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Analysis of the basic characteristics of biochar and soil 

A biochar/water ratio (1:10, g/mL) was used to extract soil DOM with Milli-Q 

water. pH was measured with a pH electrode. The contents of C and N were determined 

by an elemental analyzer (Vario EL cube elemental analyzer). The specific surface area 

of biochar was determined by the N2-BET method. Morphological analysis of the 

biochars was performed by Scanning Electron Microscopy with a 15 kV beam (Zeiss 

Gemini 300). Prior to the analysis, all biochar samples were sputter-coated with gold in 

a vacuum chamber. After digesting the soil with aqua regia at 95 °C for 2 h, total 

mercury content was measured using the cold vapor atomic fluorescence spectrometry 

(CVAFS, Brooks Rand Model, Brooks Rand Labs, Seattle, WA, USA) [1]. Soil organic 

matter was measured by potassium dichromate oxidation method [2]. Total nitrogen was 

determined by the macro-Kjeldahl method and total phosphorus was determined by 

spectrophotometry according to the procedures described in previous studies [3]. 

Kalium were extracted with 0.1 N ammonium acetate and quantified using a flame 

atomic absorption spectrometer [4]. Particle size distribution was measured by a laser 

particle size analyzer (Mastor2000, Malvern Instruments Ltd., UK) in wet mode. 

Procedures and parameters of PARAFAC analysis 

Fluorescent EEMs were obtained using a fluorescence spectrometer (Hitachi F-



4600 FL; Japan). The fluorescence spectrometer was adjusted to scan at 2400 nm min-

1 for scanning emission (Em) wavelengths from 250 to 600 nm in increments of 2 nm 

and excitation (Ex) wavelengths from 200 to 500 nm in increments of 5 nm. The silt 

widths of both the excitation and emission were set to 5 nm. Prior to PARAFAC analysis, 

the Raman and Rayleigh scattering of EEM spectra was removed, and the fluorescence 

intensity was calibrated to Raman units (R.U.) [5,6]. Excitation wavelengths below 240 

nm were removed due to deterioration of the signal-to-noise ratio. EEMs of soil DOM 

were conducted through PARAFAC analysis, performed in MATLAB R2019a using 

the drEEM Toolbox. 

The concentration scores of PARAFAC components were expressed as the 

maximum fluorescence intensity (Fmax) of each modelled component and the Fmax 

values were reported in Raman units (R.U.) in this study[7,8]. The results of Explained 

Variation, Core consistency, split-half validation, and visual inspection were used to 

determine the appropriate components in the DOM[9]. The three fluorescent 

components were ultimately chosen for this study because it had the second highest 

Core consistency (55.8%), higher Explained variation (99.45%) and lower Sum of 

squared residuals (432.66).  

Procedures of SFS spectroscopy 

Synchronous fluorescence spectra were performed using the same fluorescence 

spectrometer to record excitation wavelengths from 250-550 nm, a scan rate of 240 nm 

min-1 for the spectra. The constant offset was chosen to be 60 nm to provide the highest 

fluorescence intensity, the best resolution and the richest fluorescence signature 

compared to other offset values[10,11]. To obtain information on changes in the 

composition of DOM in soil following biochar application, 2D-COS integrated with 

the synchronous fluorescence spectra was employed by incubation time as the external 

perturbation. The spectra of each sample used for 2D-COS analysis were first 

subtracted from the background signal. The 2D-COS analysis was performed using 2D 

Shige software (Kwansei-Gakuin University, Japan). 2DCOS and hetero-2DCOS maps 

were plotted using Origin 2022 software. 

The amount of using biochar for Hg-contaminated soil remediation 



Based on the soil characteristics of the farmland arable layer, it is assumed that the 

remediated soil depth is 20 cm [12], and the soil density might be 1 g cm-3 [13,14]. The 

biochar is applied at a rate of 5%, i.e., about 5 kg of biochar is required for 100 kg of 

soil. Then the total amount of biochar to remediate 1 hectare of farmland is about 100 

tons (i.e., 100 tons/ha).  

  



Table S1. Basic physical and chemical properties of the study soils 

pH 

Total 

mercury 

(μg kg-1) 

Organic 

matter 

( g kg-1) 

Total 

nitrogen 

( g kg-1) 

Total 

phosphorus 

(g kg-1) 

Kalium 

(g kg-1) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

5.22  234  19.80  1.50  0.48  14.20  48.08 36.65 15.27 

 

Table S2. Basic properties of the biochars. 

Biochar BC300 BC500 BC700 

C (%) 49.43 54.00 54.89 

N (%) 1.56 1.40 0.88 

H (%) 4.406 2.577 1.643 

O (%) 24.179 14.589 12.086 

C: N 31.68 38.57 62.375 

H: C 0.089 0.0477 0.0299 

O: C 0.489 0.270 0.220 

DOC (mg L−1) 95.28 18.48 12.73 

SSA (m2 g−1) 1.97 4.43 22.70 

pH 7.86 10.58 10.63 

 



 

 

Table S4. The results of PARAFAC analyses of the Explained variance and Core 

consistency in soil DOM were listed 

No. of 

components 

Core consistency 

(%) 

Explained 

Variation 

Sum-of-Squares 

Error 

2 79.763 99.277 574.97 

3 55.781 99.45 432.66 

4 3.2618 99.502 386.35 

5 0.6281 99.537 358.75 

 

Table S3. Descriptions and calculations of UV-vis absorption and fluorescence 

spectral parameters. 

Index Calculation Formula parameter Description 

SUVA254 SUVA254 = a254/DOC, 

a254 = 230.3*A254 

SUVA254, a254 and A254 are the 

specific UV absorbance, the 

absorption coefficient and the 

absorbance at 254 nm 

wavelength, respectively; DOC 

is the dissolved organic carbon 

concentration. 

SUVA254 is related with DOM 

aromaticity and humification. 

E2/E3 E2/E3= A254/A365 A254 and A365 are the absorbance 

at 254 and 365 nm wavelength, 

respectively 

The E2/E3 ratio is an optical 

index inversely proportional to 

the molecular size of aquatic 

humic substances. 

Fluorescence 

index (FI) 

FI = f(Ex=370nm, Em=470nm) 

/ f(Ex=370nm, Em=520nm) 

f is the fluorescence intensity at 

a certain wavelength; Ex and 

Em are excitation and emission 

wavelength, respectively. 

Identify autochthonous (i.e., 

microbial/algae) and 

allochthonous (terrestrial) sources 

in corresponding to FI > 1.9 and 

FI < 1.4, respectively. 

Freshness 

index 

(β:α/Frl) 

FrI = f(Ex=310;Em=380)/ 

f(Ex=310;Em=420:435) 

 The freshness index evaluates the 

proportion of newborn DOM 

derived from microorganisms. 

Humification 

index (HIX) 

HIX =  (Ex=254nm, Em=435-

480nm)/ (Ex=254nm, Em=300-

345nm) 

 is the integral of fluorescence 

intensities in particular 

wavelength range. 

Reflect the degree of DOM 

humification and the structural 

complexity. 

Biological 

index (BIX) 

BIX=(Ex=310nm, Em=380nm)/ 

(Ex=310nm, Em=430nm) 

 BIX reflects the fresh 

autochthonous DOM and 

contribution of protein-like 

substances. Higher BIX indicates 

higher biological source and 

autochthonous feature. 



Table S5. Spectral characteristics of the excitation and emission maxima of the three 

components of the EEMs dataset determined by PARAFAC modeling compared to the 

previously determined sources 

Fluorescent 

Component  

Ligand position 

λEx/Em (nm) 

Assignments Reference 

λEx/Em (nm) 

C1 250,310/425 Soil fulvic acid–like, 

microbial-transformed  

Component 

1=<260,320/425[15] 

Component 1 =<250, 

310/414[16] 

Component 1 =<240, 

310/429.5[17] 

Component 3=<240, 

315/425[18] 

C2 267,370/480 Terrestrial humic-like 

substances. Widespread. 

Component 2=<260, 

360/486[16] 

Component 2=<250/410[19] 

Component 2=240,370/480[20] 

Component 1=<250, 

370/475[21] 

Component 1=336/489[22] 

C3 <240,290/375 Protein- and tryptophan-

like,microbial-produced 

Component4=220–285/368[23] 

Component 4=250，290/375[24] 

Component4=285,359/375[25] 

Component4=220–285/368[23] 

Component 5==<250, 

270/370[26] 

 

Table S6. Spearman's correlation coefficient between phytoavailable Hg contents, soil 

properties, and DOM characteristics in control and biochar treated soils. The asterisk 

indicates that the correlation is significant, “*” (p < 0.05), “**” (p < 0.01). 

  P-Hg pH DOC SUVA254 E2/E3 Fl Frl BIX HIX C1% C2% C3% C1 C2 C3 

P-Hg 1.000               

pH -.671** 1.000              

DOC -.725** .571** 1.000             

SUVA254 -.218 .663** .149 1.000            

E2/E3 .370 -.675** -.412 -.814** 1.000           

Fl .392 -.657** -.328 -.597** .562** 1.000          

Frl .529* -.824** -.397 -.462* .427 .768** 1.000         

BIX .391 -.771** -.341 -.439 .475* .744** .947** 1.000        

HIX -.132 .254 -.014 -.164 .226 -.277 -.561* -.540* 1.000       

C1% .227 -.439* -.161 -.735** .662** .295 .131 .117 .517* 1.000      

C2% -.556* .919** .526* .734** -.774** -.723** -.815** -.785** .218 -.553* 1.000     



C3% .589** -.860** -.517* -.397 .441 .696** .932** .886** -.583** .080 -.844** 1.000    

C1 -.489* .701** .217 .720** -.576** -.451* -.439 -.403 .030 -.595** .692** -.508* 1.000   

C2 -.495* .786** .307 .771** -.687** -.609** -.583** -.564** .072 -.668** .833** -.632** .953** 1.000  

C3 -.334 .364 .084 .594** -.462* -.146 -.023 -.009 -.406 -.759** .364 -.047 .832** .756** 1.000 

 

 

Figure S1. Change in pH over time. The dashed line indicates the fit function. Data at 

each site are shown as mean values. CK, Control; 3BC, 300 °C biochar treatment; 5BC, 500 °C 

biochar treatment; 7BC, 700 °C biochar treatment. 

 

 

 

Figure S2. UV-Vis spectral coefficients of DOM in the soil at 5d and 60d for different 

treatment groups. CK, Control; 3BC, 300 °C biochar treatment; 5BC, 500 °C biochar treatment; 

7BC, 700 °C biochar treatment. 
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Figure S3. Relative contribution of the three fluorescent components (Comp1 to 

Comp3) during incubation. The number of replicates was three. CK, Control; 3BC, 300 °C 

biochar treatment; 5BC, 500 °C biochar treatment; 7BC, 700 °C biochar treatment. 

 

Figure S4. Fluorescence indicators of DOM extracted from soil. FI, Fluorescence index; 

Frl, freshness index; BIX, biological index; HIX, Humification index. The number of 

replicates was three. CK, Control; 3BC, 300 °C biochar treatment; 5BC, 500 °C biochar treatment; 

7BC, 700 °C biochar treatment. 
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