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Abstract: Understanding the synergistic effect between topography and vegetation in the under-
ground coal mine is of great significance for the ecological restoration and sustainable development
of mining areas. This paper took advantage of unmanned aerial vehicle (UAV) remote sensing to
obtain high-precision topographic factors (i.e., digital elevation model (DEM), slope, and aspect) in
the Shangwan Coal Mine. Then, a normalized difference vegetation index (NDVI) was calculated
utilizing Landsat images from 2017 to 2021, and the NDVI with the same spatial resolution as the
slope and aspect was acquired by down-sampling. Finally, the synergistic effect of topography and
vegetation in the underground mining area was revealed by dividing the topography obtained using
high-precision data into 21 types. The results show that: (1) the vegetation cover was dominated
by “slightly low-VC”, “medium-VC”, and “slightly high-VC” in the study area, and there was a
positive correlation between the slope and NDVI when the slope was more than 5◦. (2) When the
slope was slight, the aspect had less influence on the vegetation growth. When the slope was larger,
the influence of the aspect increased in the study area. (3) “Rapidly steep–semi-sunny slope” was
the most suitable combination for the vegetation growth in the study area. This paper revealed the
relationship between the topography and vegetation. In addition, it provided a scientific and effective
foundation for decision-making of ecological restoration in the underground coal mine.

Keywords: UAV remote sensing; underground coal mine; slope; aspect; normalized difference
vegetation index

1. Introduction

Underground mining is a downward mining process utilizing a system of wellbore and
underground laneways [1]. Compared with the direct destruction of land and vegetation
by surface mining, underground mining has less damage to the surface vegetation [2].
However, this mining way easily leads to surface subsidence and deformation and to
changes in the surface slope and aspect, which indirectly impact the vegetation growth on
mining areas [3]. Slope and aspect are typical topographic factors [4]. Changes in slope
cause fluctuations in soil water holding capacity, resulting in an impact on water availability
for vegetation growth processes. The aspect affects the light availability for vegetation
growth by changing the light intensity [5,6]. Therefore, slope and aspect are the key factors
affecting the environment of the vegetation growth [7]. Exploring the relationship between
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the topography and vegetation can provide guidance for the decision-making of vegetation
restoration in an underground coal mine.

Vegetation is the most important for ecological restoration in mining areas. The
spectral reflection curve of vegetation has strong absorption characteristics in the red
band and high reflection characteristics in the near-infrared band, resulting in a large
difference between the reflection in the red band and near-infrared band. Therefore,
scholars have proposed various vegetation indices, such as the ratio vegetation index
(RVI) [8], normalized difference vegetation index (NDVI) [9], enhanced vegetation index
(EVI) [10], etc. The existing research usually calculated one or several vegetation indices,
and then mathematical statistical methods were used to conduct an analysis of vegetation
change or relationship between vegetation and other factors from a temporal and spatial
perspective. For example, Bao et al. used the NDVI, EVI, soil-adjusted vegetation index
(SAVI), and transformed soil-adjusted vegetation index (TSAVI) to monitor the restoration
of vegetation in mining areas. These works provided insight into vegetation on monitoring
the restoration effect [11,12]. Furthermore, Ma et al. and Yang et al. analyzed the variation
trend of interannual vegetation cover in a mining area from the perspective of time [13,14].
The spatial pattern change of vegetation cover in a mining area was analyzed from the
perspective of space by Mi et al. and Dlamini et al. [15,16]. In these publications, selecting
the NDVI as the vegetation indicator is the most common in mining areas [17–19].

The existing literature demonstrated that temporal and spatial variation of the NDVI
is very sensitive to elevation and slope [20]. On natural sites, different topographic factors
have different impacts on the NDVI [21]. For example, Zhu et al. discovered that the NDVI
was shown to be proportional to slope in the Qinling Mountains, and the aspect had no
significant impact on the NDVI [22]. Mokarram et al. found that there were positive and
significant correlations between the NDVI and landform in the southwest of Fars province,
Iran [23]. Furthermore, in the existing literature, the topographic factors (i.e., slope and
aspect) were mainly obtained by a digital elevation model (DEM) [24]. There are two main
approaches to obtain DEMs: (1) The DEM is built through field investigation [25]. First,
data collection and contour line drawing are carried out, and then the contour line is used
for data interpolation to generate the regular grid, to represent ground elevation. (2) The
DEM is directly downloaded from the Geospatial Data Cloud (http://www.gscloud.cn,
accessed on 24 December 2022) or other ways [26], which is widely used in existing studies,
and its research scope is large (not limited to a mine). However, the DEM obtained by the
first approach cannot accurately represent the true terrain structure, and this approach has
complex data processing and a cumbersome workload. The data acquired by the second
approach are easily impacted by the climate and environment, leading to many missing
pixels indeterminately [27]. Furthermore, the spatial resolution of the DEM obtained by
the second approach is usually at a low level, typically 30 m, which cannot meet the
requirements of the detailed and small-scale analysis in underground mining areas.

Unmanned aerial vehicle (UAV) remote sensing has been becoming an effective mod-
ern monitoring tool equipped with monitoring devices, with a large photographic range
and more accurate captured data [28,29]. Therefore, UAV remote sensing is characterized
by high operational efficiency, low maintenance costs, high accuracy, and simple operation.
UAVs can perform high-speed photography of the surface affected by underground mining,
so that surficial high-precision topographic data can be obtained [30]. It provides a technical
and equipment guarantee for exploring the relationship between topographic factors and
vegetation on underground mining areas.

In this paper, high-precision DEM data were obtained by the UAV, and the precious
slope and aspect of the study area were calculated by the DEM. It has been verified that
the DEM data generated by the UAV were consistent with the actual elevation, and it
was able to accurately reflect the actual terrain. The synergistic effect of topography and
vegetation at the small-scale mining area was explored based on high-precision data, taking
the Shangwan Coal Mine as an example. The high-precision data obtained by UAV support
the discovery of the synergistic effect in small-scale mining areas. The fine-scale analysis in

http://www.gscloud.cn
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this study can clarify the indirect impact of surface subsidence and deformation caused
by mining on vegetation. Furthermore, this study can provide scientific guidance for the
optimization of ecological restoration measures (especially vegetation restoration measures)
according to various terrains in the underground mines.

2. Study Area and Datasets
2.1. Study Area

The Shangwan Coal Mine is located in Ordos City, Inner Mongolia, China. The mine
started to produce coal in 2000, and now it covers an area of 64.21 km2. The mine is
rich in mineral resources, with geological reserves of 1.23 billion tons and recoverable
reserves of 0.83 billion tons. The overall topography in this region is high in the northwest
and low in the southeast, with an altitude between 1070 m and 1556 m. The mine is
situated in the transitional location of the Mu Us Desert, and it belongs to the semi-arid
continental climate in the middle temperate zone. The precipitation is mainly concentrated
from July to August, and the annual precipitation is around 400 mm [31]. According
to the meteorological station near the mining area, the accumulated precipitation from
June to September was 222.72 mm, 322.61 mm, 424.96 mm, 332.98 mm, and 198.35 mm,
respectively, in 2017–2020. The vegetation is dominated by perennial grasses and shrubs,
including sparse grass, Hippophae rhamnoides L., Ulmus pumila L., Thymus mongolicus Ronn,
etc. The mine belongs to the dry denudation zone, and it is mostly aeolian soils. Since 2017,
ecological restoration projects (e.g., reconstruction of recreational park and greening of
dumping sites) have been carried out on the flat land of the mining area. However, the slope
of the mining area is mainly natural vegetation without artificial intervention. The study
area consists of four surveying areas in the Shangwan Coal Mine, as shown in Figure 1.
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Figure 1. Location of the study area.

2.2. Datasets

The UAV images and the Landsat remotely sensed images were utilized in this study.
The study area was divided into four surveying areas for efficiently taking photos by UAV.
The UAV images were collected from 16 May 2021 to 17 May 2021, including orthophotos
and oblique images of the four surveying areas, and they were mosaicked and formed
a whole UAV image of the study area. The UAV used for aerial photography was the
Phantom 4 Pro from SZ DJI Technology Co., Ltd., which has the flight altitude of 100 m and
the spatial resolution of 3.45 cm. The field photo, the orthophotos, and the oblique images
of the study area are shown in Figure 2. The remotely sensed images include the surface
reflectance (SR) dataset of Landsat 8 Operational Land Imager (OLI) in 2017–2021 with a
spatial resolution of 30 m.
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(d,e) oblique images.

3. Methods
3.1. Calculation of NDVI

The NDVI of the study area was calculated online using the Landsat images from
2017 to 2021 on the Google Earth Engine (GEE) [32,33]. The images from June 1 to Septem-
ber 30 in each year were selected to avoid the vegetation change caused by the season
difference when the vegetation grows vigorously. The data processing was required for
the calculation of the NDVI, including image filtering, cloud removing, and clipping, etc.
The “filterDate” method was selected to filter images, and the “CFMask” algorithm was
selected for cloud removing, which can be found in the GEE. All images involved in the
same year were used to calculate the NDVI, and then the NDVI results of the year were
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obtained by taking the maximum NDVI at each pixel. The calculation of the NDVI is shown
in Equation (1).

NDVI =
NIR − R
NIR + R

(1)

where NIR is the surface reflectance in the near-infrared band and R is the surface reflectance
in the red band. The NDVI of the study area was divided into five grades to represent
the different vegetation cover [13,34]: −1.0 ≤ NDVI < 0.35 (low-VC), 0.35 ≤ NDVI < 0.48
(slightly low-VC), 0.48 ≤ NDVI < 0.62 (medium-VC), 0.62 ≤ NDVI < 0.75 (slightly high-VC),
0.75 ≤ NDVI < 1.0 (high-VC).

3.2. Calculation of Slope and Aspect

The DEM of the study area needed to be generated utilizing UAV images before
extracting the slope and aspect [35]. The DEM achieved the digitization of the topography
surface utilizing a limited set of 3D spatial coordinates, including three vector factors, X, Y,
and Z. X and Y represent the horizontal geographic location of the pixel, and Z represents
the elevation of the pixel at the geographic location of (X, Y) [36]. The DEM is to describe
the spatial distribution of topography in a particular area, and the topographic factors
(i.e., slope, aspect, and slope change rate, etc.) can be extracted from the DEM [37]. The
main steps for generating the DEM in this study were as follows: (1) aligning photos, (2)
creating a dense point cloud, (3) building grids, (4) constructing textures, and (5) generating
DEMs and exporting them. The DEMs of the four surveying areas were acquired and
mosaicked to a whole DEM of the study area.

In this paper, the real-time kinematic (RTK) was used to measure the actual evaluation
value in the study area for verifying the accuracy of the generated DEMs [38]. The actual
value was obtained, and then the generated DEM was fitted with the actual DEM, as
shown in Figure 3 (take the surveying area 2 as an example). The goodness-of-fit was
0.99 (R2 = 0.99), and the root mean square error (RMSE) was only 0.0171. The data indicated
that the deviation between the generated DEM by UAV images and the actual DEM was
extremely small. In other words, the generated DEM by UAV had high accuracy and could
be used to calculate and analyze the slope and aspect. It also could accurately identify the
characteristics of the topography [39].

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 5 of 24 
 

 

difference when the vegetation grows vigorously. The data processing was required for 

the calculation of the NDVI, including image filtering, cloud removing, and clipping, etc. 

The “filterDate” method was selected to filter images, and the “CFMask” algorithm was 

selected for cloud removing, which can be found in the GEE. All images involved in the 

same year were used to calculate the NDVI, and then the NDVI results of the year were 

obtained by taking the maximum NDVI at each pixel. The calculation of the NDVI is 

shown in Equation (1). 

NDVI
NIR R

NIR R

−
=

+
 (1) 

where NIR is the surface reflectance in the near-infrared band and R is the surface reflec-

tance in the red band. The NDVI of the study area was divided into five grades to repre-

sent the different vegetation cover [13,34]: −1.0 ≤ NDVI < 0.35 (low-VC), 0.35 ≤ NDVI < 0.48 

(slightly low-VC), 0.48 ≤ NDVI < 0.62 (medium-VC), 0.62 ≤ NDVI < 0.75 (slightly high-VC), 

0.75 ≤ NDVI < 1.0 (high-VC). 

3.2. Calculation of Slope and Aspect 

The DEM of the study area needed to be generated utilizing UAV images before ex-

tracting the slope and aspect [35]. The DEM achieved the digitization of the topography 

surface utilizing a limited set of 3D spatial coordinates, including three vector factors, X, 

Y, and Z. X and Y represent the horizontal geographic location of the pixel, and Z repre-

sents the elevation of the pixel at the geographic location of (X, Y) [36]. The DEM is to 

describe the spatial distribution of topography in a particular area, and the topographic 

factors (i.e., slope, aspect, and slope change rate, etc.) can be extracted from the DEM [37]. 

The main steps for generating the DEM in this study were as follows: (1) aligning photos, 

(2) creating a dense point cloud, (3) building grids, (4) constructing textures, and (5) gen-

erating DEMs and exporting them. The DEMs of the four surveying areas were acquired 

and mosaicked to a whole DEM of the study area. 

In this paper, the real-time kinematic (RTK) was used to measure the actual evalua-

tion value in the study area for verifying the accuracy of the generated DEMs [38]. The 

actual value was obtained, and then the generated DEM was fitted with the actual DEM, 

as shown in Figure 3 (take the surveying area 2 as an example). The goodness-of-fit was 

0.99 (R2 = 0.99), and the root mean square error (RMSE) was only 0.0171. The data indi-

cated that the deviation between the generated DEM by UAV images and the actual DEM 

was extremely small. In other words, the generated DEM by UAV had high accuracy and 

could be used to calculate and analyze the slope and aspect. It also could accurately iden-

tify the characteristics of the topography [39]. 

 

Figure 3. The fitting results of the generated DEM and the actual DEM. Figure 3. The fitting results of the generated DEM and the actual DEM.

Slope and aspect are typical topographic factors. Hence, this study selected the two
factors to investigate the relationship between topography and vegetation. The slope was
calculated using the following Equation (2).

α = arctan
(

h
l

)
(2)
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where the slope (α) is expressed in degrees, and its value is from 0◦ to 90◦. The h represents
the vertical height of the slope, and l represents the horizontal distance of the slope. Accord-
ing to the rules of the International Geographical Union Commission on Geomorphological
Surveys and Geomorphological Mapping, the slope was divided into six grades [40]: 0–5◦

(ground), 5–15◦ (gentle slope), 15–35◦ (incline slope), 35–55◦ (slanted slope), 55–70◦ (steep
slope), and 70–89.9◦ (rapidly steep slope).

The range of the aspect was from 0◦ to 359.9◦, where 0◦, 90◦, 180◦, and 270◦ represent
the north, the east, the south, and the west direction, respectively. In addition, the input
pixels with zero slope were assigned a −1 aspect, which was labeled “Flat”, and the “Flat”
was contained in the “ground” (i.e., slope: 0–5◦). The study area lies in the northern
hemisphere, and the direct sunlight is from south. Therefore, the south, southeast, and
southwest slopes receive the most solar radiation energy. To sum up, the aspect was divided
into four grades [41]: 60–120◦ (semi-sunny slope), 120–240◦ (sunny slope), 240–330◦ (semi-
shady slope), and 330–60◦ (shady slope) (Figure 4).
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In the study area, 0–5◦ was classified as the “ground”, and the vegetation changes
on the “ground” were analyzed separately. According to the five kinds of slopes (except
for the “ground”) and four kinds of aspects, the topography of the study area was di-
vided into 20 combinations, which were “gentle–shady slope”, “gentle–semi-sunny slope”,
“gentle–sunny slope”, “gentle–semi-shady slope”, “incline–shady slope”, “incline–semi-
sunny slope”, “incline–sunny slope”, “incline–semi-shady slope”, “slanted–shady slope”,
“slanted–semi-sunny slope”, “slanted–sunny slope”, “slanted–semi-shady slope”, “steep–
shady slope”, “steep–semi-sunny slope”, “steep–sunny slope”, “steep–semi-shady slope”,
“rapidly steep–shady slope”, “rapidly steep–semi-sunny slope”, “rapidly steep–sunny
slope”, and “rapidly steep–semi-shady slope”, respectively. Therefore, a total of 21 cases
(20 combinations + “ground”) were investigated in this paper.

In addition, there was a discrepancy between the spatial resolution of UAV images
and the NDVI. Hence, this paper adopted a down-sampling method for harmonizing them:
first, the UAV image of the study area was composed of four surveying area images. The
four UAV images were resampled to a spatial resolution of 30 m, respectively, and then they
were mosaicked into a complete UAV image of the study area. The UAV image and Landsat
images in the study area were cropped with the same boundary, and each pixel of the UAV
images would correspond to a pixel of the NDVI. Second, the values of the green band and
NDVI were counted at the pixel scale, and the relationship between the value of the green
band and NDVI was established (Equation (3)). As a result, the correlation coefficient ρ was
obtained. Third, each pixel of the green band on the original UAV images was multiplied
by ρ. Finally, the NDVI at a high spatial resolution (i.e., same as UAV images) in the study
area was generated.
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NDVI = ρ · pixelgreen (3)

where NDVI is the NDVI of the pixel, and pixelgreen is the value of the green band of UAV
image with 30 m resolution. The ρ is the correlation coefficient of the value and the NDVI.

4. Results
4.1. Map of the Vegetation and the Topographic Factors
4.1.1. Spatio-Temporal Distribution of NDVI

The results of the NDVI are shown in Figure 5. The statistics of the NDVI in each
year are shown in Figure 6. According to the visual effect of Figures 5 and 6, the minimum
value of the annual NDVI appeared in 2021, which was 0.25. The maximum value was 0.85,
which occurred in 2020 and 2018, respectively. The descending order of the average NDVI
from 2017 to 2021 was: 2020 (0.61) > 2018 (0.58) > 2019 (0.55) > 2017 (0.51) > 2021 (0.45).
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The grades of the NDVI in the study area are shown in Figure 7. The area proportion
of each NDVI grade was counted in each year, as shown in Figure 8. According to the above
results, the proportion of “medium-VC” was the largest in 2017–2020, reaching 41.99%,
59.64%, 53.03%, and 44.84%, respectively. However, in 2021, the grade with the largest
proportion was “slightly low-VC”, reaching 52.38%, while the proportion of “medium-VC”
was only 18.65%. The total proportion of “slightly high-VC” and “high-VC” was more
than 10% in 2017–2020, while the total proportion of them was less than 10% in 2021,
which was 7.26%.
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Overall, the vegetation of the study area has been improving from 2017 to 2020, and
the vegetation grew best in 2020. However, in 2021, the vegetation appeared to have serious
degradation. The climate change, topographic change, and human activities are the main
driving factors of the spatio-temporal variation of the NDVI [42,43]. According to the
precipitation of the study area between 2017 and 2021, the accumulated precipitation in the
region from June to September between 2017 and 2020 was relatively high. However, the
precipitation in 2021 was the lowest, which was only 198.35 mm. Therefore, it is plausible
that the serious vegetation degradation in the study area in 2021 was not only related to the
intensity of mining activities, but also likely to be strongly related to local climate change.

4.1.2. Map of the Topographic Factors

The DEM of the study area generated by UAV is shown in Figure 9. The slope
calculated by the generated DEM is shown in Figure 10a, and the graded slope is shown in
Figure 10b. The aspect and the grading results are shown in Figure 11.
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The slope of the study area was counted, as shown in Figure 12. The proportions of
pixels for each grade of slope and aspect were counted, as shown in Figure 13.
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The elevation of the study area was between 1206 and 1287 m (Figure 9). The slope in
the study area ranged from 0 to 89.7◦, with a wide fluctuation (Figure 10a). In total, 64% of
the slope was below 25◦, and about 86% of the slope was below 45◦ (Figure 12).

In terms of the proportion of each grade for slope and aspect, the slope of 15–35◦

occupied the largest proportion, and the slope of 70–89◦ was the least, which was only
3.18%. More than 75% of the slopes were between 0 and 35◦. The proportion of “shady
slope” was the highest, which was 30.03% (Figure 13a). In addition, the proportion of
“sunny slope” was very similar to the “shady slope”, which was 29.53%. Comparatively
speaking, the “semi-sunny slope” and “semi-shady slope” were relatively less, accounting
for about 20%, respectively (Figure 13b).

Although there were almost vertical slopes in the study area, they were very rare, and
most slopes were relatively gentle.

Figure 14 shows the 20 types of combinations between the slope and aspect. Figure 15
shows the area statistics of the different combinations. The area of the combinations with
“gentle slope”, “incline slope”, and “slanted slope” was generally large (Figure 15). For ex-
ample, the area of “gentle–shady slope”, “incline–shady slope”, and “incline–sunny slope”
was significantly larger than the other combinations, which were 84,498 m2, 81,259 m2,
and 82,417 m2, respectively. However, the area of the combination with “steep slope” and
“rapidly steep slope” was very small, among which the area of the “rapidly steep–sunny
slope” was the smallest, only 4893 m2.
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4.2. Influence of Slope on Vegetation

The proportion of different vegetation cover grades on different slopes in 2017–2021 is
shown in Figure 16. The total proportion of “slightly low-VC”, “medium-VC”, and “slightly
high-VC” in each slope reached 90% in 2017. With the increase in slope, the proportion of
“slightly low-VC” showed a decreasing trend. On the contrary, the proportion of “medium-
VC” and “slightly high-VC” showed an increasing trend. In 2018, all slopes were dominated
by “medium-VC” and “slightly high-VC”, and the sum of them accounted for about 80%
in each slope. With the increase in slope, the proportion of “low-VC” and “slightly low-
VC” changed slightly. The proportion of “medium-VC” showed a decreasing trend, and
the proportion of “slightly high-VC” and “high-VC” showed an increasing trend. The
main grades were “slightly low-VC”, “medium-VC”, and “slightly high-VC” in 2019, and
the sum of the proportion was about 90%. By 2020, the “gentle slope”, “incline slope”,
and “steep slope” were dominated by “slightly low-VC”, “medium-VC”, and “slightly
high-VC”. The “steep slope” and “rapidly steep slope” were dominated by “medium-VC”,
“slightly high-VC”, and “high-VC”. The proportions of “slightly low-VC” were the largest
in 2021 in each slope, which were 51.2%, 52.7%, 50.3%, 47.2%, and 45.2%, respectively.
With the increase in slope, the proportion of “low-VC” and “slightly low-VC” showed a
decreasing trend. The proportion of “medium-VC”, “slightly high-VC”, and “high-VC”
showed an increasing trend.
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Overall, the NDVI of each slope grade in the study area was dominated by “slightly
low-VC”, “medium-VC”, and “slightly high-VC” in the past five years. With the increasing
of slope, the proportion of “slightly low-VC” showed a decreasing trend. However, the
proportion of “slightly high-VC” showed an increasing trend.

The average NDVI of different slopes was counted, as shown in Figure 17. In the study
area, the slope was positively correlated with the NDVI overall as the slope was more than
5◦. The higher the slope, the larger the NDVI. The NDVI change was found to be positively
affected by human activities, and sometimes human activities had a negative impact on
the change of the NDVI [20,22,44]. In this study area, there were fewer human activities
(i.e., surface plant, transportation channel, etc.) on steep slopes than those on relatively
gentle slopes under the same climatic conditions. Therefore, the NDVI grew better on the
steeper slopes.
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4.3. Influence of Aspect on Vegetation

The proportions of different vegetation cover grades on different aspects in 2017–2021
are shown in Figure 18. In 2017, “slightly low-VC” and “medium-VC” were dominant
vegetation cover grades in each aspect, and the sum of the proportion for the two grades
exceeded 80% in each aspect. The curves of “slightly low-VC” and “medium-VC” fluctuated
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slightly, but the curves of “low-VC”, “slightly high-VC”, and “high-VC” were basically
stable in each aspect. All the aspects were dominated by “medium-VC” in 2018 and
2019, with a proportion of about 60% and 50%, respectively. By 2020, the NDVI grades of
different aspects were mainly “medium-VC” and “slightly high-VC”, and the sum of the
proportion was 80%. However, the main NDVI grade of different aspects was “slightly
low-VC” in 2021, which accounted for about 50%. In this year, the proportion of “high-VC”
was almost 0.
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In general, the grades of different aspects in the study area were mainly “medium-VC”
in 2017–2020, and “slightly low-VC” in 2021. Furthermore, “sunny slope” or “semi-sunny
slope” had a higher NDVI ratio. It may be because the “sunny slope” and “semi-sunny
slope” received more sunshine than the “shady slope” and “semi-shady slope”, and the
vegetation obtained a more favorable growing environment. Therefore, the vegetation
grew more luxuriantly.

4.4. The NDVI Cover under 21 Types of Combinations
4.4.1. Vegetation Cover on “Ground”

In this paper, 0–5◦ was divided into the “ground”. Due to the low slope, the aspect
factor was not considered and in the combinations of “ground”, different aspects were not
involved. Therefore, the vegetation on the “ground” was analyzed separately.

Figure 19 shows the proportion of different vegetation cover grades on the “ground”
from 2017 to 2021. The vegetation cover grade on the “ground” from 2017 to 2020 was
mainly “medium-VC”. Especially in 2018 and 2019, the “medium-VC” was up to more than
60%. In addition, the area of “low-VC” in these two years was almost 0 on the “ground”.
By 2021, the study area was dominated by “low-VC” on the “ground”. The total proportion
of “low-VC” and “slightly low-VC” reached 80%. The NDVI on the “ground” was the most
between 0.48 and 0.62, and the vegetation growth was normal.
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4.4.2. Vegetation Cover under 20 Combinations

For the average NDVI of the gentle slope, different aspects from 2017 to 2021 were
calculated and counted, as shown in Figure 20a. In general, the changing trend of the
average NDVI was not obvious. The NDVI exhibited higher values on the “semi-sunny
slope” and the “sunny slope”.

For the average NDVI of the incline slope, different aspects from 2017 to 2021 are
shown in Figure 20b. The NDVI generally showed a steady increasing trend in each year.
The NDVI was better on the “semi-sunny slope”, where the NDVI in 2017–2020 was 0.51,
0.58, 0.55, 0.61, and 0.44, respectively.

Figure 20c shows the average NDVI of the slanted slope with different aspects from
2017 to 2021. All five curves showed a fluctuating decreasing trend, but the “sunny slope”
had a better NDVI at the same time.

Figure 20d shows the NDVI of a steep slope with different aspects from 2017 to 2021.
The curves in the figure show an obvious decreasing trend. The maximum NDVI appeared
in the “shady slope”, and it was followed by the “semi-sunny slope”.

The average NDVI of the rapidly steep slope with different aspects from 2017 to 2021
is shown in Figure 20e. It visually reflects that the maximum NDVI occurred on the “semi-
sunny slope”, where the NDVI in 2017–2020 was 0.61, 0.63, 0.63, 0.69, and 0.52, respectively.
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slope—different aspects; (c) slanted slope—different aspects; (d) steep slope—different aspects; (e)
rapidly steep slope—different aspects.

In Figure 20, the vertical fluctuation of each curve in (a), (b), and (c) was smaller
than those in (d) (e). The aspects had less influence on vegetation growth in the study
area when the types were “gentle slope”, “incline slope”, and “slanted slope”. When the
slopes were “steep slope” and “rapidly steep slope”, the aspect had an obvious influence
on vegetation growth.

The NDVI curves were plotted in each year under 20 combinations in the study area
to understand which combination of topographic factors had the best vegetation growth,
as shown in Figure 21. Compared to the overall situation of the five-year curves, the curve
in 2020 was the furthest away from the X-axis, and the curve in 2021 was the closest to the
X-axis. In 2017–2021, the combination of “rapidly steep–semi-sunny slope” had the highest
NDVI in each year, and the order was as follows: 2020 (0.692) > 2018 (0.632) > 2019 (0.630)
> 2017 (0.606) > 2021 (0.517).
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5. Discussion

This paper makes up for some shortcomings in existing publications, and the contri-
butions of this paper are discussed as follows.

(1) Acquisition of high-precision topographic data. The UAV was used to obtain
the high-precision DEM, slope, and aspect of the study area. The accuracy of the DEM
generated by the UAV was verified to be credible, proving that the DEM generated using
the UAV is highly consistent with the actual elevation, and it can be used to conduct
relevant studies.

(2) Mine-scale synergistic effect analysis based on high-precision data. The synergistic
effect between the topographic factors and vegetation index in the underground coal mine
area was explored utilizing high-precision data, which provided a technical support for
more subsequent studies, and a new solution to the current situation that the accuracy of to-
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pographic factors used in existing studies was not usually sufficient to support the research
objectives. Furthermore, it can also provide a decision basis for local restoration projects.

There existed a positive correlation between the slope and NDVI when the slope
was more than 5◦ (Figure 17). The positive correlation is consistent with the study of the
natural mountain area by Zhu et al. However, the NDVI showed a slightly decreasing
trend and then increasing trend with the increase in slope in the study area. Zhu et al.
showed that the NDVI first increased and then slightly decreased along with the slope. It
indicated that the NDVI in this study area was more sensitive at higher slopes, while it was
more sensitive at a gentle slope in the Qinling Mountains. The reason for this difference is
probably related to the subsidence of the underground coal mine and the territory where
the study area is located. Therefore, it is necessary to explore the relationship between
vegetation and topography in the underground mining area, which has an important
referential value for adjusting measures of ecological restoration according to the local
resources and environment in the mining area. In this paper, the regions with low slope had
less vegetation cover, because sandy land was predominated in the low-slope regions by
field investigation. The environment of the soil was not suitable for vegetation growth. In
addition, these regions had intensive human activities, resulting in more negative impacts
on vegetation growth. As a result, it led to the poorer vegetation cover on the gentle slope
of the study area.

The combinations with the “sunny slope” and “semi-sunny slope” had higher veg-
etation cover (Figure 20). The reason is that the “sunny slope” and “semi-sunny slope”
received sufficient sunlight, which created an advantageous environment for the vege-
tation growth. This is consistent with the findings of Zhou et al. who considered that
variation in vegetation cover on different aspects was caused by differences in the distri-
bution of solar radiation, precipitation, and human activities [45]. However, the results of
the above publications were obtained in urban or mountainous areas, not mining areas.
One of the contributions of this paper is to realize and confirm the similar conclusions in
the underground mining area with subsidence. In addition, the combination of “rapidly
steep–semi-sunny slope” had the highest vegetation cover in 2017–2021 (Figure 21). This
is because the “sunny slope” received more direct sunlight than the “semi-sunny slope”,
so that the evaporation of water in soil on the “sunny slope” was greater than that on
the “semi-sunny slope”. Therefore, the “semi-sunny slope” can preferably maintain the
relationship between sunlight and water, and make vegetation grow better.

However, there are still some limitations that need further study. The NDVI was
acquired in GEE from 2017 to 2021, and the photos used to generate the DEM were taken
by UAV from May 16, 2021 to May 17, 2021. This study assumed that the DEM within the
study area was essentially constant in the analysis due to the small scope of the study area
and the fact that the elevation changes were not significant within this five-year period.
Subsequent studies can collect multiple years of high-precision DEM data to match the
NDVI. In addition, the long time series of data was also needed to meet the analytical needs
of the mine with a long mining history.

6. Conclusions

The high-precision DEM with a spatial resolution of 3.45 cm in the study area was
obtained using the UAV images, and the slope and aspect were further calculated by the
DEM. The slope and aspect of the study area were divided into 20 types of combinations.
Subsequently, the calculated NDVI was down-sampled for obtaining data with the same
spatial resolution as the topographic factors. Finally, the relationships between topography
and vegetation were analyzed in the Shangwan Underground Coal Mine. The following
conclusions were acquired.

(1) The “slightly low-VC”, “medium-VC”, and “slightly high-VC” were the main
vegetation cover types in the study area from 2017 to 2021. There was a positive correlation
relationship between the slope and NDVI when the slope was more than 5◦.
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(2) In the case of different slopes, the “sunny slope” and “semi-sunny slope” were
more suitable for vegetation growth. The effect of the aspect on vegetation was smaller at
low slopes and greater at higher slopes.

(3) Among the 20 combinations of the slope and aspect, the “rapidly steep–semi-sunny
slope” was the most favorable for vegetation growth in the study area.

Based on the high-resolution topographic data, this paper discovered the relationship
between topography and the NDVI in the Shangwan Coal Mine and revealed the influence
of slope and aspect on vegetation growth. The conclusions are conducive to optimizing
the selection of vegetation planting modes and improving the ecological environment in
the underground coal mine. In the future, more years of topographic data will be used to
further explore the quantitative relationship between topographic factors and vegetation
index in the underground coal mine.
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