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Simple Summary: One of the most recognized phenomena is the cancer tumor which uncontrollably
grows in human cells and spreads over the other parts of the body. It spreads in many forms,
including bone tumors, brain tumors, organ tumors, lung and pancreatic cancer tumors and others.
This led to extensive research studying the cancer tumor model to follow up on the behavior of
various cancer tumors in a body. In this paper, we discuss the impact of using a fuzzy time-fractional
derivative in several cases of fuzzy initial conditions for the fuzzy time-fractional cancer tumor model.
It was noted that there is a substantial need to study the fuzzy fractional cancer tumor model as it
provides a comprehensive understanding of the behavior of the cancer tumor by taking into account
several fuzzy cases in the initial condition of the proposed model.

Abstract: A cancer tumor model is an important tool for studying the behavior of various cancer
tumors. Recently, many fuzzy time-fractional diffusion equations have been employed to describe
cancer tumor models in fuzzy conditions. In this paper, an explicit finite difference method has been
developed and applied to solve a fuzzy time-fractional cancer tumor model. The impact of using
the fuzzy time-fractional derivative has been examined under the double parametric form of fuzzy
numbers rather than using classical time derivatives in fuzzy cancer tumor models. In addition, the
stability of the proposed model has been investigated by applying the Fourier method, where the net
killing rate of the cancer cells is only time-dependent, and the time-fractional derivative is Caputo’s
derivative. Moreover, certain numerical experiments are discussed to examine the feasibility of the
new approach and to check the related aspects. Over and above, certain needs in studying the fuzzy
fractional cancer tumor model are detected to provide a better comprehensive understanding of the
behavior of the tumor by utilizing several fuzzy cases on the initial conditions of the proposed model.

Keywords: cancer tumor models; fuzzy fractional diffusion equation; finite difference scheme;
Caputo formula

1. Introduction

The fractional partial differential equations act as significant tools for modeling many
medical phenomena. One of the realized phenomena is the cancer tumor. A cancer tumor is
a disease in which some of the body’s cells uncontrollably grow and spread over the other
parts of the body. Cancer tumors have many types, including bone tumors, brain tumors,
organ tumors, lung and pancreatic cancer tumors and others. Therefore, deficiencies in our
understanding of cancer tumors have led to extensive research in this field. The problem
has attracted not only biological and medical researchers but also mathematicians as well.
Various approaches have been presented to discuss the growth and treatment responses of
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cancer tumors. Most of these approaches used statistical models such as the expectation-
maximization approach or experimental methods [1–4]. In these studies, tumor decay or
growth is discussed as a function of time. Laajala et al. [2] presented a statistical model to
simulate the growth and treatment responses of tumor cells with time functions. Benzekry
et al. [1] presented a model to discuss cancer cell proliferation based on a one-dimensional
growth equation for different constant rates. The diffusion-based prototype model was
proposed by Burgess et al. [5] to establish the interaction of growth rates and diffusion
coefficients when the spherical cancer tumor has a therapy-dependent killing rate k and
proliferation rate p. This prototype model was assumed in the following equation:

∂u(x, t)
∂t

= D
1
r

∂

∂r

(
r2 ∂u(x, t)

∂r

)
+ p u(x, t)− k u(x, t),

where u(x, t) is the concentration of cancer tumor cells at time t and position r, whereas
the coefficient D represents the diffusivity coefficient. Later, Moyo and Leach [6] examined
the one-dimensional type of this model by using the Lie symmetry method with a variable
killing rate:

∂u(x, t)
∂t

=
∂2u(x, t)

∂x2 − k(x, t)u(x, t),

where the net rate of the removal of the cancer tumor cells is described by K. The major
contribution predicted that the net rate of removing the cancer tumor cells K could be a
function of time and position, not necessarily dependent on constant or time only.

In the last few decades, the interest in fractional differential equations was expanded
and has been applied to explain and develop some models of real-life phenomena which
cannot be adequately explained by classical differential equations. The huge contribution of
the fractional derivative has given a better and more comprehensive description of certain
real-life problems. In the dynamics process of cancer tumors, significant properties take
into consideration the mathematical modeling of the cancer tumor, such as the complex
and irregular shapes and patterns, nonlinear growth dynamics, heterogeneity in cell distri-
bution, proliferation, and self-similarity over different spatial and temporal scales. These
properties can be quantified using fractal dimensions and other fractional derivatives of
the parameters, allowing a better understanding of the tumor growth and progression and
the potential improvement of diagnosis and treatment planning. Some of such problems
were discussed in detail in the recent literature by many researchers [7–10].

The noteworthy application of the fractional derivative related to the cancer tumor
model was given by Iomin (see [11]) on superdiffusion of cancer on a comb structure. This
article shows that tumor growth is compatible with the fractional transport of cells. This
indeed expands the attitude of fractional transport when the practical answer to the inquiry
of how the neoplasm cells appear arbitrarily far from the main (primary) tumor in the case
of the solid tumor. An analytical solution to the proposed model was presented in this
paper. Meanwhile, Iyiola and Zaman [3] proposed a time-fractional cancer tumor model
and discussed the essential requirement for a fractional order derivative as compared to
the integer first-order time derivative. Three distinct cases of the net killing rate have
been discussed. In the first case, the net killing rate is time-dependent only. In the second
case, the net killing rate is the only space dependent. In the third case, the net killing
rate depends on the concentration of the cancer tumor cells. It was also explained that
the time-fractional derivative of order αε [0, 1] would serve as an adequate model for the
first case. However, in the third case, the time-fractional derivative of order αε [1, 2] was
recommended as the more efficient model.

In reality, the real phenomena are usually vague and contain uncertainties in the
values of quantities of the governing model. Such uncertainty is known as stochastic
uncertainty and is found in many fields, including manufacturing, medicine, engineering
and others [12–15]. The fuzziness can arise in the data collection and measurement process.
It can further appear in the process of calculating the boundary and initial conditions.
Crisp quantities in the fractional diffusion equations, which are characterized as uncertain
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and imprecise, can be replaced by fuzzy quantities to reflect uncertainty and imprecision.
This led to a fuzzy fractional diffusion equation. As discussed by many researchers,
the cancer tumor model can be represented by a fractional diffusion equation [16–28].
However, in reality, the crisp quantities of the cancer tumor model are deemed uncertain.
Hence, the fuzzy cancer tumor model is required to handle this problem. Very recently,
Keshavarz et al. [29] discussed a solution to the fuzzy cancer tumor model using a certain
analytical fuzzy transforms approach. The approach involved Caputo Hukuhara’s partial
differentiability. Consequently, the impact of the fuzzy net killing rate of cells in the tumor
was discussed and noted to achieve a better understanding of the model.

As the net killing rate of the cancer cells helps to observe the decay or growth of the
cancer tumor, it would be worthwhile to investigate the model in different fuzzy cases and
different fractional derivatives. This could help researchers to choose a particular treatment
profile and provide a more practical and comprehensive description of the behavior of
the cancer tumor. Therefore, the aim of this paper will conduct a study on solving the
fuzzy time fractional tumor model when the net killing rate of the cancer cells is only
time-dependent. In particular, a numerical explicit finite difference method is developed
to solve the fuzzy time fractional tumor model in the double parametric form of fuzzy
numbers. It also discussed the impact of using the fractional derivative instead of the
integer derivative at different values of fractional order.

2. Time-Fractional Cancer Tumor Models in Fuzzy Environment

This section investigates the general form of the fuzzy time-fractional tumor model
(FTFTM) discussed by fundamental concepts of the fuzzy theory and some related proper-
ties [30–33]. Consider the one-dimensional fuzzy time-fractional tumor model:

∂αũ(x, t, α)

∂αt
=

∂2ũ(x, t)
∂x2 − k̃(x, t) ũ(x, t) , 0 < α ≤ 1, (x, t)ε Ω = [0, L]× [0, T] (1)

with the initial and boundary conditions

ũ(x, 0) = f̃ (x), ũ(0, t) = m̃(0, t), ũ(l, t) = ñ(l, t),

where ũ(x, t, α) is the fuzzy concentration of the cancer tumor cells at time t and a fractional
order α, k̃(x, t) is the fuzzy net killing rate of the cancer cells of crisp variable t and

x, ∂α ũ(x,t,α)
∂αt is the fuzzy time fractional derivative of order α [34], ∂2Ũ(x,t)

∂x2 denotes the
fuzzy partial Hukuhara derivatives with respect to x and ũ(0, x) denotes the fuzzy initial
condition. The boundary conditions in the fuzzy form are ũ(0, t) and ũ(l, 0), which are
equal to the fuzzy convex numbers m̃ and ñ, respectively. In addition, the fuzzy functions
k ~(x, t), f̃ (x) are defined as follows [35]{

ǩ(x, t) = τ̃1 s1(x, t)
f̃ (x) = τ̃2 s2 (x)

, (2)

where s1(x, t) and s2(x) are the crisp functions of the crisp variable x and t, while τ̃1
and τ̃2 represent the fuzzy convex numbers. The FTFTM is defuzzified by using a single
parametric approach of fuzzy numbers. The defuzzification of Equation (1) is given for all
r ∈ [0, 1] as follows [35]:

[ũ(x, t)]r = u(x, t; r), u(x, t; r) (3)[
∂αũ(x, t, α)

∂αt

]
r
=

∂αu(x, t, α; r)
∂αt

,
∂αu(x, t, α; r)

∂αt
(4)

[
∂2ũ(x, t)

∂x2

]
r
=

∂2u(x, t; r)
∂x2 ,

∂2u(x, t; r)
∂x2 (5)

[ k ~(x, t)]r = k _(x, t; r), k ¯(x, t; r) (6)
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[ũ(x, 0)]r = u(x, 0; r), u(x, 0; r) (7)

[ũ(0, t)]r = u(0, t; r), u(0, t; r) (8)

[ũ(l, t)]r = u(l, t; r), u(l, t; r) (9)[
f̃ (x)

]
r
= f (x; r), f (x; r) (10){

[m̃]r = m(t; r), m(t; r)
[ñ]r = n(l; r), n(l; r)

(11)

where {
[ k ~(x, t)]r = [τ(r)1, τ1(r)]s1(x, t)[

f̃1(x)
]

r
= [τ(r)2, τ2(r)]s2(x) (12)

The membership function is defined by using the fuzzy extension principle [35]{
u(x, t; r) = min{ũ(µ̃(r), t))|µ̃(r) ∈ ũ(x, t; r)}
u(x, t; r) = max{ũ(µ̃(r), t)|µ̃(r) ∈ ũ(x, t; r)} (13)

As per the singular parametric form, we may write Equation (1) as follows

[
∂αu(x, t, α; r)

∂αt
,

∂αu(x, t, α; r)
∂αt

]
=

[
∂2u(x, t; r)

∂x2 ,
∂2u(x, t; r)

∂x2

]
−
[

k(x, t; r)u(x, t; r) , k(x, t; r)u(x, t; r)
]
, (14)

Equipped with the fuzzy initial and boundary conditions

[ u(x, 0; r), u(x, 0; r)] =
[

f (x, t; r), f (x, t; r)
]
,

[ u(0, t; r), u(0, t; r)] = [m(0, t; r), m(0, t; r)],

[ u(l, t; r), u(l, t; r)] = [n(l, t; r), n(l, t; r)]

Now, based on the given approach, the double parametric form [36], we rewrite
Equation (14) as follows{

β

(
∂αu(x, t, α; r)

∂αt

)
−
(

∂αu(x, t, α; r)
∂αt

)
+

∂αu(x, t, α; r)
∂αt

}
=

{
β

(
∂2u(x, t; r)

∂x2 − ∂2u(x, t; r)
∂x2

)
+

∂2u(x, t; r)
∂x2

}
−
{

β
(

k(x, t, r)− k(x, t, r)
)
+ k(x, t, r)

}
{ β (u(x, t; r)− u(x, t; r)) + u(x, t; r)},

subject to the fuzzy initial and boundary conditions

{ β (u(x, 0; r)− u(x, 0; r)) + u(x, 0; r)} =
{

β
(

f (x; r)− f (x; r)
)
+ f (x; r)

}
,

{ β (u(0, t; r)− u(0, t; r)) + u(0, t; r)} = { β (m(t; r)−m(t; r)) + m(t; r)},

{ β (u(l, t; r)− u(l, t; r)) + u(l, t; r)} = { β (n(t; r)− n(t; r)) + n(t; r)},

where β ∈ [0, 1]. Now, we write

∂αũ(x, t, β)

∂αt
=

{
β

(
∂αu(x, t, α; r)

∂αt
− ∂αu(x, t, α; r)

∂αt

)
+

∂αu(x, t, α; r)
∂αt

}
,

∂2ũ(x, t, β)

∂x2 =

{
β

(
∂2u(x, t; r)

∂x2 − ∂2u(x, t; r)
∂x2

)
+

∂2u(x, t; r)
∂x2

}
,
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k̃(x, t; r, β) =
{

β
(

k(x, t; r)− k(x, t; r)
)
+ k(x, t; r)

}
,

ũ(x, t; r, β) = { β (u(x, t; r)− u(x, t; r)) + u(x, t; r)},

ũ(x, 0, r, β) = { β (u(x, 0; r)− u(x, 0; r)) + u(x, 0; r)},

ũ(x, 0, r, β) = { β (u(x, 0; r)− u(x, 0; r)) + u(x, 0; r)}, f̃ (x; r, β) =
{

β
(

f (x; r)− f (x; r)
)
+ f (x; r)

}
,

u ~(x, 0, r,β) = { β ( u ¯(x, 0; r)− u _(x, 0; r)) + u _(x, 0; r)}, f ~(x; r,β) = { β ( f ¯(x; r)− f _(x; r)) + f _(x; r)},

ũ(0, t, r, β) = { β (u(0, t; r)− u(0, t; r)) + u(0, t; r)},

m̃(t, r, β) = { β (m(t; r)−m(t; r)) + m(t; r)}

ũ(l, t, r, β) = { β (u(l, t; r)− u(l, t; r)) + u(l, t; r)},

ñ(t, r, β) = { β (n(t; r)− n(t; r)) + n(t; r)}.

Then, substituting the above equations into Equation (14) yields the general form of
the time-fractional cancer tumor model

∂αũ(x, t, α; r, β)

∂αt
=

∂2ũ(x, t; r, β)

∂x2 − k̃(x, t; r, β) ũ(x, t; r, β) , 0 ≤ r ≤ 1, 0 ≤ β ≤ 1,

ũ(x, 0; r, β) = f̃ (x; r, β) , ũ(0, t, β) = m̃ , ũ(l, t, β) = ñ. (15)

To obtain the lower and upper bounds of the solutions, respectively, we assume β = 0
and β = 1 , which may be presented as ũ(x, t; r, 0) = u(x, t; r) and ũ(x, t; r, 1) = u(x, t; r).

3. Explicit Finite Difference Scheme for Solving Fuzzy Cancer Tumor Models

In this section, an explicit finite difference method is implemented in Caputo sense
for time-fractional derivative and central difference approximation at time level n, for
second order space derivative, to solve the fuzzy time-fractional tumor model under the
double parametric form of fuzzy numbers. The time-fractional derivative in Equation (15)
is discretized using the Caputo formula as [37]

∂αũ(x, t, α)

∂αt
=

∆t−α

Γ(2− α)
[un+1

i (x, t; r, β)− un
i (x, t; r, β) +

n

∑
j = 1

bj

(
un+1−j

i (x, t; r, β)− un−j
i (x, t; r, β)

)
] + O(∆t), (16)

where bj = (j + 1)1−α − (j)1−α , j = 1, 2, . . ..
The central difference approximation at time level n is used to discretize the second

partial derivative as follows

∂2ũ(x, t; r, β)

∂x2 =
ũn

i+1(x, t; r, β)− 2ũn
i (x, t; r, β) + ũn

i−1(x, t; r, β)

∆x2 . (17)

We substitute Equations (16) and (17) into Equation (15) to obtain

∆t−α

Γ(2−α)

[
un+1

i (x, t; r, β)− un
i (x, t; r, β) +

n
∑

j = 1
bj

(
un+1−j

i (x, t; r, β)− un−j
i (x, t; r, β)

)]
=

ũn
i+1(x,t;r,β)−2ũn

i (x,t;r,β)+ũn
i−1(x,t;r,β)

∆x2 − k̃(x, t; r, β) ũn
i (x, t; r, β).

(18)

By letting s̃(r, β) = ∆tα Γ(2−α)
∆x2 and r, β ∈ [0, 1], and employing Equation (18), we get
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ũn+1
i (x, t; r, β) = s

[
ũn

i+1(x, t; r, β) + ũn
i−1(x, t; r, β)

]
+ (1− 2s)ũn

i (x, t; r, β)−∆tα Γ(2− α) k̃(x, t; r, β) ũn
i (x, t; r, β)

−
n
∑

j = 1
bj

(
un+1−j

i (x, t; r, β)− un−j
i (x, t; r, β)

)
.

(19)

For each spatial grid point, the equations in (12) are evaluated to yield linear equations.
At the end of each time level, a system of linear equations is established to obtain the values
ũ(x, t, α, β) for the particular time level.

4. Stability Analysis

It is first assumed that the discretization of the initial condition yields the fuzzy error ε̃0
i .

Let ũ0
i = ´̃u0

i − ε̃0
i , ũn

i and ´̃un
i be the fuzzy numerical solutions of the scheme of Equation (19),

with respect to the initial data’s f̃ 0
i and ´̃f 0

i , respectively. Let [ũn
i (x, t; α)]r = β[u(r)− u(r)]+

u(r), where β, r ∈ [0, 1]. Then, the fuzzy error bound is defined as

[ε̃n
i ]r =

[
´̃un
i − ũn

i

]
r

, n = 1, 2, . . . . . . N − 1, i = 1, 2, . . . , M− 1 (20)

Now, based on the approach used in [38], Equation (19) can be rewritten as follows

ũn+1
i = s ũn

i+1 +
(

1− 2s− ∆tα Γ(2− α) k̃(x, t)− b1

)
ũn

i + s ũn
i−1 −

n−1

∑
j = 1

(bj+1 − bj)
(

ũn−j
i

)
+ bnũ0

i . (21)

From Equation (21), we infer ∆tα Γ(2− α) k̃(x, t) = s∆x2 k̃(x, t). Therefore, we rewrite
the fuzzy round-off error for Equation (21) as

ε̃n+1
i = s ε̃n

i+1 +
(

1− 2s− s ∆x2 k̃(x, t)− b1

)
ε̃n

i + sε̃n
i−1 −

n−1

∑
j = 1

(bj+1 − bj)
(

ε̃
n−j
i

)
+ bn ε̃0

i . (22)

Assume ε̃n
0 = ε̃n

X = 0, n = 1, 2, . . . ., N − 1 and ε̃n
i = [ε̃n

1, ε̃n
2, . . . . . . , ε̃n

X−1]. Then,
introduce the fuzzy norm

‖ε̃n‖2 =
√

∑X−1
i = 1 h

∣∣ε̃n
i

∣∣2, (23)

which gives

‖ε̃n‖2
2 =

∞

∑
i = −∞

∣∣∣λ̃n
∣∣∣2 (24)

Hence, ε̃n
i may alternatively be expressed as

ε̃n
i = λ̃n e

√
−θi , where θ̃i = qih (25)

Therefore, by substituting Equation (25) into Equation (22), we derive

λ̃n+1 e
√
−θi = s λ̃n e

√
−θi+1 +

(
1− 2s− s ∆x2 k̃(x, t)− b1

)
λ̃n e

√
−θi

+s λ̃n e
√
−θi−1−

n−1
∑

j = 1
(bj+1 − bj)λ̃

n−j e
√
−θi + bnλ̃0 e

√
−θi .

(26)

Dividing Equation (26) by e
√
−θi reveals

λ̃n+1 =
[(

1− 2s− s ∆x2 k̃(x, t)− b1

)
+ s( e

√
−θi + e−

√
−θi
)
]λ̃n −

n−1

∑
j = 1

(bj+1 − bj)λ̃
n−j + bnλ̃0 , (27)



Int. J. Environ. Res. Public Health 2023, 20, 3766 7 of 13

λ̃n+1 =

[(
1− 2s− s ∆x2 k̃(x, t)− b1

)
+ s
(

2− 4 sin2
(

θ

2

))]
λ̃n −

n−1

∑
j = 1

(bj+1 − bj)λ̃
n−j + bnλ̃0 . (28)

Hence, simplifying Equation (28) yields

λ̃n+1 =

[
1− s ∆x2 k̃(x, t)− b1 − 4s sin2

(
θ

2

))
]λ̃n −

n−1

∑
j = 1

(bj+1 − bj)λ̃
n−j + bnλ̃0 . (29)

Proposition 1. If λ̃n is the fuzzy solution of Equation (21) and s ≤ 1
4

(
1− ∆tα Γ(2− α) k̃(x, t)− b1

)
,

then
∣∣∣λ̃n
∣∣∣ ≤ ∣∣∣λ̃0

∣∣∣.
Proof. For = 0, from Equation (29), we have

λ̃1 =

[
1− s ∆x2 k̃(x, t)− 4s sin2

(
θ

2

)]
λ̃0.

In view of the facts that s ≤ 1
4 and sin2

(
θ
2

)
≥ 0, we have∣∣∣λ̃1

∣∣∣ ≤ ∣∣∣λ̃0
∣∣∣.

This completes the proof of our result. �
In what follows, we may assume that

∣∣∣λ̃m
∣∣∣ ≤ ∣∣∣λ̃0

∣∣∣ , m = 1, 2 , 3 , . . . , n− 1. Therefore,
we state without proof the following lemma.

Lemma 1. The coefficients bj = (j + 1)1−α − (j)1−α , j = 1, 2, . . . satisfy the following
conditions [38]

(1) 0 < bj ≤ 1 , j = 1 , 2 , 3, . . .,
(2) bj > bj+1 j = 1, 2 , 3, . . . ,
(3) ∑n−1

j = 1(bj+1 − bj) = 1− bn .

Consequently, from Lemma 1 and Equation (29), we infer that

∣∣∣λ̃n+1
∣∣∣ ≤ [

1− s ∆x2 k̃(x, t)− b1 − 4p sin2
(

θ

2

))
]
∣∣∣λ̃n
∣∣∣− n−1

∑
j = 1

(bj+1 − bj)
∣∣∣λ̃n−j

∣∣∣+ bn

∣∣∣λ̃0
∣∣∣ ,

∣∣∣λ̃n+1
∣∣∣ ≤ [

1− s ∆x2 k̃(x, t)− b1 − 4s sin2
(

θ

2

))
− (bn − b1) + bn]

∣∣∣λ̃0
∣∣∣ ≤ ∣∣∣λ̃0

∣∣∣.
Theorem 1. The explicit finite difference scheme isstable under the condition

s ≤ 1
4
− s ∆x2 k̃(x, t)

Proof. From the formula given by Proposition 1, it can be established that

‖ε̃n‖2 ≤ ‖ε̃0‖2 , n = 1, 2, . . . ., N − 1 ,

which means that the explicit finite difference scheme is stable under the condition

s ≤ 1
4
− s ∆x2 k̃(x, t). �
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5. Numerical Experiment and Discussion

Consider the fuzzy time-fractional tumor model when the net killing rate of the cancer
cells is only time-dependent [4]

∂αũ(x, t, α)

∂αt
=

∂2ũ(x, t)
∂x2 − t2 ũ(x, t) , 0 < α ≤ 1 (30)

.
Assume the fuzzy initial condition is ũ(x, 0) = ∅̃(r, β) ekx, where

∅̃(r, β) = β [(1− r)− (r− 1)] + (r− 1), r and β ∈ [0, 1].

Then, the exact fuzzy solution of Equation (30) was given in [4] as

ũ(x, t, α) = ∅̃(r, β)

(
ekx + ekxk2 tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)
ekxk4

)
.

Therefore, the absolute error of the solution of Equation (30) can be defined as[
Ẽ
]

r
=
∣∣∣Ũ(t, x; r)− ũ(t, x; r)

∣∣∣.
At ∆x = 0.5 and ∆t = 0.01 = 0.1 , s̃(r, β) = ∆tα Γ(2−α)

∆x2 , we have the following
results.

Table 1, Figures 1–3 shows that the explicit finite difference methods have a good
agreement with the exact solution at x = 4, t = 0.05, α = 0.9 , r, β ∈ [0, 1] and satisfy
the properties of the fuzzy numbers by considering triangular fuzzy number shape. Also,
as we can see in Table 1 and Figure 1, we can be more accurate by decreasing the value
of r. The obtained numerical results are the more precise solution at the points which are
close to the inflection value β = 0.5, where the inflection value is the value that the fuzzy
solutions turn from the lower solutions to the upper solutions.

Table 1. Fuzzy numerical solution of Equation (30), by explicit finite difference scheme at
t = 0.05, x = 4 and α = 0.9 for all r,β ∈ [0, 1].

β r ~
u(4,0.05;r,β)

~
E(4 ,0.05;r,β)Abs Error β r ~

u(4,0.05;r,β)
~
E(4,0.05;r,β)Abs Error

Lower
solution

when
β = 0

0 −0.019456 4.45721× 10−5

β = 0.4

0 −0.003891 8.91442× 10−6

0.2 −0.015565 3.56577× 10−5 0.2 −0.003113 7.13154× 10−6

0.4 −0.011673 2.67433× 10−5 0.4 −0.002335 5.34865× 10−6

0.6 −0.007782 1.78288× 10−5 0.6 −0.001556 3.56577× 10−6

0.8 −0.003891 8.91442× 10−6 0.8 −0.000778 1.78288× 10−6

1 0 0 1 0 0

Upper
solution

when
β = 1

0 0.019456 4.45721× 10−5

β = 0.6

0 0.003891 8.91442× 10−6

0.2 0.015565 3.56577× 10−5 0.2 0.003113 7.13154× 10−6

0.4 0.011673 2.67433× 10−5 0.4 0.002335 5.34865× 10−6

0.6 0.007782 1.78288× 10−5 0.6 0.001556 3.56577× 10−6

0.8 0.003891 8.91442× 10−6 0.8 0.000778 1.78288× 10−6

1 0 0 1 0 0
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Figures 2 and 3 represent the 3D graphics of the numerical explicit finite difference
and the exact solution. They also show that the net killing rate of cancer cells increases
with time. Furthermore, as we can see in Figure 4, the explicit finite difference solution
agrees with the exact solution for different values of α. The comparison of the numerical
and exact solutions when α = 0.5 , 0.7 and 0.9 show that the numerical solution is more
accurate when the value of α tends to 1. Finally, Figure 5 shows that the proposed scheme
is validated at different time and space steps taking into account the stability condition for
the proposed approach, which is discussed in Section 4.
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for all r ∈ [0, 1].

From all of the above, it is clear that using the fuzzy fractional cancer tumor model is
more practical and feasible as compared to the crisp fractional cancer tumor model since it
improves accuracy in predicting the growth and spread of cancer tumors, see [22,39–43].
The approach also handles the uncertainty and ambiguity in the data, such as the uncer-
tainty in the initial condition Equation (30), which is discussed in the presented example,
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and by the ability to capture nonlinear and non-instantaneous behavior of the tumor
growth.

6. Conclusions

In this paper, the impact of using a fuzzy time-fractional derivative instead of the
classical time derivative in the fuzzy cancer tumor model is discussed by taking into account
different values of fractional derivatives under several cases of fuzzy initial conditions
of the fuzzy time-fractional cancer tumor model. An explicit finite difference method is
developed and applied to numerically solve the fuzzy time-fractional cancer tumor model.
As related to the net killing rate, we focus on the case when the net killing rate of the
cancer cells only depends on time. The time-fractional derivative is replaced by employing
Caputo’s definition. The Fourier method was applied to investigate the stability of the
numerical approach. Finally, a numerical example has been presented to examine the
feasibility of the proposed approach and to check certain related aspects. It was found
that there is a substantial need to study the fuzzy fractional cancer tumor model since it
provides a comprehensive understanding of the behavior of the cancer tumor by taking into
account covering several fuzzy cases in the initial condition of the proposed model, which
could help researchers to choose a particular treatment profile. The presented scheme may
be extended to study the connection between the fuzzy fractional cancer model and the
bifurcation analysis of the fractional tumor models. This study will be investigated in detail
at a later stage.
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