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Abstract: An ICU is a critical care unit that provides advanced medical support and continuous
monitoring for patients with severe illnesses or injuries. Predicting the mortality rate of ICU patients
can not only improve patient outcomes, but also optimize resource allocation. Many studies have
attempted to create scoring systems and models that predict the mortality of ICU patients using large
amounts of structured clinical data. However, unstructured clinical data recorded during patient
admission, such as notes made by physicians, is often overlooked. This study used the MIMIC-III
database to predict mortality in ICU patients. In the first part of the study, only eight structured
variables were used, including the six basic vital signs, the GCS, and the patient’s age at admission.
In the second part, unstructured predictor variables were extracted from the initial diagnosis made
by physicians when the patients were admitted to the hospital and analyzed using Latent Dirichlet
Allocation techniques. The structured and unstructured data were combined using machine learning
methods to create a mortality risk prediction model for ICU patients. The results showed that
combining structured and unstructured data improved the accuracy of the prediction of clinical
outcomes in ICU patients over time. The model achieved an AUROC of 0.88, indicating accurate
prediction of patient vital status. Additionally, the model was able to predict patient clinical outcomes
over time, successfully identifying important variables. This study demonstrated that a small number
of easily collectible structured variables, combined with unstructured data and analyzed using LDA
topic modeling, can significantly improve the predictive performance of a mortality risk prediction
model for ICU patients. These results suggest that initial clinical observations and diagnoses of ICU
patients contain valuable information that can aid ICU medical and nursing staff in making important
clinical decisions.

Keywords: structured vs. unstructured data; machine learning; intensive care units; electronic health
records; predictive modeling

1. Introduction

The World Federation of Societies of Intensive and Critical Care Medicine defines an in-
tensive care unit (ICU) as an organized system of care for critically ill patients that provides
intensive and specialized medical and nursing care, enhanced monitoring capabilities, and
multiple physiological organ support modality to sustain life during a period of multiple
organ dysfunction syndrome (MODS) [1]. The hospital has established an intensive care
unit (ICU) for patients with severe or life-threatening conditions. ICU mortality and costs
are the highest of all hospital units [2]. It is difficult for medical and nursing staff to deal
with rapidly changing patient conditions if there is not enough real-time information for
clinicians to make accurate and timely decisions [3]. Different types of judgment errors
can have many negative consequences, and incorrect decisions or delayed diagnosis can
have a significant impact on patient prognosis, medical resource availability, and healthcare
costs [4]. Recently, when the COVID-19 pandemic flooded intensive care units around
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the world, their significance was highlighted. In times such as these, more active research
on how to manage scarce critical care resources is required to provide additional tools to
support medical decision-making and effective clinical practice benchmarks [5]. In the
United States, more than 5 million patients are admitted to the ICU annually, and 40% of
these patients die during their hospital stay, with 22% spending their entire hospital stay
in the ICU [6]. Predicting mortality in ICU patients is one of the most important tasks
in critical care research, not only to aid health professionals in clinical decision-making,
but also as a basis for managing hospital resource utilization. Patients admitted to the
ICU require close and constant monitoring to prevent rapid deterioration of their health.
Intensive monitoring through ICU equipment generates a large number of medical records,
requiring an efficient and accurate data analysis system [7].

The electronic health record (EHR) is a digital version of the paper chart. Numerous
researchers have utilized EHR database data in the past to predict patient mortality, admis-
sion time, disease diagnosis, disease onset, etc., to prevent and intervene in early disease in
patients which is crucial to critical care. As an essential risk assessment tool, the predictive
model has been developed and utilized in numerous healthcare fields. The Sequential Or-
gan Failure Assessment (SOFA), a new Simplified Acute Physiology Score (SAPSII), and the
Multiple Organ Dysfunction Score (MODS) have also been used widely in clinical practice
to predict mortality [8–10]. Predictive models facilitate the early identification of patients
at risk for a disease or event and provide effective intervention measures for those who are
most likely to benefit from the identification of specific risk factors. Much research has been
conducted to determine how data analysis and prediction can assist medical and nursing
staff in the process of diagnosis and treatment to heighten alertness to the progression of
patient condition [11–15]. The results of the statistical data’s predictive power derived from
the basic vital signs and simple demographic data such as age save the most resources and
are the most useful. Vital signs were chosen as features mainly because most vital signs can
be easily measured using non-invasive equipment, and vital signs are the most basic health
indicators that are easily understood by all healthcare professionals [16–19].

Unstructured data comprise 80% of EHR data [20]. It is undeniable that overlooking
the deficiencies of qualitative data in the EHR may not only result in the omission of key
factors caused by the absence of handwritten diagnostic data, but may also result in the
omission of clues in the initial judgement being overlooked or diminished. Although
these variables can be used to partially predict the mortality of ICU patients, quantitative
variables are utilized in the majority of these studies. After all, the existing statistical
predictive modeling is relatively mature with respect to the processing of quantitative data,
whereas distinctive challenges exist in the standardization and utilization of qualitative
data [21–23].

Machine learning is a subfield of artificial intelligence concerned with teaching com-
puters to learn from data and improve with experience. It focuses on the issue of how
to design computer programs that can automatically improve output accuracy based on
experience [24]. There has recently been an increase in the use of machine learning applica-
tions in clinical medicine. These include preclinical data processing, bedside diagnostic
assistance, patient stratification, treatment decision-making, and early warning for primary
and secondary prevention [25]. Machine learning can improve clinical decision-making in
many ways, by providing early warning, facilitating diagnosis, conducting widespread
screening, personalizing treatment, and assessing patient response to treatment. Many
different fields and clinical applications are gradually adopting machine learning from
mature preclinical scenarios [26,27].

The development of machine learning includes text mining, natural language pro-
cessing and Latent Dirichlet Allocation (LDA) which are used to identify and extract
information or relationships from unstructured data and have become popular techniques
for literary analysis [28,29]. LDA is a Bayesian probability generation model in the field
of natural language processing proposed by Blei et al. [30] that has several advantages
for literature analysis. LDA is a powerful tool for processing massive amounts of data
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that can capture text-specific dimensions without relying on assumptions. Furthermore, it
incorporates multiple steps of text analysis, such as data sampling with minimal human
intervention to yield more realistic and objective topic modeling outcomes [31,32].

However, it takes a lot of time and money to process the unstructured data that
make up medical big data. This is particularly so for the digital part, typically a vital
component, presented in the large number of clinical notes made during treatment and
hospital stay. In accordance with the rules of unstructured data processing, numbers are
frequently removed to reduce their utility. By incorporating unstructured data as input, we
are not using raw physiological data, but rather the perception and judgment of medical
and nursing professionals in the form of free text annotations. These allow us to access
higher-level concepts that are not present in the physiological data. The text data format is
relatively consistent, and this allows circumvention of the LDA digital deletion limitation.
This is the most noticeable feature of free text records, which contain information about
patients’ admission to and diagnosis in the ICU. Data about observations and first signs of
condition and diagnoses are added as soon as possible after admission of the patient to the
ICU, with minimal interference from the earlier patient data. Clinicians can also use the
topic obtained as a follow-up reference. Our recent study combined 16 structured variables
and 10 topic modeling semi-structured variables from the Medical Information Mart for
Intensive Care (MIMIC-III) dataset to predict mortality in ICU patients. The results show
that semi-structured data contain useful information that can help clinicians make critical
clinical decisions [33].

In this study, we utilized the MIMIC-III database to develop a model for predicting
mortality in ICU patients. Our approach involved integrating structured data, which are
basic and easily collected from ICU patients, with unstructured data derived from the initial
clinical diagnosis of the patient’s physician at the time of admission. We used the LDA
approach to topic modeling of diagnostic records and applied machine learning techniques
to combine both structured and unstructured data to build a robust mortality risk prediction
model. This model can provide patients, their families, and healthcare professionals with
valuable additional information for making informed medical decisions. Our findings
could have significant implications for improving patient outcomes and advancing critical
care medicine.

2. Materials and Methods
2.1. Proposed Framework

Figure 1 depicts the framework of this study. The structured data collected after
patients were admitted to the ICU was integrated (six vital sign measurements in the first
24 h, the Glasgow Coma Scale (GCS), and patient age) with unstructured data (initial
clinical diagnosis records at ICU admission). The machine learning model was used to
predict mortality of the ICU patient. Finally, five different metrics were used to assess
predictive performance. The period of mortality in ICU patients is defined as follows:
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2.2. Data Collection and Preprocessing

The rapid development of digital health systems has occurred in recent years. How-
ever, concerns surrounding personal privacy and security have made it difficult to integrate
and apply this information to scientific research. To ensure the convenience and complete-
ness of data collection, this study has focused on obtaining complete patient dynamic
information from databases that are easier to obtain than ICU data. The data were obtained
from MIMIC-III clinical database in our research. MIMIC-III uses integrated comprehensive
clinical data from patients admitted to the Beth Israel Deaconess Medical Center in Boston,
Massachusetts [34]. The MIMIC-III database used contained information on 46,520 patients
and 58,976 admission-related data items, including patient vital signs, drugs, laboratory
measurement values, and observation records. There were 38,597 adult patients, 56% of
whom were male, and the median age was 65.8. The median of the length of admission was
6.9 days, the mortality rate during admission was 11.5%, and the median of the length of
stay in the ICU was 2.1 days. Furthermore, the following data were generated per patient
per stay in the intensive care unit: 6643 patient observation records, 83 patient medical
document records, and 559 laboratory test result records. Table 1 shows the database
compilation. The National Institutes of Health (NIH) online course was completed, as well
as an exam for protecting human research participants and the submission of an access
application (Certification Number: 35628530).

Table 1. The summary of MIMIC-III dataset.

Distinct Patients 46,520

Age, years, median [Q1–Q3] 65.8 [52.8–77.8]
Gender, male, percent of unit stays 26,121 (56.15%)

Distinct hospital admissions 58,976
Elective 7706 (13.07%)

Emergency 42,071 (71.34%)
Newborn 7863 (13.33%)

Urgent 1336 (2.27%)
Hospital mortality, percent of unit stays 5854 (9.93%)

Hospital length of stay, median days [Q1–Q3] 10.13 [3.74–11.80]

Distinct ICU stays 61,532
Coronary Care Unit 7726 (12.56%)

Cardiac Surgery Recovery Unit 9312 (15.13%)
Medical Intensive Care Unit 21,088 (34.27%)
Neonatal Intensive Care Unit 8100 (13.16%)
Surgical Intensive Care Unit 8891 (14.45%)

Trauma Surgical Intensive Care Unit 6415 (10.43%)
ICU length of stay, median days [Q1–Q3] 4.92 [1.11–4.48]

To reflect the universality of the analytical results and to ensure that they were compa-
rable with the conclusions of the related literature, this study followed the patient selection
principles of previous related studies and specific diseases in patients were not analyzed;
instead, the data from all patients were used [18,32,35]. First, the inclusion of only the initial
ICU admission and exclusion of all subsequent ICU readmissions ensured that the outcome
was measured the same way for all patients. This highlighted the early predictive ability of
the model and prevented possible information omissions when the dataset was separated
for training and testing (12,456 admissions were deleted). Second, the subjects used in this
study were all adults older than 16 years (7878 admissions were deleted). Lastly, only data
from patients who stayed in the ICU for longer than 24 h were utilized (2138 admissions
were deleted). In the case of patients who stayed in the ICU for at least one day, only data
from their first day were considered. If multiple measurements had been taken on the same
day, an average of the values was taken. In addition, the data preprocessing method of
Guo et al. [36] was used for the processing of missing values in this study. Three-stage
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missing value processing was carried out and patients with more than 30% missing variable
values were excluded (8954 admissions were deleted) and a total of 27,550 participants
were included in this study. Figure 2 depicts the extraction of data in their entirety.
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In this study, information from the MIMIC-III database admission and chart events tables
were used for the variable selection part. In reference to previous related studies [16–18,37],
only six basic vital signs from the patient files were used: Heart Rate, Respiratory Rate,
Systolic Blood Pressure, Diastolic Blood Pressure, Temperature, and Oxygen saturation,
along with Glasgow Coma Scale and the patient’s age at admission as a predictor of
variables in the first part. Topic model variables extracted from unstructured data of the
initial diagnosis made by physicians when the patients were admitted to the hospital, were
among the predictive variables in the second part.

2.3. Baseline Characteristics

Ultimately, the ICU records of 27,550 patients were utilized after the data in the MIMIC-
III database had been preprocessed. Table 2 shows patient demographic information. The
average age of the patients in this study was 64, of which 56% were male, their average
hospital stay was 10.39 days, and their average intensive care unit stay was 4.48 days. In
addition, over 84% of patients were admitted to the hospital for emergency care. Medicare
insurance covered more than 50% of patients. Table 2 also displays the statistical values of
the eight structural variables utilized in the study.
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Table 2. Features involved in the model.

Total Survivors Non-Survivors

General
Number 27,550 (100%) 24,364 (88.44%) 3186 (11.56%)

Gender (male) 15,441 (56.05%) 13,764 (89.14%) 1677 (10.86%)
Length of stay

Hospital (days) [Q1–Q3] 10.39 [4.36–12.42] 10.29 [4.44–12.35] 11.20 [3.88–12.54]
ICU (days) [Q1–Q3] 4.48 [1.55–4.61] 4.18 [1.53–4.33] 6.77 [1.70–6.13]

Admission Type
Elective 3537 (12.84%) 3434 (14.09%) 103 (3.23%)

Emergency 23,283 (84.51%) 20,293 (83.29%) 2990 (93.85%)
Urgent 730 (2.65%) 637 (2.61%) 93 (2.92%)

Insurance
Government 844 (3.06%) 799 (3.28%) 45 (1.41%)

Medicaid 2301 (8.35%) 2078 (8.52%) 223 (7.00%)
Medicare 14,750 (53.54%) 12,618 (51.79%) 2132 (66.92%)
Private 9303 (33.77%) 8570 (35.17%) 733 (23.01%)
Self-Pay 352 (1.28%) 300 (1.23%) 52 (1.63%)

Variable value (First 24 h)
Heart Rate 85.72 ± 15.91 85.11 ± 15.52 90.38 ± 17.93

Respiratory Rate 18.94 ± 4.01 18.70 ± 3.84 20.75 ± 4.76
Diastolic Blood Pressure 60.33 ± 12.21 60.66 ± 12.09 57.79 ± 12.79
Systolic Blood Pressure 118.01 ± 18.60 118.45 ± 18.30 114.63 ± 20.45

Temperature 98.23 ± 2.03 98.28 ± 1.73 97.90 ± 3.54
Oxygen Saturation 97.21 ± 2.11 97.28 ± 1.90 96.68 ± 3.28

Glasgow Coma Scale 12.31 ± 3.21 12.66 ± 2.91 9.64 ± 4.00
Age 64.00 ± 17.71 63.13 ± 17.75 70.66 ± 15.81

Among these were the diagnosis in the initial clinical notes about the patient made by
the physician. As shown in Table 3, the diagnosis field provides the clinician with a written
record of the initial diagnosis on admission. The admitting clinician usually specifies a
diagnosis and does not use system ontology. Diagnoses may be very useful (e.g., congestive
heart failure\biventricular implantable cardioverter defibrillator placement) or extremely
vague (e.g., fever). This text section can provide useful information about the condition of
the patient on admission. The information in the diagnosis field from the Admission Table
was used in this study and a machine learning model was used to investigate the impact of
structured EHR data and unstructured data on ICU patient mortality. Structured EHR data
included variables such as vital signs and lab tests, and clinical note content includes topic
features extracted from clinical notes using the LDA method.

Table 3. Patients’ diagnosis records.

SUBJECT_ID HADM_ID Diagnosis

00412 109897
AORTIC STENOSIS; MITRAL REGURGITATION; CAD\AORTIC VALVE REPLACEMENT;

MITRAL VALVE REPLACEMENT; CORONARY ARTERY BYPASS GRAFT; TRICUSPID VALVE
REPLACEMENT/SDA

00969 137250 BATTERY DEPLETION; HEART FAILURE\IMPLANTABLE CARDIOVERTER DEFIBRILLATOR
EXPLANT; PACEMAKER IMPLANT; DIURISIS POST PROCEDURE/SDA

14229 145873
MARFAN’S SYNDROME\BENTALL PROCEDURE; TOTAL VALVE SPARING ROOT

REPLACEMENT VS; HOMOGRAFT ROOT REPLACEMENT; REPLACEMENT OF ARCH,
PROXIMAL ROOT/SDA

22416 130625
DESCENDING AORTIC ANEURYSM; COARCTATION OF DESCENDING AORTA\ DISTAL
ARCH REPLACEMENT; DESCENDING THORACIC AORTIC REPLACEMENT; AORTA TO

SUBCLAVIAN BYPASS/SDA

23360 104836
POLYCHONDRITIS WITH AIRWAY MANISFESTATION\ STERNATOMY

CARDIOPULMONARY; BYPASS; ANTERIOR TRACHEAL SPLITTING; TY STENT
PLACEMENT; LAPAROTOMY/SDA
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Table 3. Cont.

SUBJECT_ID HADM_ID Diagnosis

28352 154475
PULMONARY VEIN INJURY\THORACOSCOPIC MAZE PROCEDURE LEFT; MINI MAZE;

BILATERAL MINI THORACOTOMY; PULMONARY VEIN ISOLATION; RESECTION OF LEFT
ATRIAL APPENDAGE/SDA

45688 144761
RIGHT VENTRICULAR LEAD MALFUNCTION; INAPPROPRIATE IMPLANTABLE
CARDIOVERTER-DEFIBRILLATOR FRING\RIGHT VENTRICULAR IMPLANTABLE

CARDIOVERTER-DEFIBRILLATOR LEAD EXTRACTION/SDA

51821 182983
MEDIASTINAL ADENOPATHY\FLEXIBLE BRONCHOSCOPY; LINEAR ENDOBRONCHIAL
ULTRASOUND (EBUS); FLUOROSCOPY; TRANSBRONCHIAL BIOPSY; TRANSBRONCHIAL

NEEDLE ASPIRATION; BRONCHIAL ALVEOLAR LAVARGE

92284 193856
AIRWAY OBSTRUCTION\FLEXIBLE BRONCHOSCOPY; RADIAL ENDOBRONCHIAL

ULTRASOUND (EBUS); BRONCHIAL AVEOLAR LAVAGE/ BRUSH; POSSIBLE
TRANSBRONCHIAL BIOPSY (LEFT UPPER LOBE); FLUOROSCOPY

2.4. Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is an unsupervised topic modeling algorithm that
derives topics in a corpus. The model is a standard “bag of words” model, wherein each
text item is viewed as a word frequency vector and the text is viewed as a set made up of
various word groups [30]. Typically, an LDA topic generation model is built in three steps:
First, a topic is extracted from the topic distribution for each text item. Second, a vocabulary
corresponding to the extracted topics is taken from the vocabulary distribution. The steps
are then repeated until every word in the text has been extracted. Because each text item
contains multiple topics, several corresponding key words can be chosen for each topic.
In other words, the same vocabulary can appear across multiple topics. Topic modeling
methods mine significant topics from collected documents using probabilistic procedures
and applications. As a result, by effectively processing a large amount of unstructured
data in the text, the topic modeling method can help identify the latent semantics of
complex articles [38,39]. LDA assumes that each document in the collection is created in
two steps, the first by selecting a distribution of topics for that document, and the second
by assigning a random topic and its corresponding distribution of words to each position
in the document that may contain a word. This is repeated for the entire corpus. As a result,
the main feature of LDA is that all documents share the same topic to varying degrees.
Based on this theory, an LDA model can be applied to a set of documents using the Gibbs
sampling algorithm to infer their underlying topics. The algorithm iterates over all the
words in the document and calculates the most representative words for each topic. Each
word can appear multiple times in the same document and can be repeated in different
documents at the same time. At each iteration, the algorithm can modify the topic that best
represents it, and after using Gibbs sampling with the training set, a model is built that
produces a topic distribution for each document [40].

In a similar context-based textual analysis, probabilistic topic modeling conceptualizes
a document as a collection of words derived from underlying thematic topics that define
a probability distribution of words related to a topic, where the relative importance of
each word in respective topics is defined by the conditional probability P(Wordi |Topic j)
in category probability distribution. Because an article is a weighted mixture of multiple
topics, its conditional probability can be determined, and file content is generated based on
the proportion of words related to each topic. This matrix is decomposed by topic modeling
approaches based on latent topic structures that link latent words to related documents.
A precise solution to this inverted inference is not generally tractable and requires an
iterative optimization solution such as that given by Gibbs sampling. The probabilistic LDA
framework will interpret correlation structures as conditional probabilities P(Wordi |Topic j)

and P
(

Topicj |Document k

)
, which are closely related to other dimensionality reduction

techniques for providing low-rank data approximations. An insight into the underlying
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topic structure allows for a more convenient, efficient, and interpretable approach to
information retrieval, classification, and document data exploration [41].

P(Wordi |Document k) = ∑J
j=1 P

(
Wordi |Topic j

)
× P

(
Topicj |Document k

)
(1)

In the medical field, topic modeling research primarily focuses on the organization of
clinical text, such as in newspapers and scientific literature, as well as clinical discharge
records. However, recent studies have modeled laboratory results, claims data, and clinical
concepts [42,43]. In this study, the aim is to learn the topic structure of clinical data
through algorithms and apply it to clinical decision-making prediction. Unlike a top-down
rule-based approach that isolates preconceived clinical concepts from electronic medical
records, this bottom-up approach recognizes patterns in the data with more consistency.
Additionally, in this paper, reference is made to an algorithm used in a previous study for
the handling of non-quantified data [44,45], where Grid Search is used to confirm the best
LDA model and tests multiple sets of topics. The LDA model was then applied to the ten
topics derived from the results to categorize these key words into different topics. Any
word that appears in a keyword set is related to the topic. Furthermore, certain words
are more likely to appear under each topic, and there is a probability that each word will
appear under respective topics. Figure 3 and Table 4 show the ten topics and keywords
chosen for topic modeling in this study.
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Table 4. Topics and keywords for dataset.

Variable Topic Keywords

TOPIC1
Coronary Artery

Disease
coronari, arteri, diseas, graft, bypass, sda, syndrom, effus, cath, avr, acut, etoh, pericardi,

cerebr, pleural, cholang, mvr, leav, vascular, angioplasty.

TOPIC2
Aortic Valve
Replacement

aortic, sda, valv, replac, stenosi, mitral, cancer, subarachnoid, hemorrhag, esophag, procedur,
ascend, regurgit, aorta, maze, airway, redo, bental, repair, invas, obstruct

TOPIC3 Heart Failure failur, heart, congest, acut, infarct, myocardi, renal, cath, liver, pancreat, elev, cardiac, dehydr,
rule, cholecyst, hyperkalemia, leukemia, lacer, hyperglycemia, block, chronic, implant

TOPIC4 Pneumonia pneumonia, telemetri, fractur, stroke, ischem, atrial, attack, transient, angina, dyspnea, fibril,
hip, unstabl, cath, chronic, segment, diseas, pulm, obst, ablat, cardiomyopathi, pelvic, septal
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Table 4. Cont.

Variable Topic Keywords

TOPIC5 SDA sda, right, aneurysm, leav, accid, motor, vehicl, short, breath, tachycardia, cellul, ventricular,
abdomin, lung, injuri, hepat, bilater, metastat, perfor, colon, spinal

TOPIC6 Chest Pain pain, chest, hemorrhag, intracrani, fever, abdomin, hypotens, fall, cath, telemetri, dissect,
insuffici, stroke, cardiac, femur, strike, epidur, neck, pedestrian, skull, cervic

TOPIC7 Bleed Mass bleed, upper, lower, mass, pulmonari, obstruct, bowel, head, brain, weak, emboli,
bradycardia, hypertens, stemi, small, edema, hemoptysi, cirrhosi, vomit

TOPIC8 Sepsis sepsi, infect, asthma, exacerb, copd, sda, urinari, tract, tumor, brain, catheter, overdos, leav,
anemia, pyelonephr, syncop, bscess, foot, ulcer, disord

TOPIC9
Subdural

Hematoma
hematoma, subdur, respiratori, diabet, seizur, ketoacidosi, trauma, failur, blunt, sda,

withdraw, distress, hyponatremia, wind, hernia, remot

TOPIC10
Altered Mental

Status
status, mental, alter, arrest, cardiac, carotid, hypoxia, chang, leg, angiogram, stenosi,
transplant, kidney, chf, accid, extrem, cerebrovascular, fib, stent, thrombosi, ischemia

2.5. Machine Learning

In this study, the organized dataset was divided into two parts with 80% of the data
being used for training the model and the remaining 20% for testing. Eight commonly used
machine learning algorithms were used to establish the ICU mortality prediction model:
Adaptive Boosting (AdaBoost), Bagging, Gradient Boosting, Light Gradient Boosting
Machine (LightGBM), Logistic Regression, Multilayer Perceptron (MLP), Support Vector
Classification (SVC), eXtreme Gradient Boosting (XGBoost). All data mining tasks of this
research were conducted using the Python programming language. Table 5 shows the
8 machine learning models with their specific parameters’ settings. The following sections
provide detailed descriptions of the various machine learning classification algorithms.

Table 5. Machine learning models with their specific parameters’ settings.

Model Parameters

AdaBoost base_estimator = DecistionTreeClassifer, random_state = 1, n_estimators = 50, learning_rate = 1.0, algorithm =
‘SAMME.R’

Bagging base_estimator = None, n_estimators = 500, max_samples = 100, bootstrap = True, bootstrap_features = False,
oob_score = False, warm_start = False, n_jobs = 1, random_state = None, verbose = 0

Gradient Boosting n_estimators = 100, learning_rate = 1.0, max_depth = 1, random_state=0

LightGBM
boosting_type = ‘gbdt’, num_leaves = 31, max_depth = −1, learning_rate = 0.1, n_estimators = 100,

subsample_for_bin = 200,000, min_child_samples = 20, subsample = 1.0, subsample_freq = 0, colsample_bytree =
1.0, reg_alpha = 0.0, reg_lambda = 0.0 n_jobs = −1, importance_type = ‘split’,

Logistic Regression solver = ‘sag’, penalty = ’l2′, max_iter = ’max_iter’

MLP solver = ‘adam’, alpha = 1e-5, hidden_layer_sizes = (13,13,13), max_iter = 1000

SVC C = 1.0, kernel = ‘rbf’, degree = 3, gamma = ‘auto’, coef0 = 0.0, shrinking = True, probability = False, tol = 0.001,
cache_size = 200, class_weight = None, verbose = False, max_iter = −1

XGBoost

n_estimators = 100, booster = ’gbtree’, eta = 0.3, min_child_weight = 1, max_depth = 3, gamma = 0,
max_delta_step = 0, su-

bsample = 1, colsample_bytree = 1, colsample_byleve = 1, lambda = 1, learning_rate = 0.1, n_jobs = 1, base_score =
0.5, max_delta_step = 0, min_child_weight = 1

• AdaBoost is an adaptive method in the sense that incorrect samples from the previous
classifier are used to train the next classifier. The AdaBoost method is sensitive to noise
and abnormal data. It trains a basic classifier and gives misclassified samples more
weight. It is then applied to the next process. This iterative process is repeated until
a stopping condition is reached or the error rate is low enough [46,47]. The Python
sklearn library was used to implement AdaBoost. Our hyperparameters specified a
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maximum number of iterations of 50, while others trained the model using the sklearn
preset values.

• The Bootstrap Aggregating algorithm, also known as the Bagging algorithm, is an
ensemble learning algorithm in the field of machine learning, which was first proposed
by Leo Breiman in 1994. The Bagging algorithm can be combined with other classifica-
tion and regression algorithms to improve accuracy and stability while reducing result
variance to avoid overfitting. Bagging is an ensemble method that combines multiple
predictors. It helps to prevent model overfitting to data and reduces variance. It has
been used in many microarray studies [48,49]. The Python sklearn library was also
used to implement bagging. A combined classifier made up of 500 DecisionTreeClassi-
fiers was used. Each classifier has a maximum sampling subset of 100; the self-service
sampling method was used for each sampling. Other hyperparameters used sklearn
preset values to carry out training.

• Gradient Boosting is an ensemble learning algorithm that can be used to improve
the accuracy of various classification prediction models. It trains a model with poor
prediction accuracy using the negative gradient information of the model loss function
and then combines the trained results with the existing model in a cumulative form [50].
The scikit-learn library was also used in this study to achieve gradient boosting; the
maximum number of iterations was set to 100; and other hyperparameters were
trained using preset scikit-learn library values.

• The Light Gradient Boosting Machine (LightGBM) is an ensemble method that com-
bines the predictions of multiple decision trees to produce a well-generalized final
prediction. LightGBM divides continuous eigenvalues into K intervals and chooses
dividing points from those intervals. This method significantly accelerates prediction
and reduces memory occupancy without sacrificing prediction accuracy [51]. Light-
GBM is a decision tree learning algorithm with gradient boosting that has been widely
used for feature selection, classification, and regression [52].

• Logistic Regression is a logit model capable of testing statistical interactions and
controlling multivariate confidence. It is most commonly used to investigate the
risk relationship between disease and exposure [53,54]. In this study, the Python
scikit-learn library was used to implement logistic regression, and the hyperparameter
optimization method was the SAG linear convergence algorithm. It is a gradient
descent method used specifically for large sample data.

• Multilayer Perceptron (MLP) is a feed-forward artificial neural network with a fixed
number of computational units or neurons that are fully connected to the next layer [55].
A multilayer perceptron learns and predicts data using the principles of the human
nervous system. MLPs are suitable for classifying and predicting tasks with different
feature set implementations [56]. The neural network used in this study had five
layers: an input layer, three hidden layers, and an output layer. Each hidden layer has
13 neuron nodes, the normalization parameter was set to 1e-5, relu was used as the
activation function, and adam was used for training and weight optimization.

• The Support Vector Classifier (SVC) analyzes linear and nonlinear data for classifica-
tion and regression. SVC aims to recognize categories by the creation of non-linear
decision hyperplanes in a higher feature space [57]. SVC is resistant to data bias and
variance and produces accurate predictions for binary or multiclass classifications.
Additionally, SVC is robust, resists overfitting, and has exceptional generalization
capabilities [58].

• eXtreme Gradient Boosting (XGBoost) is a scalable end-to-end tree boosting system
that is an optimized implementation of the gradient boosting framework. It is remark-
able in that it can handle missing data efficiently, is very flexible, and can build an
assembly of weak prediction models into an accurate one [59]. It generates a series of
decision trees during training, each building on the previous one to reduce the loss
function gradient. Furthermore, a predictive model made up of multiple decision
trees can be obtained. The XGBoost algorithm can deal with missing values by includ-
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ing a default orientation for missing values in each tree node and learning the best
orientation from the data [60].

2.6. The Synthetic Minority Oversampling Technique (SMOTE)

When the class distribution is highly skewed, machine learning problems become
unbalanced. Unbalanced classification problems are prevalent in a variety of application
domains and pose challenges for conventional learning algorithms [61]. In general, an
imbalanced dataset can negatively affect the results of a model. In general, gold-standard
datasets are unbalanced, which reduces model predictive ability [62]. In the evaluation of
model performance, over- and underfitting are the most common issues. When a model
has a high accuracy score during training but a low accuracy one during verification,
overfitting has occurred. The greatest reduction in model overfitting can be achieved
by increasing the size of the training set and decreasing the number of neural network
layers. The failure of a model to classify data or make predictions during the training
phase signifies underfitting [63]. SMOTE is a potent classification imbalance solution
that produces consistent results across domains. The SMOTE algorithm adds synthetic
data to the minority class to create a balanced dataset [61]. Class imbalance refers to the
disparity between the classes of data used to train a predictive model, a prevalent issue
that is not exclusive to medical data. Classification algorithms have a tendency to favor
the majority class when it has significantly fewer observations than the class with negative
outcome. Predictive performance can be improved by the manipulation of data, algorithms,
or both [64]. The methodology involves the under- and oversampling of larger and smaller
samples.

Table 6 displays the descriptive statistics for the data used in this study. The data in
the table indicate a significant imbalance between the ratio of patient survival and mortality.
Because these unbalanced datasets frequently produce inaccurate model prediction [65], the
addition of minority class samples, or the deletion of majority class samples, is frequently
performed to correct this [15]. The Synthetic Minority Oversampling Technique (SMOTE)
randomly generates new minority class samples from the nearest neighbor line connect-
ing the minority class samples and the technique is extensively used to process skewed
data [63,66]. In this study, SMOTE technology was used to increase the sample size for the
side with fewer samples to balance the data [15]. This was necessary because the number
of samples of patients dying in the ICU was much smaller than the number of samples of
patients surviving. In other words, a synthetic minority sampling technique was used to
preprocess extremely unbalanced datasets.

Table 6. Demographic information and SMOTE technique of the selected patient cohort.

3 Days 30 Days 365 Days

Number of patients 27,550 27,550 27,550
Number of survivors 26,640 24,522 24,364

Number of non-survivors 910 3028 3186
Mortality ratio 3.30% 10.99% 11.56%

SMOTE increase 2900% 900% 900%
Number of survivors 26,640 24,522 24,364

Number of non-survivors 26,390 24,224 22,302
Mortality ratio 49.76% 49.69% 47.79%

In this study, a range of SMOTE methods of varying percentages was used to examine
a selection of cases. A fresh training dataset was produced based on the information in
Table 6. Non-survivors’ samples were increased by a factor of eight or nine using the
SMOTE technology on a dataset of patients who died within 30 days of admission, from
3028 patients to 24,224 patients. This increased the proportion of the minority group in the
baseline dataset from 10.99% to 49.69%.
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2.7. Performance Evaluation

To make a thorough comparison of the impact of the integration of structured and
unstructured data on the prediction of mortality in ICU patients, in this study, five different
metrics were chosen as evaluation tools for modeling. These included AUROC, Precision,
Recall, F1-Score, and Accuracy. Appendix A shows the confusion matrix.

3. Results
3.1. Prediction of Mortality in ICU

The k-fold cross-validation method was used to assess the performance of the model
after training. The dataset was initially divided into k sections, with each section containing
instances of equal size. The final measure of performance was the average of all test
results across all components. This method has the benefit of training and validating
all instances of the entire dataset, resulting in more accurate predictions with less bias.
However, it is computationally costly, and validation is time-consuming. The model
was constructed using 10-fold cross-validation, which has been utilized in a number of
healthcare and medical studies [67,68]. In this study, the patient’s mortality was predicted
at 3 days, 30 days, and 365 days after admission based on data collected within 24 h of
admission. AUROC, which compares the true-positive rate to the false-positive rate, is the
most prevalent metric used to evaluate the performance of diagnostic tools. Table 7 lists
the eight distinct machine learning methods employed in this study, as well as AUROC
for the ICU mortality prediction task across three all time periods. Our AUROC findings
revealed that the mortality rate in 3 days can exceed 80%, and in 30 days and 365 days can
exceed 75%. The results indicated that the best AUROC is 88.20% in our research, and that
could accurately predict patient death within 3 days at 24 h after admission. Compared
with using structured quantitative data alone, adding unstructured data makes the model
increase by 2–5% on average in AUROC, which is a great improvement in the prediction of
mortality of patients in intensive care units. Figure 4 shows that ICU data can be used to
predict 3-day mortality with better precision. This clearly shows that the model developed
in this study can predict the vital status of patients with great precision. Gradient Boosting,
as indicated by the data in the chart, is the best model for predicting ICU patient mortality
across all time periods.

Table 7. AUROC of different classifiers.

3 Days 30 Days 365 Days

Structured Data

AdaBoost 0.8530 ± 0.0041 0.7514 ± 0.0095 0.7478 ± 0.0058
Bagging 0.8568 ± 0.0073 0.7627 ± 0.0054 0.7526 ± 0.0049

Gradient Boosting 0.8598 ± 0.0082 0.7634 ± 0.0126 0.7588 ± 0.0053
LightGBM 0.8159 ± 0.0149 0.7594 ± 0.0062 0.7523 ± 0.0035

Logistic Regression 0.8110 ± 0.0221 0.7396 ± 0.0076 0.7353 ± 0.0063
MLP 0.8494 ± 0.0163 0.7571 ± 0.0097 0.7493 ± 0.0060
SVC 0.8097 ± 0.0040 0.7487 ± 0.0103 0.7443 ± 0.0056

XGBoost 0.7070 ± 0.0115 0.7215 ± 0.0070 0.7201 ± 0.0041

Structured Data
+

Unstructured Data

AdaBoost 0.8686 ± 0.0076 0.7531 ± 0.0066 0.7629 ± 0.0114
Bagging 0.8713 ± 0.0059 0.7644 ± 0.0098 0.7725 ± 0.0048

Gradient Boosting 0.8820 ± 0.0119 0.7815 ± 0.0073 0.7754 ± 0.0091
LightGBM 0.8361 ± 0.0143 0.7780 ± 0.0118 0.7705 ± 0.0036

Logistic Regression 0.8298 ± 0.0109 0.7618 ± 0.0102 0.7502 ± 0.0051
MLP 0.8679 ± 0.0168 0.7693 ± 0.0112 0.7540 ± 0.0042
SVC 0.8142 ± 0.0082 0.7518 ± 0.0110 0.7512 ± 0.0040

XGBoost 0.7655 ± 0.0174 0.7379 ± 0.0067 0.7345 ± 0.0044

For a comprehensive understanding of the impact of unstructured data on the predic-
tion of mortality in ICU patients, the prediction results of models using only structured
data within 24 h of ICU patient admission were compared with those using both structured
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and unstructured data. As illustrated in Figure 4, the pertinent prediction results are sorted.
Within 24 h of ICU patient admission, the ROC of model prediction results using both
structured and unstructured data is greater than that predicted using only structured data
across all time periods. Table 7 also demonstrates that Gradient Boosting has a higher
AUROC than other machine learning algorithms, regardless of ICU patient mortality across
all time periods. Moreover, the prediction accuracy of the model made using both struc-
tured and unstructured data, within 24 h of patient admission to the ICU, is generally
higher than that of the model using structured data alone. Indeed, basic observations and
judgments of the patient at the time are of reference value and will significantly influence
the accuracy of constructed model predictions. Overall, this indicates that a model con-
structed using both structured and unstructured data from ICU patients after admission can
predict early patient death after admission with considerable accuracy. By incorporating
unstructured data as input, it is possible to gain access to higher-level concepts not present
in physiological data.
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We summarize the use of four different metrics (Precision, Recall, F1-Score, and
Accuracy) for a more complete picture of the differences in prediction accuracy of models
constructed using different machine learning methods in Appendix B, which also show an
evaluation of the structured ICU patient basic vital signs within 24 h of admission. These
basic observations and judgement depend on whether or not the model was made using
unstructured data about patient condition collected at time of admission to the ICU to
predict time of patient death. According to the data in the table, the results obtained by
using both structured and unstructured data of ICU patients after admission (and the eight
different machine learning methods) are slightly better at predicting ICU patient mortality
than those using structured data alone under different evaluation metrics. Furthermore,
XGBoost has the highest prediction accuracy (97.23%) of the algorithms used, followed by
LightGBM (95.61%), and Bagging has the highest prediction recall (95.13%)

3.2. Feature Importance

The most promising features are typically chosen, and the unimportant ones are usu-
ally eliminated using feature selection methods. The feature importance score reflects the
information gained by each feature during construction of the decision tree [69]. An advan-
tage of using Gradient Boosting is that, once the prediction model has been constructed, the
variable importance can be obtained with relative ease by sorting the calculated variable
importance scores. The feature importance framework ranks input variables according to
their contribution to the predictive model and gives insight into which features are crucial
for the task [70]. The more a variable is utilized in the decision tree, the more important
it will become. In this study, the importance of each feature is determined by applying a
feature importance scoring method to a model trained with gradient boosting. In addition,
a percentage rating is provided for how frequently each feature is used to determine the
output label. Relevant research notes [71,72] provide additional information on how the
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Gradient Boosting method determines the significance of input variables. The variance
importance within 24 h of ICU patient admission is outlined in Table 8.

Table 8. The important variables by using Gradient Boosting.

Dataset Variable Importance 3 Days 30 Days 365 Days

Structured Data

1 X7 X7 X7
2 X8 X8 X8
3 X1 X1 X1
4 X4 X4 X4
5 X3 X5 X5

Structured Data
+

Unstructured Data

1 TOPIC6 X7 X7
2 X7 TOPIC1 TOPIC1
3 TOPIC1 TOPIC6 TOPIC6
4 TOPIC7 X8 X8
5 TOPIC8 TOPIC10 TOPIC8

According to Table 8, the Glasgow Coma Scale (X7), Age (X8), and Heart Rate (X1)
are relatively important variables for prediction of ICU patient mortality using structural
data from ICU patients recorded within 24 h of admission. The addition of initial clinical
diagnosis records (unstructured data) produced variable results about the feature signifi-
cance of patient mortality prediction. In addition to the Glasgow Coma Scale (X7), chest
pain (TOPIC6) and coronary artery disease (TOPIC1) were also relatively significant. In
the model constructed using data from ICU patients within 24 h of admission, bleed mass
(TOPIC7) was a relatively important variable for 3-day mortality, altered mental status
(TOPIC10) for 30-day mortality, and sepsis (TOPIC 8) for 365-day mortality. Important
variables to consider are the Glasgow Coma Scale (X7), chest pain (TOPIC6), and coronary
artery disease (TOPIC1), regardless of the mortality prediction for different ICU patient
time periods.

4. Discussion
4.1. Principal Findings

Previous studies have focused on building predictive models using quantitative vari-
ables from EHR databases to predict mortality, length of stay, and disease diagnosis in ICU
patients. However, such studies have largely ignored the potential value of qualitative
data due to challenges in standardization and utilization. By overlooking unstructured
data in EHR, clinicians may miss critical information and clues provided by the physician’s
initial observations. To fully utilize unstructured data, this study employs NLP techniques,
specifically the LDA model, to analyze clinical notes. Our study integrates structured
data, such as basic vital signs, with unstructured data, derived from physicians’ initial
clinical diagnoses at the time of ICU admission, to predict patient mortality. Additionally,
our model successfully identifies significant variables for predicting clinical outcomes
during different ICU periods. We hope that our analysis results can enhance medical staff’s
understanding of patient conditions, optimize medical resource allocation, and provide
patients, families, and medical staff with more information for informed decision-making.
The main contributions of this study include: (1) investigating the impact of integrating
structured and unstructured clinical records on ICU patient outcomes using a machine
learning model, and (2) predicting patient mortality and risk factors to inform potential
preventive measures in medical practice.

In previous studies, researchers have achieved comparable or even superior accuracy
by employing excessive numbers of features. For instance, Xia et al. [13] used 50 features to
achieve an AUROC of 0.85, and Liu et al. [73] employed 99 features to achieve an AUROC
of 0.78. However, in our study, we achieved an accuracy of 97% and an AUROC of 0.88 for
the mortality model using only six vital signs, the GCS, age, and the initial written clinical
records and diagnosis made on patient admission to the ICU. We utilized eight commonly



Int. J. Environ. Res. Public Health 2023, 20, 4340 15 of 22

used machine learning classification algorithms, each with a known degree of accuracy in
predicting ICU patient mortality. Our AUROC findings revealed that the mortality rate in
3 days can exceed 80%, and in 30 days and 365 days can exceed 75%. Our study found that
Gradient Boosting provided the most accurate prediction model. XGBoost had the highest
prediction accuracy, indicating that our proposed method could predict mortality in ICU
patients very well. Our results also demonstrated that the initial written notes of clinical
observations and diagnoses made at the time of patient admission to the ICU contain a
wealth of useful information that can aid ICU medical and nursing staff in making crucial
clinical decisions. Furthermore, our study only utilized structured and unstructured data of
ICU patients within 24 h of admission; our prediction model was found to be more suitable
for predicting short-term mortality, as it could predict 3-day mortality with more accuracy
than 30-day and 365-day mortality.

Using the LDA method, the analysis of unstructured data recorded by ICU admis-
sion clinicians during initial observation and diagnosis yielded significant results. Other
important variables to consider in addition to the Glasgow Coma Scale (X7) are patient
age at admission (X8), chest pain (TOPIC6) and coronary artery disease (TOPIC1). Overall,
the LDA method can extract significant medical characteristics from patient topics. Fur-
thermore, these medical characteristics can be utilized in a variety of situations to provide
personalized clinical advice to individual patients [35]. In addition, various imputation
techniques were applied to the dataset to determine the optimal solution for the issue
at hand. Because the number of ICU patients who died in this study was significantly
lower than the number of those who survived, the majority-to-minority ratio was 97 to 3
(3-day mortality) and the data demonstrate an extremely high category imbalance. SMOTE
technology was used to increase the sample size of the side with the smaller number of
samples to achieve data parity.

4.2. Limitations

To begin, all the data used in this paper came from a large retrospective clinical
database, and the findings were generalized across groups of patients rather than specific
people. To ensure the thorough collection of relevant data, this study only took into account
complete patient dynamic information from databases where ICU data were easy to obtain.
This study used MIMIC-III data collected at Beth Israel Deaconess Medical Center in
Boston, Massachusetts. Future studies should evaluate data collected from more medical
facilities across a wider geographic area. Because this study was limited to ICU medical
data accumulated by a large medical facility in a big city, the findings cannot be safely
applied to ICU patients in smaller medical facilities. More comprehensive results and
verification could be obtained by comparing these results with those from data obtained
from rural or other general small medical facilities.

Second, the model’s performance may be undermined in other critical care settings
due to a lack of high-quality care notes for a large number of patients. The information
entered by physicians during patient consultations is valuable for disease and treatment
research. Because these notes are highly telegraphic and contain many spelling errors,
inconsistent punctuation, and non-standard word order, the existing natural language
analysis tools struggle to process them [74]. Common spelling errors and other noise in
medical notes can affect interpretation quality, resulting in counterintuitive results, which
is a limitation and challenge for related research [5]. Furthermore, because this study is
retrospective, conclusions about predictive algorithm performance in a hospital setting
cannot be drawn. Future studies could evaluate and analyze these constraints in greater
depth to make this kind of study more objective and thorough.

5. Conclusions

As the COVID-19 pandemic continues to strain ICUs worldwide, the critical impor-
tance of such facilities has become increasingly apparent. Consequently, there is a pressing
need for more active research to manage scarce critical care resources and provide ad-
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ditional tools to support medical decision-making and effective benchmarks for clinical
practice. In this study, not only using structured data from ICU patients’ first 24 h (including
six vital sign measurements, the GCS, and patient age at admission), but also focusing on
unstructured data from initial state observations and diagnoses made upon admission. The
effectiveness of using LDA method and different machine learning technologies in the pre-
diction of ICU patient mortality was discussed. These unstructured data contained a wealth
of information that could effectively assist in later clinical decision making. However, the
model developed in this study primarily focused on predicting ICU patient mortality, and
further investigation is warranted to explore other clinical tasks such as length of stay,
complication, and disease prediction. Moreover, it is evident that physician-produced
clinical care records may capture the concepts required for mortality prediction with greater
pertinence and accuracy than is currently achievable using traditional statistical techniques.
Therefore, it is recommended that four directions be pursued for further research.

First, clinicians should integrate a large amount of information to evaluate and pre-
dict the current and future status of the patient, making the environment of critical care
cognitively more demanding. It is essential to gain a comprehensive understanding of the
specific need for clinical ICU predictive systems, the types and properties of predictions
that are valued by the clinician, and the optimal time scale for such predictions. Despite
the fact that findings show that our proposed method produced good predictive results for
ICU patient mortality, additional research is required to evaluate its benefits on clinical care
and its effectiveness to elucidate the prediction principles.

Second, the data in this study were restricted to patients admitted to the ICU for the
first time and exclude patient readmission records and reports. Reduction in readmissions
has long been identified by the United States government as a priority area for healthcare
policy reform. Hospital readmission has also been promoted as a metric that can aid in the
reduction in healthcare cost. More types of readmission research, such as the predictive per-
formance of readmission models, could be conducted, as well as the impact of patient-level
predictors on readmission, and studies of the relationship between healthcare environment
quality and readmission [75,76]. Because ICU patient readmission frequently results in
excessive use of medical resources and financial risk to medical facilities, analyzing the
morbidity and mortality of readmitted ICU patients will benefit both patients and medical
facilities [77]. Future research could collect data from multiple ICU admissions and make
a comprehensive evaluation of time-series issues and also provide additional levels of
analytical results as a reference for patients, medical and nursing staff, and the families of
the patients.

Third, because the MIMIC-III database contains accumulated medical data from ICU
patients at the medical facilities of a large city, the results of the analysis cannot be safely
applied to ICU patients at smaller medical facilities. If follow-up studies are made using
ICU patient data from rural and other general medical facilities as a comparison, more
comprehensive results and verification would be available. Patient data should be collected
from different medical centers, including outpatient, inpatient, and emergency facilities, as
well as ICUs. This will allow a more comprehensive model to be constructed for evaluation
and expand applicability. In addition, classification and analysis could be conducted on the
basis of various diseases, such as diabetes, and disciplines such as chest medicine.

Finally, unstructured or semi-structured data account for more than 80% of the in-
formation in electronic health records. If qualitative information is ignored, clues and
key factors may be missed if the initial observation-based judgments of the physician are
not taken into account. In this study, unstructured data from the initial state observation
and diagnosis made by physicians at ICU admission were added to the commonly used
structural variables in the traditional ICU prediction model and the LDA method was
used for model construction. Future research can also collect and integrate various types
of unstructured data, such as the hospital consultation process, the needs of the patient,
and their social media message content, to improve prediction accuracy of the model.
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Other new topic modeling tools, such as BERT, can also be used to assess the power of the
proposed prediction plan.
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Appendix A

Table A1. Confusion matrix.

Prediction

Positive Negative

Actual
Positive True Positive, TP False Negative, FN

Negative False Positive, FP True Negative, TN

Precision = PPV =
TP

TP + FP
(A1)

Recall = TPR =
TP

TP + FN
(A2)

F1− Score =
2× Precision × Recall

Precision + Recall
(A3)

Accuracy =
TP + TN

TP + FN + TN + FP
(A4)

• AUROC: The area under the ROC curve (Receiver Operating Characteristic Curve)
was used to measure performance of the classifier across all classification thresholds.
The AUC measuring standard assigns the same weight to each instance, regardless of
the nature of the positive label. The ROC curve is obtained through the FPR value on
the abscissa and the TPR value on the ordinate.

• Precision: Also called positive predictive value (PPV). This is the proportion of correct
predictions in positive samples; in other words, the proportion of positive samples
among all positive samples classified.

• Recall: Also called true-positive rate (TPR). This is the proportion of samples that are
predicted to be correct among factual samples, or the proportion of positive samples
predicted among all positive samples.

• F1-score: The harmonic mean between precision and recall. Precision and recall are
often discussed in identification- and prediction-related algorithms, whereas the F1-
score considers both precision and recall and is a comprehensive measure of model
performance.
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• Accuracy: This is the ratio of the number of samples correctly classified (by the
classifier) to the total number of samples for a given test dataset. In other words, it is
the overall ratio of the model that predicts the correct quantity.

Appendix B

Table A2. B-1 Diagnostic precision, recall, F1-score, and accuracy using 3-day dataset.

Dataset Method
3 Days

Precision Recall F1-Score Accuracy

Structured Data

AdaBoost 0.1692 ± 0.0116 0.8662 ± 0.0149 0.2828 ± 0.0156 0.8537 ± 0.0061
Bagging 0.1370 ± 0.0062 0.9194 ± 0.0179 0.2383 ± 0.0091 0.8047 ± 0.0031

Gradient Boosting 0.1756 ± 0.0130 0.8577 ± 0.0213 0.2911 ± 0.0175 0.8609 ± 0.0061
LightGBM 0.2616 ± 0.0182 0.6644 ± 0.0326 0.3747 ± 0.0178 0.9263 ± 0.0029

Logistic Regression 0.1242 ± 0.0082 0.8153 ± 0.0457 0.2156 ± 0.0140 0.8084 ± 0.0012
MLP 0.1535 ± 0.0117 0.8525 ± 0.0281 0.2601 ± 0.0216 0.8504 ± 0.0163
SVC 0.1244 ± 0.0074 0.8176 ± 0.0125 0.2158 ± 0.0109 0.8023 ± 0.0043

XGBoost 0.3284 ± 0.0243 0.4240 ± 0.0256 0.3688 ± 0.0131 0.9518 ± 0.0012

Structured Data
+

Unstructured Data

AdaBoost 0.1752 ± 0.0015 0.8754 ± 0.0188 0.2920 ± 0.0030 0.8624 ± 0.0037
Bagging 0.1314 ± 0.0013 0.9513 ± 0.0155 0.2309 ± 0.0023 0.8085 ± 0.0036

Gradient Boosting 0.1863 ± 0.0060 0.8594 ± 0.0220 0.3063 ± 0.0093 0.8737 ± 0.0046
LightGBM 0.3988 ± 0.0091 0.6975 ± 0.0299 0.5073 ± 0.0130 0.9561 ± 0.0018

Logistic Regression 0.1264 ± 0.0013 0.8324 ± 0.0213 0.2194 ± 0.0027 0.8108 ± 0.0014
MLP 0.1568 ± 0.0080 0.8600 ± 0.0540 0.2648 ± 0.0088 0.8543 ± 0.0181
SVC 0.1213 ± 0.0018 0.8297 ± 0.0139 0.2117 ± 0.0032 0.8036 ± 0.0048

XGBoost 0.5786 ± 0.0121 0.5443 ± 0.0364 0.5600 ± 0.0157 0.9723 ± 0.0005

Table A3. B-2 Diagnostic precision, recall, F1-score, and accuracy using 30-day dataset.

Dataset Method
30 Days

Precision Recall F1-Score Accuracy

Structured Data

AdaBoost 0.2872 ± 0.0116 0.7252 ± 0.0181 0.4114 ± 0.0148 0.7719 ± 0.0029
Bagging 0.2880 ± 0.0097 0.7709 ± 0.0092 0.4193 ± 0.0116 0.7653 ± 0.0034

Gradient Boosting 0.2904 ± 0.0152 0.7262 ± 0.0213 0.4149 ± 0.0190 0.7748 ± 0.0059
LightGBM 0.3349 ± 0.0081 0.6875 ± 0.0148 0.4504 ± 0.0104 0.8156 ± 0.0014

Logistic Regression 0.2717 ± 0.0081 0.7462 ± 0.0165 0.3983 ± 0.0109 0.7522 ± 0.0006
MLP 0.2846 ± 0.0329 0.7520 ± 0.0265 0.4113 ± 0.0310 0.7610 ± 0.0318
SVC 0.2854 ± 0.0107 0.7347 ± 0.0205 0.4111 ± 0.0143 0.7686 ± 0.0027

XGBoost 0.3753 ± 0.0129 0.5577 ± 0.0157 0.4486 ± 0.0128 0.8493 ± 0.0024

Structured Data
+

Unstructured Data

AdaBoost 0.2865 ± 0.0026 0.7275 ± 0.0145 0.4111 ± 0.0050 0.7740 ± 0.0012
Bagging 0.2873 ± 0.0013 0.7531 ± 0.0264 0.4158 ± 0.0049 0.7696 ± 0.0032

Gradient Boosting 0.2928 ± 0.0007 0.7335 ± 0.0190 0.4185 ± 0.0033 0.7780 ± 0.0021
LightGBM 0.3411 ± 0.0014 0.6754 ± 0.0289 0.4532 ± 0.0078 0.8226 ± 0.0021

Logistic Regression 0.2664 ± 0.0046 0.7291 ± 0.0205 0.3902 ± 0.0077 0.7568 ± 0.0039
MLP 0.2689 ± 0.0097 0.7549 ± 0.0492 0.3958 ± 0.0059 0.7686 ± 0.0210
SVC 0.2685 ± 0.0046 0.7250 ± 0.0236 0.3918 ± 0.0083 0.7649 ± 0.0011

XGBoost 0.3816 ± 0.0061 0.5435 ± 0.0137 0.4483 ± 0.0082 0.8543 ± 0.0015

Table A4. B-3 Diagnostic precision, recall, F1-score, and accuracy using 365-day dataset.

Dataset Method
365 Days

Precision Recall F1-Score Accuracy

Structured Data
AdaBoost 0.3005 ± 0.0030 0.7125 ± 0.0030 0.4227 ± 0.0028 0.7750 ± 0.0050
Bagging 0.2919 ± 0.0022 0.7397 ± 0.0117 0.4186 ± 0.0041 0.7625 ± 0.0029

Gradient Boosting 0.3043 ± 0.0021 0.7097 ± 0.0014 0.4259 ± 0.0023 0.7789 ± 0.0013
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Table A4. Cont.

Dataset Method
365 Days

Precision Recall F1-Score Accuracy

Structured Data

LightGBM 0.3438 ± 0.0057 0.6723 ± 0.0073 0.4549 ± 0.0063 0.8138 ± 0.0028
Logistic Regression 0.2763 ± 0.0010 0.7156 ± 0.0096 0.3986 ± 0.0017 0.7504 ± 0.0038

MLP 0.2918 ± 0.0141 0.7325 ± 0.0389 0.4166 ± 0.0100 0.7622 ± 0.0213
SVC 0.2917 ± 0.0013 0.7159 ± 0.0089 0.4145 ± 0.0023 0.7662 ± 0.0044

XGBoost 0.3875 ± 0.0035 0.5571 ± 0.0108 0.4570 ± 0.0055 0.8470 ± 0.0017

Structured Data
+

Unstructured Data

AdaBoost 0.3018 ± 0.0098 0.7462 ± 0.0197 0.4298 ± 0.0132 0.7758 ± 0.0053
Bagging 0.3054 ± 0.0057 0.7681 ± 0.0118 0.4370 ± 0.0066 0.7760 ± 0.0024

Gradient Boosting 0.3065 ± 0.0083 0.7463 ± 0.0141 0.4345 ± 0.0107 0.7801 ± 0.0055
LightGBM 0.3602 ± 0.0056 0.6997 ± 0.0068 0.4755 ± 0.0061 0.8253 ± 0.0012

Logistic Regression 0.2822 ± 0.0055 0.7381 ± 0.0094 0.4083 ± 0.0071 0.7578 ± 0.0020
MLP 0.2826 ± 0.0039 0.7518 ± 0.0165 0.4107 ± 0.0046 0.7657 ± 0.0079
SVC 0.2866 ± 0.0058 0.7306 ± 0.0055 0.4117 ± 0.0068 0.7696 ± 0.0042

XGBoost 0.3945 ± 0.0033 0.5659 ± 0.0112 0.4649 ± 0.0060 0.8526 ± 0.0017

References
1. Marshall, J.C.; Bosco, L.; Adhikari, N.K.; Connolly, B.; Diaz, J.V.; Dorman, T.; Fowler, R.A.; Meyfroidt, G.; Nakagawa, S.; Pelosi, P.;

et al. What is an intensive care unit? A report of the task force of the World Federation of Societies of Intensive and Critical Care
Medicine. J. Crit. Care 2017, 37, 270–276. [CrossRef] [PubMed]

2. Mahbub, M.; Srinivasan, S.; Danciu, I.; Peluso, A.; Begoli, E.; Tamang, S.; Peterson, G.D. Unstructured clinical notes within the 24
hours since admission predict short, mid & long-term mortality in adult ICU patients. PLoS ONE 2022, 17, e0262182.

3. Chen, W.; Long, G.; Yao, L.; Sheng, Q.Z. AMRNN: Attended multi-task recurrent neural networks for dynamic illness severity
prediction. World Wide Web 2019, 23, 2753–2770. [CrossRef]

4. Romana, S.; Bernhard, F. Iatrogenic events contributing to paediatric intensive care unit admission. Swiss Med. Wkly. 2021, 151, 7.
5. Caicedo-Torres, W.; Gutierrez, K. ISeeU2: Visually interpretable mortality prediction inside the ICU using deep learning and

free-text medical notes. Expert Syst. Appl. 2022, 202, 117190. [CrossRef]
6. Romano, M. The Role of Palliative Care in the Cardiac Intensive Care Unit. Healthcare 2019, 7, 30. [CrossRef]
7. El-Rashidy, N.; El-Sappagh, S.; Abuhmed, T.; Abdelrazek, S.; El-Bakry, H.M. Intensive Care Unit Mortality Prediction: An

Improved Patient-Specific Stacking Ensemble Model. IEEE Access 2020, 8, 133541–133564. [CrossRef]
8. Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.; Thijs, L.G. The SOFA

(Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on
Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [CrossRef]

9. Legall, J.R.; Lemeshow, S.; Saulnier, F. A new simplified acute physiology score (SAPS-II) based on a European North-American
multicenter study. Jama J. Am. Med. Assoc. 1993, 270, 2957–2963. [CrossRef]

10. Baue, A.E.; Durham, R.; Faist, E. Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome
(MODS), multiple organ failure (MOF): Are we winning the battle? Shock 1998, 10, 79–89. [CrossRef]

11. Ibrahim, Z.M.; Wu, H.H.; Hamoud, A.; Stappen, L.; Dobson, R.J.B.; Agarossi, A. On classifying sepsis heterogeneity in the ICU:
Insight using machine learning. J. Am. Med. Inform. Assoc. 2020, 27, 437–443. [CrossRef] [PubMed]

12. Darabi, S.; Kachuee, M.; Fazeli, S.; Sarrafzadeh, M. TAPER: Time-Aware Patient EHR Representation. IEEE J. Biomed. Health
Inform. 2020, 24, 3268–3275. [CrossRef] [PubMed]

13. Gong, M.G.; Pan, K.; Xie, Y.; Qin, A.K.; Tang, Z.D. Preserving differential privacy in deep neural networks with relevance-based
adaptive noise imposition. Neural Netw. 2020, 125, 131–141. [CrossRef] [PubMed]

14. Sheikhalishahi, S.; Balaraman, V.; Osmani, V. Benchmarking machine learning models on multi-centre eICU critical care dataset.
PLoS ONE 2020, 15, e0235424. [CrossRef]

15. Loreto, M.; Lisboa, T.; Moreira, V.P. Early prediction of ICU readmissions using classification algorithms. Comput. Biol. Med. 2020,
118, 8. [CrossRef]

16. Baker, S.; Xiang, W.; Atkinson, I. Continuous and automatic mortality risk prediction using vital signs in the intensive care unit: A
hybrid neural network approach. Sci. Rep. 2020, 10, 1–12. [CrossRef]

17. Davidson, S.; Villarroel, M.; Harford, M.; Finnegan, E.; Jorge, J.; Young, D.; Watkinson, P.; Tarassenko, L. Day-to-day progression
of vital-sign circadian rhythms in the intensive care unit. Crit. Care 2021, 25, 13. [CrossRef]

18. Alghatani, K.; Ammar, N.; Rezgui, A.; Shaban-Nejad, A. Predicting Intensive Care Unit Length of Stay and Mortality Using
Patient Vital Signs: Machine Learning Model Development and Validation. JMIR Med. Inform. 2021, 9, e21347. [CrossRef]

http://doi.org/10.1016/j.jcrc.2016.07.015
http://www.ncbi.nlm.nih.gov/pubmed/27612678
http://doi.org/10.1007/s11280-019-00720-x
http://doi.org/10.1016/j.eswa.2022.117190
http://doi.org/10.3390/healthcare7010030
http://doi.org/10.1109/ACCESS.2020.3010556
http://doi.org/10.1007/BF01709751
http://doi.org/10.1001/jama.1993.03510240069035
http://doi.org/10.1097/00024382-199808000-00001
http://doi.org/10.1093/jamia/ocz211
http://www.ncbi.nlm.nih.gov/pubmed/31951005
http://doi.org/10.1109/JBHI.2020.2984931
http://www.ncbi.nlm.nih.gov/pubmed/32287023
http://doi.org/10.1016/j.neunet.2020.02.001
http://www.ncbi.nlm.nih.gov/pubmed/32088567
http://doi.org/10.1371/journal.pone.0235424
http://doi.org/10.1016/j.compbiomed.2020.103636
http://doi.org/10.1038/s41598-020-78184-7
http://doi.org/10.1186/s13054-021-03574-w
http://doi.org/10.2196/21347


Int. J. Environ. Res. Public Health 2023, 20, 4340 20 of 22

19. Sarang, B.; Bhandarkar, P.; Raykar, N.; O’Reilly, G.M.; Soni, K.D.; Wärnberg, M.G.; Khajanchi, M.; Dharap, S.; Cameron, P.;
Howard, T.; et al. Associations of On-arrival Vital Signs with 24-hour In-hospital Mortality in Adult Trauma Patients Admitted
to Four Public University Hospitals in Urban India: A Prospective Multi-Centre Cohort Study. Inj. Int. J. Care Inj. 2021, 52,
1158–1163. [CrossRef]

20. Hashir, M.; Sawhney, R. Towards unstructured mortality prediction with free-text clinical notes. J. Biomed. Inform. 2020, 108,
103489. [CrossRef]

21. Tootooni, M.S.; Pasupathy, K.S.; Heaton, H.A.; Clements, C.M.; Sir, M.Y. CCMapper: An adaptive NLP-based free-text chief
complaint mapping algorithm. Comput. Biol. Med. 2019, 113, 13. [CrossRef] [PubMed]

22. Ye, J.C.; Yao, L.; Shen, J.H.; Janarthanam, R.; Luo, Y. Predicting mortality in critically ill patients with diabetes using machine
learning and clinical notes. BMC Med. Inform. Decis. Mak. 2020, 20, 7. [CrossRef] [PubMed]

23. Zhang, D.D.; Yin, C.C.; Zeng, J.C.; Yuan, X.H.; Zhang, P. Combining structured and unstructured data for predictive models: A
deep learning approach. BMC Med. Inform. Decis. Mak. 2020, 20, 280. [CrossRef] [PubMed]

24. Mitchell, T. Machine Learning; McGraw-Hill: New York, NY, USA, 1997; Volume 1.
25. Adlung, L.; Cohen, Y.; Mor, U.; Elinav, E. Machine learning in clinical decision making. Med 2021, 2, 642–665. [CrossRef]
26. Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [CrossRef]
27. Purushotham, S.; Meng, C.Z.; Che, Z.P.; Liu, Y. Benchmarking deep learning models on large healthcare datasets. J. Biomed.

Inform. 2018, 83, 112–134. [CrossRef]
28. Cheng, X.; Cao, Q.; Liao, S.S. An overview of literature on COVID-19, MERS and SARS: Using text mining and latent Dirichlet

allocation. J. Inf. Sci. 2022, 48, 304–320. [CrossRef]
29. Xue, J.; Chen, J.X.; Chen, C.; Zheng, C.D.; Li, S.J.; Zhu, T.S. Public discourse and sentiment during the COVID 19 pandemic: Using

Latent Dirichlet Allocation for topic modeling on Twitter. PLoS ONE 2020, 15, e0239441. [CrossRef]
30. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022.
31. Breuninger, T.A.; Wawro, N.; Breuninger, J.; Reitmeier, S.; Clavel, T.; Six-Merker, J.; Pestoni, G.; Rohrmann, S.; Rathmann, W.;

Peters, A.; et al. Associations between habitual diet, metabolic disease, and the gut microbiota using latent Dirichlet allocation.
Microbiome 2021, 9, 61. [CrossRef]

32. Gangavarapu, T.; Jayasimha, A.; Krishnan, G.S.; Kamath, S.S. Predicting ICD-9 code groups with fuzzy similarity based supervised
multi-label classification of unstructured clinical nursing notes. Knowl. Based Syst. 2020, 190, 105321. [CrossRef]

33. Chiu, C.C.; Wu, C.M.; Chien, T.N.; Kao, L.J.; Qiu, J.T. Predicting the Mortality of ICU Patients by Topic Model with Machine-
Learning Techniques. Healthcare 2022, 10, 1087. [CrossRef] [PubMed]

34. Johnson, A.E.; Pollard, T.J.; Shen, L.; Lehman, L.W.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Anthony Celi, L.; Mark,
R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [CrossRef] [PubMed]

35. Yu, R.; Zheng, Y.; Zhang, R.; Jiang, Y.; Poon, C.C.Y. Using a Multi-Task Recurrent Neural Network With Attention Mechanisms to
Predict Hospital Mortality of Patients. IEEE J. Biomed. Health Inf. 2020, 24, 486–492. [CrossRef]

36. Guo, C.H.; Lu, M.L.; Chen, J.F. An evaluation of time series summary statistics as features for clinical prediction tasks. BMC Med.
Inform. Decis. Mak. 2020, 20, 48. [CrossRef]

37. Sayed, M.; Riano, D.; Villar, J. Predicting Duration of Mechanical Ventilation in Acute Respiratory Distress Syndrome Using
Supervised Machine Learning. J. Clin. Med. 2021, 10, 3824. [CrossRef]

38. Kozlowski, D.; Semeshenko, V.; Molinari, A. Latent Dirichlet allocation model for world trade analysis. PLoS ONE 2021, 16,
e0245393. [CrossRef]

39. Li, Y.; Rapkin, B.; Atkinson, T.M.; Schofield, E.; Bochner, B.H. Leveraging Latent Dirichlet Allocation in processing free-text
personal goals among patients undergoing bladder cancer surgery. Qual. Life Res. 2019, 28, 1441–1455. [CrossRef]

40. Celard, P.; Vieira, A.S.; Iglesias, E.L.; Borrajo, L. LDA filter: A Latent Dirichlet Allocation preprocess method for Weka. PLoS ONE
2020, 15, e0241701. [CrossRef]

41. Chen, J.H.; Goldstein, M.K.; Asch, S.M.; Mackey, L.; Altman, R.B. Predicting inpatient clinical order patterns with probabilistic
topic models vs conventional order sets. J. Am. Med. Inform. Assoc. 2017, 24, 472–480. [CrossRef]

42. Pivovarov, R.; Perotte, A.J.; Grave, E.; Angiolillo, J.; Wiggins, C.H.; Elhadad, N. Learning probabilistic phenotypes from
heterogeneous EHR data. J. Biomed. Inform. 2015, 58, 156–165. [CrossRef]

43. Choi, Y.; Chiu, C.Y.-I.; Sontag, D. Learning low-dimensional representations of medical concepts. AMIA Summits Transl. Sci. Proc.
2016, 2016, 41–50. [PubMed]

44. Gabriel, R.A.; Kuo, T.-T.; McAuley, J.; Hsu, C.-N. Identifying and characterizing highly similar notes in big clinical note datasets.
J. Biomed. Inform. 2018, 82, 63–69. [CrossRef] [PubMed]

45. Teng, F.; Ma, Z.; Chen, J.; Xiao, M.; Huang, L.F. Automatic Medical Code Assignment via Deep Learning Approach for Intelligent
Healthcare. IEEE J. Biomed. Health Inform. 2020, 24, 2506–2515. [CrossRef] [PubMed]

46. Kim, D.H.; Choi, J.Y.; Ro, Y.M. Region based stellate features combined with variable selection using AdaBoost learning in
mammographic computer-aided detection. Comput. Biol. Med. 2015, 63, 238–250. [CrossRef] [PubMed]

47. Lee, Y.W.; Choi, J.W.; Shin, E.H. Machine learning model for predicting malaria using clinical information. Comput. Biol. Med.
2021, 129, 104151. [CrossRef]

48. Ali, S.; Majid, A.; Javed, S.G.; Sattar, M. Can-CSC-GBE: Developing Cost-sensitive Classifier with Gentleboost Ensemble for breast
cancer classification using protein amino acids and imbalanced data. Comput. Biol. Med. 2016, 73, 38–46. [CrossRef]

http://doi.org/10.1016/j.injury.2021.02.075
http://doi.org/10.1016/j.jbi.2020.103489
http://doi.org/10.1016/j.compbiomed.2019.103398
http://www.ncbi.nlm.nih.gov/pubmed/31454613
http://doi.org/10.1186/s12911-020-01318-4
http://www.ncbi.nlm.nih.gov/pubmed/33380338
http://doi.org/10.1186/s12911-020-01297-6
http://www.ncbi.nlm.nih.gov/pubmed/33121479
http://doi.org/10.1016/j.medj.2021.04.006
http://doi.org/10.1056/NEJMra1814259
http://doi.org/10.1016/j.jbi.2018.04.007
http://doi.org/10.1177/0165551520954674
http://doi.org/10.1371/journal.pone.0239441
http://doi.org/10.1186/s40168-020-00969-9
http://doi.org/10.1016/j.knosys.2019.105321
http://doi.org/10.3390/healthcare10061087
http://www.ncbi.nlm.nih.gov/pubmed/35742138
http://doi.org/10.1038/sdata.2016.35
http://www.ncbi.nlm.nih.gov/pubmed/27219127
http://doi.org/10.1109/JBHI.2019.2916667
http://doi.org/10.1186/s12911-020-1063-x
http://doi.org/10.3390/jcm10173824
http://doi.org/10.1371/journal.pone.0245393
http://doi.org/10.1007/s11136-019-02132-w
http://doi.org/10.1371/journal.pone.0241701
http://doi.org/10.1093/jamia/ocw136
http://doi.org/10.1016/j.jbi.2015.10.001
http://www.ncbi.nlm.nih.gov/pubmed/27570647
http://doi.org/10.1016/j.jbi.2018.04.009
http://www.ncbi.nlm.nih.gov/pubmed/29679685
http://doi.org/10.1109/JBHI.2020.2996937
http://www.ncbi.nlm.nih.gov/pubmed/32750909
http://doi.org/10.1016/j.compbiomed.2014.09.006
http://www.ncbi.nlm.nih.gov/pubmed/25444461
http://doi.org/10.1016/j.compbiomed.2020.104151
http://doi.org/10.1016/j.compbiomed.2016.04.002


Int. J. Environ. Res. Public Health 2023, 20, 4340 21 of 22

49. Sarmah, C.K.; Samarasinghe, S. Microarray gene expression: A study of between-platform association of Affymetrix and cDNA
arrays. Comput. Biol. Med. 2011, 41, 980–986. [CrossRef]

50. Ramos-Gonzalez, J.; Lopez-Sanchez, D.; Castellanos-Garzon, J.A.; de Paz, J.F.; Corchado, J.M. A CBR framework with gradient
boosting based feature selection for lung cancer subtype classification. Comput. Biol. Med. 2017, 86, 98–106. [CrossRef]

51. Song, J.Z.; Liu, G.X.; Jiang, J.Q.; Zhang, P.; Liang, Y.C. Prediction of Protein-ATP Binding Residues Based on Ensemble of Deep
Convolutional Neural Networks and LightGBM Algorithm. Int. J. Mol. Sci. 2021, 22, 939. [CrossRef]

52. Li, L.J.; Lin, Y.K.; Yu, D.X.; Liu, Z.Y.; Gao, Y.J.; Qiao, J.P. A Multi-Organ Fusion and LightGBM Based Radiomics Algorithm for
High-Risk Esophageal Varices Prediction in Cirrhotic Patients. IEEE Access 2021, 9, 15041–15052. [CrossRef]

53. Cuadrado-Godia, E.; Jamthikar, A.D.; Gupta, D.; Khanna, N.N.; Araki, T.; Maniruzzaman, M.; Saba, L.; Nicolaides, A.; Sharma, A.;
Omerzu, T.; et al. Ranking of stroke and cardiovascular risk factors for an optimal risk calculator design: Logistic regression
approach. Comput. Biol. Med. 2019, 108, 182–195. [CrossRef] [PubMed]

54. Ergun, U.; Serhatioglu, S.; Hardalac, F.; Guler, I. Classification of carotid artery stenosis of patients with diabetes by neural
network and logistic regression. Comput. Biol. Med. 2004, 34, 389–405. [CrossRef] [PubMed]

55. Kavitha, M.S.; Kurita, T.; Ahn, B.C. Critical texture pattern feature assessment for characterizing colonies of induced pluripotent
stem cells through machine learning techniques. Comput. Biol. Med. 2018, 94, 55–64. [CrossRef] [PubMed]

56. Guler, E.C.; Sankur, B.; Kahya, Y.P.; Raudys, S. Visual classification of medical data using MLP mapping. Comput. Biol. Med. 1998,
28, 275–287. [CrossRef] [PubMed]

57. Nanayakkara, S.; Fogarty, S.; Tremeer, M.; Ross, K.; Richards, B.; Bergmeir, C.; Xu, S.; Stub, D.; Smith, K.; Tacey, M.; et al.
Characterising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective international registry
study. PLoS Med. 2018, 15, e1002709. [CrossRef]

58. Akbari, G.; Nikkhoo, M.; Wang, L.; Chen, C.P.; Han, D.S.; Lin, Y.H.; Chen, H.B.; Cheng, C.H. Frailty Level Classification of
the Community Elderly Using Microsoft Kinect-Based Skeleton Pose: A Machine Learning Approach. Sensors 2021, 21, 4017.
[CrossRef]

59. Hou, N.; Li, M.; He, L.; Xie, B.; Wang, L.; Zhang, R.; Yu, Y.; Sun, X.; Pan, Z.; Wang, K. Predicting 30-days mortality for MIMIC-III
patients with sepsis-3: A machine learning approach using XGboost. J. Transl. Med. 2020, 18, 462. [CrossRef]

60. Luo, X.Q.; Yan, P.; Duan, S.B.; Kang, Y.X.; Deng, Y.H.; Liu, Q.; Wu, T.; Wu, X. Development and Validation of Machine Learning
Models for Real-Time Mortality Prediction in Critically Ill Patients With Sepsis-Associated Acute Kidney Injury. Front. Med. 2022,
9, 853102. [CrossRef]

61. Raghuwanshi, B.S.; Shukla, S. Classifying imbalanced data using SMOTE based class-specific kernelized ELM. Int. J. Mach. Learn.
Cybern. 2021, 12, 1255–1280. [CrossRef]

62. Zhang, Y.; Jiang, Z.W.; Chen, C.; Wei, Q.Q.; Gu, H.M.; Yu, B. DeepStack-DTIs: Predicting Drug-Target Interactions Using
LightGBM Feature Selection and Deep-Stacked Ensemble Classifier. Interdiscip. Sci. Comput. Life Sci. 2022, 14, 311–330. [CrossRef]

63. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

64. Mpanya, D.; Celik, T.; Klug, E.; Ntsinjana, H. Machine learning and statistical methods for predicting mortality in heart failure.
Heart Fail. Rev. 2021, 26, 545–552. [CrossRef] [PubMed]

65. Javan, S.L.; Sepehri, M.M.; Javan, M.L.; Khatibi, T. An intelligent warning model for early prediction of cardiac arrest in sepsis
patients. Comput. Methods Programs Biomed. 2019, 178, 47–58. [CrossRef] [PubMed]

66. Blagus, R.; Lusa, L. Joint use of over-and under-sampling techniques and cross-validation for the development and assessment of
prediction models. BMC Bioinform. 2015, 16, 363. [CrossRef] [PubMed]

67. Liu, B.; Fang, L.; Liu, F.; Wang, X.; Chen, J.; Chou, K.-C. Identification of real microRNA precursors with a pseudo structure status
composition approach. PLoS ONE 2015, 10, e0121501. [CrossRef]

68. Liu, B.; Fang, L.; Liu, F.; Wang, X.; Chou, K.-C. iMiRNA-PseDPC: MicroRNA precursor identification with a pseudo distance-pair
composition approach. J. Biomol. Struct. Dyn. 2016, 34, 223–235. [CrossRef]

69. Upadhyay, D.; Manero, J.; Zaman, M.; Sampalli, S. Gradient Boosting Feature Selection With Machine Learning Classifiers for
Intrusion Detection on Power Grids. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1104–1116. [CrossRef]

70. Adler, A.I.; Painsky, A. Feature Importance in Gradient Boosting Trees with Cross-Validation Feature Selection. Entropy 2022, 24,
687. [CrossRef]

71. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New
York, NY, USA, 2001.

72. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
73. Liu, D.; Wu, Y.L.; Li, X.; Qi, L. Medi-Care AI: Predicting medications from billing codes via robust recurrent neural networks.

Neural Netw. 2020, 124, 109–116. [CrossRef]
74. Savkov, A.; Carroll, J.; Koeling, R.; Cassell, J. Annotating patient clinical records with syntactic chunks and named entities: The

Harvey Corpus. Lang. Resour. Eval. 2016, 50, 523–548. [CrossRef] [PubMed]
75. Qiu, L.F.; Kumar, S.; Sen, A.; Sinha, A. Impact of the Hospital Readmission Reduction Program on hospital readmission and

mortality: An economic analysis. Prod. Oper. Manag. 2022, 31, 2341–2360. [CrossRef]

http://doi.org/10.1016/j.compbiomed.2011.08.007
http://doi.org/10.1016/j.compbiomed.2017.05.010
http://doi.org/10.3390/ijms22020939
http://doi.org/10.1109/ACCESS.2021.3052776
http://doi.org/10.1016/j.compbiomed.2019.03.020
http://www.ncbi.nlm.nih.gov/pubmed/31005010
http://doi.org/10.1016/S0010-4825(03)00085-4
http://www.ncbi.nlm.nih.gov/pubmed/15145711
http://doi.org/10.1016/j.compbiomed.2018.01.005
http://www.ncbi.nlm.nih.gov/pubmed/29407998
http://doi.org/10.1016/S0010-4825(98)00010-9
http://www.ncbi.nlm.nih.gov/pubmed/9784964
http://doi.org/10.1371/journal.pmed.1002709
http://doi.org/10.3390/s21124017
http://doi.org/10.1186/s12967-020-02620-5
http://doi.org/10.3389/fmed.2022.853102
http://doi.org/10.1007/s13042-020-01232-1
http://doi.org/10.1007/s12539-021-00488-7
http://doi.org/10.1613/jair.953
http://doi.org/10.1007/s10741-020-10052-y
http://www.ncbi.nlm.nih.gov/pubmed/33169338
http://doi.org/10.1016/j.cmpb.2019.06.010
http://www.ncbi.nlm.nih.gov/pubmed/31416562
http://doi.org/10.1186/s12859-015-0784-9
http://www.ncbi.nlm.nih.gov/pubmed/26537827
http://doi.org/10.1371/journal.pone.0121501
http://doi.org/10.1080/07391102.2015.1014422
http://doi.org/10.1109/TNSM.2020.3032618
http://doi.org/10.3390/e24050687
http://doi.org/10.1214/aos/1013203451
http://doi.org/10.1016/j.neunet.2020.01.001
http://doi.org/10.1007/s10579-015-9330-7
http://www.ncbi.nlm.nih.gov/pubmed/27570501
http://doi.org/10.1111/poms.13724


Int. J. Environ. Res. Public Health 2023, 20, 4340 22 of 22

76. Senot, C. Continuity of care and risk of readmission: An investigation into the healthcare journey of heart failure patients. Prod.
Oper. Manag. 2019, 28, 2008–2030. [CrossRef]

77. Lin, Y.W.; Zhou, Y.Q.; Faghri, F.; Shawl, M.J.; Campbell, R.H. Analysis and prediction of unplanned intensive care unit readmission
using recurrent neural networks with long shortterm memory. PLoS ONE 2019, 14, e0218942.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1111/poms.13027

	Introduction 
	Materials and Methods 
	Proposed Framework 
	Data Collection and Preprocessing 
	Baseline Characteristics 
	Latent Dirichlet Allocation 
	Machine Learning 
	The Synthetic Minority Oversampling Technique (SMOTE) 
	Performance Evaluation 

	Results 
	Prediction of Mortality in ICU 
	Feature Importance 

	Discussion 
	Principal Findings 
	Limitations 

	Conclusions 
	Appendix A
	Appendix B
	References

