslipidemia. In our tree
model, NVAF patients with a history of MI and CHF had a higher risk of vascular events
when taking dabigatran 110 mg twice daily. Furthermore, they had a greater risk of
vascular events when they had low BMI < 18.5 kg/m2 or kidney function abnormality
(EGRF < 50 mL/min/1.73 m2). For those without a history of MI, a combination of CHF,
history of DM, and kidney function abnormality was associated with a high risk of vascular
events when on dabigatran 110 mg, especially in underweight persons (BMI < 18.5 kg/m2).
Thus, applying intensive medical control and a standard dose of dabigatran 150 mg, if
tolerable, is a more reasonable choice for clinicians.

When we consider safety with dabigatran 150 mg, Figure 6 shows the rules related
to the high risk of bleeding. The concomitant use of certain drugs and older age (age
≥75 years) were the top factors that increased the risk of bleeding, especially when pa-
tients were underweight and smoker. For patients aged 65–74 years, dabigatran 150 mg
might be risky if there is the concomitant use of certain drugs and kidney function abnor-
mality (EGRF < 30 mL/min/1.73 m2). The combination of kidney function abnormality
(EGRF < 30 mL/min/1.73 m2) and smoking habits also increased bleeding risk, regard-
less of BMI. Otherwise, the rule also indicated that elderly patients (age ≥75 years) with
smoking habits and underweight stature tended to bleed when taking 150 mg dabigatran.
Adjusting the dose of dabigatran may be considered in these patients.

The primary prevention of stroke in NVAF patients has been a prevalent issue in
recent years due to the progression of NOACs. Intensive risk-factor control and the early
application of anticoagulants in patients prone to vascular events are emphasized. This
study provides an integrated multi-step ML scheme to assist in selecting the appropriate
dose of dabigatran. In general, it is crucial to first determine if the patients have a history
of MI, CHF, or kidney function abnormality with regard to the risk of vascular events,
and if there is the contaminant use of drugs, kidney function abnormality, older age, and
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smoking habit with regard to the risk of bleeding. To confirm the most appropriate dose of
dabigatran for the patient, clinicians may check the detailed classification information in
our tree model.

Our model might be extended to more medical issues with its good prediction ability
and convenience. However, dose adjustments and patient selection guidelines may take
time before confirmation according to cohort studies and expert opinion. Our integrated
ML scheme with adequate detailed data should provide clinicians with personalized
decision support and recommendations. Moreover, ML techniques have the advantage
of remodeling and may improve their prediction efficacy with new dataset. In this way,
experts may reinspect and utilize our model to construct medical guidelines.

5. Limitation

There are some limitations to this study. First, our study was a post-hoc analysis of
the RE-LY trial and excluded patients with recent ischemic stroke, and the participants’
CHA2DS2-VASc scores were 2.1 ± 1.1, which might be different from the real-world situa-
tion. Our results might be inappropriate for patients in the acute stage of stroke or other
extremely high-risk conditions. Second, we conducted a subgroup analysis to evaluate
bleeding and vascular event risk. This procedure decreased the dataset size, and we did not
perform CV to confirm the influence of different choices. However, the prediction perfor-
mance value remained consistent in the two subgroups, and we performed 10-fold nested
CV to enhance stability and avoid overfitting. The application of anticoagulant agents in
NVAF patients with risk of vascular events and the choice of NOACs as first-line drugs
have been the consensus management modality. We only focused on the dose selection
for dabigatran but did not compare the doses with warfarin. However, the limited dataset
and lack of external validation with real-world information restrict the consistency of our
decision tree rules. Further remodeling our model with broad information is indicated
before the utilization.

6. Conclusions

This study used an integrated ML-based decision tree scheme to predict vascular
events and bleeding when NVAF patients took different doses of dabigatran. According to
the integrated ML feature-selection tool, we utilized the performance of the CART method,
which should provide clinicians with detailed and interpretable information. Our tree-
shaped rules should demonstrate the interaction between factors and the most risk-prone
combinations of variables. Appropriate dose selection of NOACs for balancing benefits
and side effects is an art in medicine. Our results may help clinicians achieve the optimal
treatment for NVAF with different characteristics.
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