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Abstract: Arsenic and atrazine are two water contaminants of high public health concern in Iowa.
The occurrence of arsenic and atrazine in drinking water from Iowa’s private wells and public water
systems was investigated over several decades. In this study, the percentages of detection and
violation of regulations were compared over region, season, and water source, and factors affecting
the detection and concentration of arsenic and atrazine were analyzed using a mixed-effects model.
Atrazine contamination in drinking water was found to vary by region, depending on agricultural
usage patterns and hydrogeological features. The annual median atrazine levels of all public water
systems were below the drinking water standard of 3 ppb in 2001–2014. Around 40% of public
water systems contained arsenic at levels > 1 ppb in 2014, with 13.8% containing arsenic at levels of
5–10 ppb and 2.6% exceeding 10 ppb. This unexpected result highlights the ongoing public health
threat posed by arsenic in drinking water in Iowa, emphasizing the need for continued monitoring
and mitigation efforts to reduce exposure and associated health risks. Additionally, an atrazine
metabolite, desethylatrazine, should be monitored to obtain a complete account of atrazine exposure
and possible health effects.
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1. Introduction

Growing public health concerns are related to human exposure to drinking water con-
taminants and their potential adverse effects on health. Drinking water from both surface
and ground waters can become contaminated by natural and anthropogenic contaminants
that accumulate in water running off the land surface or infiltrating aquifers through the
soil [1]. Water contamination along these general pathways leads to exposure to these
contaminants through human consumption of the affected water [2]. Arsenic and atrazine
are two water contaminants of high public health concern in Iowa, as they are the most
prevalent naturally occurring and anthropogenic water contaminants, respectively.

Arsenic is ranked first on the current priority list of hazardous substances of the
US CDC’s Agency for Toxic Substances and Disease Registry (ATSDR), reflecting its toxicity
and prevalence [3]. Arsenic naturally occurs in the earth’s crust, and soil and water
contamination with arsenic vary considerably in different regions of the world and the
US, depending on geological and geochemical conditions [4,5]. In Iowa, the north-central
region has young glacial sediments of the Des Moines Lobe, produced during the late
Wisconsin age (12,000–16,000 years ago), which have higher concentrations of arsenic [6,7].
Inorganic arsenic (arsenate and arsenite) has been detected in groundwater sources used
for drinking and has been associated with adverse health effects, including alteration in
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the nervous system, hyperkeratosis, cardiovascular disease, diabetes, and cancers of the
lung, bladder, and skin [8–11]. Prenatal exposure to inorganic arsenic in drinking water
has been associated with fetal death, preterm birth, low birth weight, and some birth
defects [12–14]. Some mechanisms proposed to cause arsenic-induced toxicity include
oxidative stress, genotoxicity, altered signal transduction, and epigenetic changes [15,16].
The US Environmental Protection Agency (EPA) has set the drinking water standard for
arsenic at 10 µg/L, or parts per billion (ppb) [17]. However, this standard applies only to
public water systems (PWS), and not to private wells.

Atrazine, a chlortriazine herbicide, is the most widely used herbicide to control weeds
in field corn [18]. The European Union banned the use of atrazine in 2004 because of its
potential to contaminate wate r [19]. However, atrazine is still widely used in the Midwest
Corn Belt, including Iowa in the US, with about 60 to 80 million pounds applied annually
between 2010 and 2019, according to the USGS [20]. A US Geological Survey (USGS)
study detected atrazine in all surface water samples from eastern Iowa in 1996–98, with
a maximum concentration of 100 ppb [21]. The EPA drinking water standard (maximum
contaminant limit, or MCL) for atrazine is 3 ppb [22]. Moreover, atrazine degradates,
desethylatrazine (DEA), and desisopropylatrazine (DIA), are also frequently detected in
drinking water, although they are not currently regulated in the US [23]. Exposure to
atrazine is also associated with human health problems such as central nervous system
dysfunction, endocrine disruption, and cancers, including non-Hodgkin’s lymphoma,
prostate cancer, and stomach cancer [24–27]. Reproductive and developmental toxicities
have also been linked to atrazine exposure, including spontaneous abortion, preterm
delivery, and intrauterine growth retardation [28–30].

Current regulations and monitoring enforcement differ across countries and regions.
As part of the United States, Iowa is subject to the U.S. Environmental Protection Agency’s
(EPA) regulations (atrazine at 3 ppb and arsenic at 10 ppb). Different countries and regions
have set varying limits for arsenic (e.g., 10 ppb in most countries, 5 ppb in New Jersey
and New Hampshire in the US, 25 ppb in Mexico, and 50 ppb in Bangladesh) [31–34], and
atrazine (e.g., 0.1 ppb in the EU, and 5 ppb in Canada) in drinking water [35,36]. As a
result, the exposure levels and health risks for residents vary depending on their location.
Therefore, it is critical to characterize the unique contamination patterns in each country
and region.

This paper described the occurrence of arsenic and atrazine in the drinking water
supplies of both PWS and private drinking water wells, and the characteristics of the
contamination patterns in the state of Iowa between 2001 and 2014. It also discussed the
public health significance of exposure to these contaminants in drinking water.

2. Materials and Methods
2.1. Study Area

All 99 counties of Iowa were included the study area. Iowa has been divided into
six hydrogeologic regions by the Iowa Department of Natural Resources: northeast, east,
south-central, southwest, northwest, and north-central (Figure 1) [37]. Each region is
distinguished based on similar soil type, landscape, and hydrogeologic characteristics, all
of which have the potential to impact the susceptibility of aquifers to contamination. This
classification system was applied in the 1988–1989 Iowa Statewide Rural Well Water Survey
(SWRL) analysis [37].

The specific characteristics used to define the regions includincludede the depth and
age of bedrock, sediment material, aquifer, karst landscape, and thickness and age of glacial
drift deposits [37]. In the northeast region, there are shallow Paleozoic carbonate and
sandstone aquifers with local karst conditions. The eastern region has a continuous mantle
of relatively fine-textured pre-Illinoian glacial deposits over shallow to deep bedrock. The
south-central area has Pennsylvanian bedrock with highly variable lithologies and aquifer
characteristics, and generally lesser thickness of glacial drift deposits. The southwestern
region has deep Pennsylvanian bedrock composed of limestone and sandstone which
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typically produces little water (low yield), as well as local Cretaceous Dakota sandstone
aquifers. The northwestern region has thick glacial drift deposits, and groundwater sources
include Cretaceous bedrock units and Dakota sandstone aquifers. The north-central region
consists of various bedrocks from Paleozoic carbonate aquifer to Cretaceous Dakota aquifer,
and has high relief among major river valleys, with the youngest glacial deposits of the
Des Moines lobe. We describe the regional occurrence of arsenic and atrazine in’Iowa's
drinking water supplies using these hydrogeologic regions.

Figure 1. Hydrogeologic regions of the state of Iowa. Iowa was divided into six regions with similar
soil type, landscape, and hydrogeologic characteristics as used in Iowa’s state-wide rural well water
survey. The bold brown lines on the map represent the boundaries between the regions defined by
landforms, and the blue and green colored areas represent the aquifers.

2.2. Data Sources

This study analyzed four water sources: untreated source water (surface water and
public well water), finished public water, and private well water. Untreated public wells
were identified from previous USGS reports from the Iowa Ground Water Quality Monitor-
ing Program among all USGS-monitored wells for all purposes [38–40]. The 1188 municipal
wells included in this study, and their associated data, were retrieved from the USGS
National Water Information System (NWIS). The analysis data from 1140 wells for arsenic,
948 wells for atrazine, and 389 wells for DEA and DIA from 1982 to 2009, were included
in this study. Data for untreated surface water from 180 sites were also obtained from
USGS NWIS. Only data for atrazine were analyzed in untreated surface water since arsenic
concentrations were rarely analyzed in surface water samples. In this study, arsenic refers
to inorganic arsenic, which includes both trivalent (arsenite) and pentavalent (arsenate)
forms. Although arsenite is more toxic than arsenate [41], we were unable to estimate the
levels of each species separately due to the unavailability of relevant data.

For public water systems (PWS), data on arsenic and atrazine in 984 PWS in all
99 Iowa counties from 2001 to 2014 were obtained from the Iowa Safe Drinking Water
Information System (SDWIS). Monitoring for arsenic and atrazine in PWS is required by
the US EPA Safe Drinking Water Act, and water samples were analyzed in laboratories
certified by the Iowa Department of Natural Resources (IDNR) using standard methods.
The results were submitted directly to the IDNR. The Iowa Administrative Code mandates
that one sample should be collected and analyzed once every three years for groundwater
systems, and annually for surface water systems or mixed surface water and groundwater
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systems [42]. If a sample exceeds the MCL, quarterly monitoring is required. Therefore,
instead of conducting a monthly comparison, our analysis focused on comparing the
seasonal differences.

The SWRL (1988–1989), the Iowa Community Private Well Study (ICPWS, 2002–2003),
and the SWRL2 (2006–2008) provided water quality data for Iowa’s private drinking water
wells. The SWRL and ICPWS data were obtained from the Center for Health Effects of
Environmental Contamination (CHEEC) at the University of Iowa. In the SWRL, water
samples were collected from a total of 686 private wells in all 99 Iowa counties and analyzed
for coliform bacteria, nitrate, and pesticides. Arsenic testing was not included in the SWRL.
In the ICPWS, 236 private wells in 54 Iowa incorporated communities without PWS were
sampled and analyzed for pesticides, ammonia, nitrate, arsenic, and bacteria. In the SWRL2,
water samples from 473 private wells in 89 counties were analyzed for arsenic, bacteria,
nitrate, and other contaminants.

The annual average amounts of atrazine used in 1992–2012 were estimated in kilo-
grams per corn acre harvested in each region, based on the data from the US Geological
Survey and US Department of Agriculture: 0.46 in the south-central, 0.38 in the south-west,
0.33 in the northeast, 0.31 in the east, 0.19 in the north-central, and 0.13 in the north-west
regions [43–45].

2.3. Water Data Statistical Analysis

Daily median concentrations were calculated from multiple measurements for each
day and were used for further statistical analysis. For figures describing trends over the
study periods, yearly median concentrations for each sampling site were additionally
calculated by taking the median of daily medians for a year. For arsenic and atrazine, con-
centrations were categorized into three groups: (i) below the limit of detection (LOD),
(ii) detected with concentrations higher than the LOD but lower than the MCL, and
(iii) detected with concentrations over the MCL. The MCLs for arsenic and atrazine were
10 ppb and 3 ppb, respectively. Measurements for atrazine degradation products desethy-
latrazine (DEA) and deisopropylatrazine (DIA) were categorized as: (a) below the LOD,
and (b) higher than the LOD. To minimize the impact of changing LODs over time, the
maximum LODs for each analyte were used (5 ppb for arsenic in public wells, 1 ppb for
arsenic in all other sources, 0.2 ppb for atrazine, and 0.1 ppb for DEA and DIA).

To analyze the longitudinal and repeated measures data, we used the PROC MIXED
procedure of SAS to fit a mixed-effects model. This model treated each water station or
well as a random effect to account for unbalanced data from repeated measurements at the
same site [46,47]. The model estimated relationships between region, water source, season,
well depth, aquifer type, and the detection and concentrations of contaminants. Categories
of arsenic and atrazine concentrations were treated as a continuous variable in the model
as they were ordinal. Specifically, a value of 1 was assigned for concentrations lower than
the LOD, 2 for concentrations between LOD and regulatory level, and 3 for concentrations
greater than regulatory level. The overall significance of association was evaluated using
the F value, which compares the difference between categories. For example, the overall
significance over regions means that at least one region is significantly different from other
regions. If the overall significance was observed, Tukey’s test was performed for post hoc
pairwise comparisons. A mixed effects model was also used to estimate correlations among
atrazine, DEA, and DIA, with repeated measurements linked over time as suggested by
Hamlett et al. [48,49]. SAS 9.4 software was used for these analyses, and results were
considered statistically significant if the p-value was less than 0.05.

2.4. Geographic Mapping

The geodata for boundaries of Iowa and its counties were downloaded from the
National Resources Geographic Information System of the Iowa Department of Natural
Resources website, and the aquifers and landforms were obtained from the Esri ArcGIS
website. The maps were created using ArcGIS Pro 3.0.0 software (Esri, Redlands, CA, USA).
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3. Results
3.1. Occurrence of Arsenic in Public Water Systems

We analyzed the occurrence of arsenic in Iowa’s PWS over a 14-year period (2001–2014)
by hydrogeologic region, season, and water source. Arsenic was significantly more preva-
lent in the north-central and southwestern regions (Table 1). Figure 2 illustrates the con-
sistent spatial distribution of counties with arsenic levels exceeding the current drinking
water MCL of 10 ppb. The results showed no significant differences in arsenic detections
across seasons and water sources (Table 1). In 2014, over 40% of public water systems had
arsenic at levels > 1 ppb, with 13.8% having arsenic at values between 5 and 10 ppb and
2.6% above 10 ppb (Figure 3).

Table 1. Occurrence of Arsenic in Public Water Systems (Drinking Water MCL = 10 ppb).

Categories Site
No.

Samples
No.

<1 ppb
No. (%)

1–10 ppb
No. (%)

>10 ppb
No. (%)

Maximum
(ppb)

Region

E 286 1002 783 (78.1) 155 (15.5) 64 (6.4) 73.0
NC * 167 797 321 (40.3) 415 (52.3) 61 (7.7) 66.0
NE 172 496 388 (78.2) 103 (20.8) 5 (1.0) 14.0
NW 59 161 121 (75.2) 37 (23.0) 3 (1.9) 47.0
SC 46 159 107 (67.3) 51 (32.1) 1 (0.6) 12.4

SW * 87 347 171 (49.3) 162 (46.7) 14 (4.0) 83.0

Season

Spring 454 910 622 (68.4) 241 (26.5) 47 (5.2) 83
Summer 391 750 472 (62.9) 248 (33.1) 30 (4.0) 66

Fall 311 620 334 (53.9) 243 (39.2) 43 (6.9) 73
Winter 352 682 463 (67.9) 191 (28.0) 28 (4.1) 47

Source
Ground 778 2673 1658 (62.0) 868 (32.5) 147 (5.5) 83

Mix 8 171 160 (93.6) 10 (5.9) 1 (0.6) 17
Surface 31 118 73 (61.9) 45 (38.1) 0 (0) 4

* Significantly higher prevalence than other categories at p < 0.05, based on post hoc tests on linear mixed
effect regression.

Figure 2. Spatial distribution of counties with levels of arsenic and atrazine exceeding current
drinking water MCLs in PWS samples, 2001–2014.
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Figure 3. Percentage of public water systems by annual median arsenic category, 2001–2014.

3.2. Occurrence of Arsenic in Public Wells

Arsenic was significantly more prevalent in the north-central region (Table 2). Arsenic
was detected in a significantly greater number of wells that exceeded 100 ft in depth,
compared to wells shallower than this threshold. Arsenic was significantly more prevalent
in groundwater samples from glacial drift aquifers compared to all other types of aquifers.

Table 2. Occurrence of Arsenic in Public Wells (Drinking Water MCL = 10 ppb).

Categories Site
No.

Samples
No.

<5 ppb
No. (%)

5–10 ppb
No. (%)

>10 ppb
No. (%)

Maximum
(ppb)

Region

E 350 489 475 (97.1) 10 (2.0) 4 (0.8) 20
NC * 252 328 278 (84.8) 24 (7.3) 26 (7.9) 110
NE 116 146 139 (95.2) 3 (2.1) 4 (2.7) 21
NW 120 164 152 (92.7) 9 (5.5) 3 (1.8) 22
SC 82 101 96 (95.1) 4 (4.0) 1 (1.0) 30
SW 220 310 283 (91.3) 14 (4.5) 13 (4.2) 125

Season

Spring 258 281 266 (94.7) 5 (1.8) 10 (3.6) 116
Summer 581 698 658 (92.4) 32 (4.5) 22 (3.1) 110

Fall 385 410 372 (90.7) 23 (5.6) 15 (3.7) 125
Winter 154 159 150 (94.3) 4 (2.5) 5 (3.1) 20

Well depth
< 50 ft 280 423 396 (93.6) 20 (4.7) 7 (1.7) 90
50–100 193 289 273 (95.5) 7 (2.5) 6 (2.1) 20
>100 * 664 841 766 (91.1) 36 (4.3) 39 (4.6) 125

Aquifer
Alluvial 395 592 555 (93.8) 24 (4.1) 13 (2.2) 90
Bedrock 552 685 637 (93.0) 25 (3.7) 23 (3.4) 125
Glacial * 185 265 235 (88.7) 14 (5.3) 16 (6.0) 90

* Significantly higher prevalence than other categories at p < 0.05, based on post hoc tests on linear mixed
effect regression.

3.3. Occurrence of Arsenic in Private Wells

In the samples from private wells, arsenic was found to be significantly more prevalent
in north-central Iowa compared to other regions (Table 3). In north-central Iowa, 64% of
the samples had detectable arsenic; 20% had arsenic concentrations that exceeded the
MCL (>10 ppb) (Table 3). The spatial distribution of counties also showed a similar trend
(Figure 4). Observed arsenic concentrations were significantly lower in the samples from
the shallowest wells.
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Table 3. Occurrence of Arsenic in Private Wells (Drinking Water MCL = 10 ppb).

Categories Site
No.

Samples
No.

<1 ppb
No. (%)

1–10 ppb
No. (%)

>10 ppb
No. (%)

Maximum
(ppb)

Region

E 490 490 328 (66.9) 147 (30.0) 15 (3.1) 160
NC * 183 184 67 (36.4) 82 (44.6) 35 (19.0) 130
NE 236 236 193 (81.8) 39 (16.5) 4 (1.7) 17
NW 43 43 20 (46.5) 22 (51.2) 1 (2.3) 22
SC 43 43 28 (65.1) 14 (32.6) 1 (2.3) 13
SW 200 200 89 (44.5) 100 (50.0) 11 (5.5) 74

Season

Spring 90 90 56 (62.2) 29 (32.2) 5 (5.6) 40
Summer 191 191 100 (52.4) 81(42.4) 10 (5.2) 44

Fall 318 318 198 (62.3) 98 (30.8) 22 (6.9) 160
Winter 110 110 73 (66.4) 28 (25.5) 9 (8.2) 130

Well depth
< 50 ft † 112 113 64 (56.6) 45 (39.8) 4 (3.5) 40
50–100 91 91 25 (27.5) 54 (59.3) 12 (13.2) 160
>100 179 179 43 (24.0) 112 (62.6) 24 (13.4) 110

Well age < 1991 282 282 90 (31.9) 161 (57.1) 31 (11.0) 160
≥ 1991 85 85 31 (36.5) 47 (55.3) 7 (8.2) 28

* Significantly higher prevalence than other categories at p < 0.05, based on post hoc tests on linear mixed effect
regression; † Significantly lower prevalence than other categories at p < 0.05, based on post hoc tests on linear
mixed effect regression.

Figure 4. Spatial distribution of counties with levels of arsenic and atrazine exceeding current
drinking water MCLs in private well samples, 2001–2014.

3.4. Occurrence of Atrazine in Public Water System

Atrazine detections in PWS were significantly greater in the south-central region
compared to other regions (Table 4). The detections of atrazine were significantly higher in
the summer, decreasing over the following seasons. Atrazine detections and the frequency
of MCL violations were significantly higher in the south-central region, the summer, and
surface water-sourced systems. One county in the south-central region had atrazine levels
exceeding the current drinking water MCL of 3 ppb between 2001 and 2014 (Figure 2).
There were no public water systems with annual median levels of atrazine >3 ppb in
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the study period (Figure 5). Data on DEA and DIA detections in Iowa’s PWS were not
presented, as minimal analyses were conducted (365 samples analyzed for degradates).

Table 4. Occurrence of Atrazine in Public Water Systems (Drinking Water MCL = 3 ppb).

Categories Site
No.

Samples
No.

<0.2 ppb
No. (%)

0.2–3 ppb
No. (%)

>3 ppb
No. (%)

Maximum
(ppb)

Region

E 292 976 925 (94.8) 51 (5.2) 0 2.2
NC 164 377 374 (99.2) 3 (0.8) 0 0.8
NE 179 523 496 (94.8) 27 (5.2) 0 1.85
NW 59 129 126 (97.7) 3 (2.3) 0 0.6
SC * 47 291 154 (52.9) 135 (46.4) 2 (0.7) 5.57
SW 90 229 221 (96.5) 8 (3.5) 0 0.4

Season

Spring 357 652 606 (92.9) 46 (7.1) 0 2.2
Summer * 377 734 646 (88.0) 86 (11.7) 2 (0.3) 5.57

Fall 289 565 520 (92.0) 45 (8.0) 0 1.76
Winter 290 574 524 (91.3) 50 (8.7) 0 1.57

Source
Ground 791 2043 2008 (98.3) 35 (1.7) 0 1.85

Mix 8 176 144 (81.8) 32 (18.2) 0 1.9
Surface * 32 306 144 (47.1) 160 (52.3) 2 (0.7) 5.57

* Significantly higher prevalence than other categories at p < 0.05, based on post hoc tests on linear mixed
effect regression.

Figure 5. Percentage of public water systems by annual median atrazine category, 2001–2014.

3.5. Occurrence of Atrazine and its Degradates in Public Wells

In the public wells, Iowa’s northwest and northeast regions had significantly higher
atrazine detections (Table 5). Wells deeper than 100 feet had significantly lower atrazine
detections and violations. Groundwater samples from the alluvial aquifer showed signif-
icantly more prevalent atrazine detections, with 1.1% of samples in violation. DEA and
DIA are major degradation products of atrazine. DEA was significantly less detected in
groundwater samples from deeper wells with a depth greater than 100 feet (Table 6). In
the northwest region, DEA was most frequently detected (12% of samples) (Table 6). DIA
detection was much lower than atrazine and DEA, and did not show significant differences
over the region, season, and well characteristics (Table 7).
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Table 5. Occurrence of Atrazine in Public Wells (Drinking Water MCL = 3 ppb).

Categories Site
No.

Samples
No.

<0.2 ppb
No. (%)

0.2–3 ppb
No. (%)

>3 ppb
No. (%)

Maximum
(ppb)

Region

E 255 687 585 (85.2) 99 (14.4) 3 (0.4) 5.7
NC 203 435 403 (92.6) 31 (7.1) 1 (0.2) 3.7

NE * 98 253 211 (83.4) 39 (15.4) 3 (1.2) 14.3
NW * 111 355 275 (77.5) 73 (20.6) 7 (2.0) 21

SC 65 183 163 (89.1) 20 (10.9) 0 1.6
SW 229 707 637 (90.1) 65 (9.2) 5 (0.7) 7.1

Season

Spring 152 206 138 (67.0) 61 (29.6) 7 (3.4) 13
Summer 834 2257 1800 (79.8) 438 (19.4) 19 (0.8) 25.5

Fall 340 578 438 (75.8) 135 (23.4) 5 (0.9) 14
Winter 53 60 53 (83.3) 6 (10.0) 1 (1.7) 14.3

Well
depth

<50 ft 320 986 819 (83.1) 154 (15.6) 13 (1.3) 21
50–100 201 623 507 (81.4) 111 (17.8) 5 (0.8) 12.8
>100 † 473 1068 999 (93.5) 68 (6.4) 1 (0.1) 4.3

Aquifer
Alluvial * 380 1339 1110 (82.9) 214 (16.0) 15 (1.1) 21
Bedrock 365 782 703 (89.9) 78 (10.0) 1 (0.1) 4.3
Glacial 208 511 479 (93.7) 32 (6.3) 0 (0) 2.3

* Significantly higher prevalence than other categories at p < 0.05, based on post hoc tests on linear mixed effect
regression; † Significantly lower prevalence than other categories at p < 0.05, based on post hoc tests on linear
mixed effect regression.

Table 6. Occurrence of DEA in Public Wells.

Categories Site
No.

Samples
No.

<0.1 ppb
No. (%)

≥0.1 ppb
No. (%)

Maximum
(ppb)

Region

E 103 322 293 (91.0) 29 (9.0) 0.31
NC 81 193 185 (95.9) 8 (4.2) 0.32
NE 46 137 129 (94.2) 8 (5.8) 0.16
NW 57 158 139 (88.0) 19 (12.0) 0.24
SC 30 75 74 (98.7) 1 (1.3) 0.16
SW 64 211 206 (97.6) 5 (2.4) 0.15

Season
Summer 317 999 938 (93.9) 61 (6.1) 0.32

Fall 112 119 109 (91.6) 10 (8.4) 0.31

Well depth
<50 ft 71 346 319 (92.2) 27 (7.8) 0.32
50–100 71 228 205 (89.9) 23 (10.1) 0.31
>100 † 228 537 517 (96.3) 20 (3.7) 0.26

Aquifer
Alluvial 121 497 456 (91.8) 41 (8.3) 0.32
Bedrock 177 398 372 (93.2) 26 (6.5) 0.31
Glacial 83 208 205 (98.6) 3 (1.4) 0.1

† Significantly lower prevalence than other categories at p < 0.05, based on post hoc tests on linear mixed
effect regression.

Table 7. Occurrence of DIA in Public Wells.

Categories Site
No.

Samples
No.

<0.1 ppb
No. (%)

≥0.1 ppb
No. (%)

Maximum
(ppb)

Region

E 103 322 320 (99.4) 2 (0.6) 0.1
NC 81 193 184 (95.3) 9 (4.7) 0.3
NE 46 137 137 (100) 0 -
NW 57 158 157 (99.4) 1 (0.6) 0.18
SC 30 75 75 (100) 0 -
SW 64 211 209 (99.1) 2 (1.0) 0.1

Season
Summer 317 909 897 (98.7) 12 (1.3) 0.3

Fall 112 112 111 (99.1) 1 (0.9) 0.2
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Table 7. Cont.

Categories Site
No.

Samples
No.

< 0.1 ppb
No. (%)

≥ 0.1 ppb
No. (%)

Maximum
(ppb)

Well depth
<50 ft 90 346 335 (96.8) 11 (3.2) 0.3
50–100 71 228 225 (98.7) 3 (1.3) 0.2
>100 228 537 536 (99.8) 1 (0.2) 0.1

Aquifer
Alluvial 121 497 483 (97.2) 14 (2.8) 0.3
Bedrock 177 398 397 (99.8) 1 (0.3) 0.1
Glacial 83 208 208 (100) 0 -

3.6. Occurrence of Atrazine and its Degradates in Private Wells

On a regional basis, the south-central region had more samples with concentrations
over the MCL, while the north-central region had fewer detections than other regions
(Table 8). There were no statistically significant regional and seasonal variations in atrazine
concentrations, but it was significantly less prevalent in the deepest wells (>100 ft). Al-
though five counties had atrazine levels exceeding the current drinking water MCL of
3 ppb, the spatial distribution of these counties did not show a specific trend (Figure 4).

Table 8. Occurrence of Atrazine in Private Wells (Drinking Water MCL = 3 ppb).

Categories Site
No.

Samples
No.

<0.2 ppb
No. (%)

0.2–3 ppb
No. (%)

>3 ppb
No. (%)

Maximum
(ppb)

Region

E 457 517 499 (96.5) 18 (3.5) 0 2.3
NC 203 248 246 (99.2) 1 (0.4) 1 (0.4) 3.4
NE 215 249 242 (97.2) 6 (2.4) 1 (0.4) 3.2
NW 79 95 91 (95.8) 4 (4.2) 0 1.7
SC 164 185 184 (97.8) 2 (1.1) 2 (1.1) 6.6
SW 158 182 178 (97.8) 4 (2.2) 0 1.1

Season

Spring 312 322 316 (98.1) 5 (1.6) 1 (0.3) 6.6
Summer 397 410 403 (98.3) 6 (1.5) 1 (0.2) 3.2

Fall 459 464 452 (97.4) 11 (2.4) 1 (0.2) 4.7
Winter 278 280 266 (95.0) 13 (4.6) 1 (0.4) 3.4

Well depth
< 50 ft 235 277 262 (94.6) 14 (5.1) 1 (0.4) 6.6
50–100 184 229 219 (95.6) 8 (3.5) 2 (0.9) 3.4
> 100 † 337 432 426 (98.6) 6 (1.4) 0 0.4

Well age < 1991 671 817 797 (97.6) 18 (2.2) 2 (0.2) 3.4
≥ 1991 78 78 75 (96.2) 3 (3.9) 0 (0.0) 0.8

† Significantly lower prevalence than other categories at p < 0.05, based on post hoc tests on linear mixed
effect regression.

There was no significant difference in DEA detection over regions (Table 9). Signif-
icantly more detections and concentrations of DEA were observed in the shallow wells
(<50 ft). DIA detections were more prevalent in the fall and winter, and significantly less
prevalent in the spring (Table 10).

Table 9. Occurrence of DEA in Private Wells.

Categories Site
No.

Samples
No.

<0.1 ppb
No. (%)

≥0.1 ppb
No. (%)

Maximum
(ppb)

Region

E 457 558 510 (91.4) 48 (8.6) 0.86
NC 203 272 268 (98.5) 4 (1.5) 1.3
NE 215 259 235 (90.7) 24 (9.3) 0.42
NW 79 115 104 (90.4) 11 (9.6) 2.86
SC 164 202 196 (97.0) 6 (3.0) 0.72
SW 158 204 200 (98.0) 4 (1.9) 0.24
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Table 9. Cont.

Categories Site
No.

Samples
No.

<0.1 ppb
No. (%)

≥0.1 ppb
No. (%)

Maximum
(ppb)

Season

Spring 374 386 376 (97.4) 10 (2.6) 2.86
Summer 399 412 389 (94.4) 23 (5.6) 0.64

Fall 521 532 484 (91.0) 48 (9.0) 0.72
Winter 278 280 264 (94.3) 16 (5.7) 1.3

Well depth
<50 ft * 235 309 268 (86.7) 41 (13.3) 2.86
50–100 184 262 252 (96.2) 10 (3.8) 1.3
>100 337 483 470 (97.3) 13 (2.7) 0.3

Well age <1991 671 902 850 (94.2) 52 (5.8) 2.79
≥1991 78 78 69 (88.5) 9 (11.5) 0.28

* Significantly higher prevalence than other categories at p < 0.05, based on post hoc tests on linear mixed
effect regression.

Table 10. Occurrence of DIA in Private Wells.

Categories Site
No.

Samples
No.

<0.1 ppb
No. (%)

≥0.1 ppb
No. (%)

Maximum
(ppb)

Region

E 457 517 501 (96.9) 16 (3.1) 1.38
NC 201 248 241 (97.2) 7 (2.8) 0.92
NE 215 249 245 (98.4) 4 (1.6) 0.49
NW 79 95 90 (94.7) 5 (5.3) 3.54
SC 164 185 181 (97.8) 4 (2.2) 3.1
SW 158 182 177 (97.3) 5 (2.8) 0.2

Season

Spring 374 386 385 (99.7) 1 (0.3) 3.54
Summer 399 412 401 (97.3) 11 (2.7) 0.67

Fall * 521 532 514 (96.6) 18 (3.4) 3.1
Winter * 278 280 265 (94.6) 15 (5.4) 1.38

Well depth
<50 ft 235 277 263 (95.0) 14 (5.1) 3.54
50–100 184 229 222 (96.9) 7 (3.1) 3.1
>100 337 432 419 (97.0) 13 (3.0) 1.38

Well age <1991 671 817 793 (97.1) 24 (2.9) 3.1
≥1991 78 78 76 (97.4) 2 (2.6) 0.26

* Significantly higher prevalence than other categories at p < 0.05, based on post hoc tests on linear mixed
effect regression.

3.7. Occurrence of Atrazine in Surface Water

In Iowa’s surface water, the south-central region had significantly more samples
with atrazine concentrations over the MCL than other regions (Table 11). Atrazine was
significantly more prevalent, and its concentrations were significantly highest in the spring
and summer.

Table 11. Occurrence of Atrazine in Surface Water (Drinking Water MCL = 3 ppb).

Categories Site
No.

Samples
No.

<0.1 ppb
No. (%)

0.1–3 ppb
No. (%)

≥3 ppb
No. (%)

Maximum
(ppb)

Region

E 61 113 8 (7.1) 101 (89.4) 4 (3.5) 5.8
NC 13 19 4 (21.1) 15 (79.0) 0 0.5
NE 44 75 9 (12.0) 66 (88.0) 0 2.5
NW 1 1 0 1 (100) 0 1.6
SC * 46 74 3 (4.1) 65 (87.8) 6 (8.1) 12
SW 15 26 1 (3.85) 24 (92.3) 1 (3.9) 4.9

Season

Spring * 73 127 6 (4.7) 111 (87.4) 10 (7.9) 11.2
Summer * 107 169 15 (8.9) 132 (78.1) 22 (13.0) 25

Fall 35 82 8 (9.8) 74 (90.2) 0 1.9
Winter 72 118 8 (6.8) 109 (92.4) 1 (0.9) 3.6

* Significantly higher prevalence than other categories at p < 0.05, based on post hoc tests on linear mixed
effect regression.



Int. J. Environ. Res. Public Health 2023, 20, 5397 12 of 18

4. Discussion

Arsenic and atrazine are the most common naturally occurring and anthropogenic
water contaminants in Iowa, posing substantial health impacts to the residents. Arsenic,
a naturally occurring element, has been frequently detected in Iowa’s groundwater [5].
Arsenic can have harmful effects on human health, including an increased risk of skin, lung,
bladder, and liver cancers, as well as cardiovascular disease and diabetes [8–10]. Atrazine
is a heavily used herbicide in the US corn belt, including Iowa [20]. It can enter ground-
water and surface water through runoff and leaching [50,51]. Atrazine exposure has been
linked to an increased risk of certain cancers, as well as reproductive and developmental
problems [26,27]. In this study, the occurrences of arsenic and atrazine were investigated in
water samples from untreated ground and surface source water for PWS, finished public
water, and private wells.

Our findings indicate that groundwater in glacially deposited aquifers had a higher
prevalence of arsenic detections compared to other aquifer types. Arsenic was detected
at a higher prevalence in groundwater from the deepest wells (>100 ft) and was most
prevalent in north-central Iowa. The north-central and southwest regions consist of glacial
materials in the Des Moines Lobe and the Southern Iowa Drift Plain, which were produced
during the late Wisconsin-age (12,000–16,000 years ago) and pre-Illinoian age (18,000 years
ago), respectively, and have higher concentrations of arsenic [6,7]. According to data from
public and private wells, recently glaciated north-central areas of the state have the highest
concentrations of arsenic in the groundwater, followed by the southwest area, as younger
glacial deposits are associated with higher arsenic concentrations [6]. In the northern region,
where thicker glacial deposits are present, detectable levels of arsenic were most prevalent
in deeper wells [6,52].

In PWS, the 10 ppb arsenic MCL was enforced in 2006 [53]. Nevertheless, the per-
centage of samples with detectable levels of arsenic was about 31%, with 13.8% having
arsenic at levels ranging from 5 to 10 ppb and 2.6% exceeding 10 ppb in 2014. The current
regulatory level of 10 ppb for arsenic is considered insufficient to adequately protect public
health, as indicated by a few states such as New Hampshire and New Jersey establishing
more rigorous levels of 5 ppb [31,32]. This implies that residents in Iowa may be exposed
to levels of arsenic through public water systems that pose potential health risks. The
use of groundwater as a source is a crucial factor contributing to arsenic contamination of
public water systems, as groundwater is more susceptible to arsenic contamination. Our
analysis showed that the percentage of water systems with groundwater as their source had
increased from 82.7% (1986–1999) to 91.3% (2000–2014). Therefore, increased monitoring
for arsenic should be considered, especially in the public water systems sourced from
groundwater, due to the known toxicity of arsenic from drinking water exposures.

In contrast, atrazine was frequently detected in surface water, as it is applied on
agricultural fields as the most highly consumed herbicide. Atrazine was detected more in
south-central Iowa during the spring and summer in the surface water and surface water-
based public water. Atrazine use in Iowa has been slowly declining since the early 1990s,
although use temporarily increased in specific years based on acres of corn planted during
the ethanol production boom [54]. Atrazine use has decreased in the US, accompanied
by the rapid increase in the use of glyphosate [43,44]. Although glyphosate is currently
the most commonly used pesticide in Iowa, it has been detected at the maximum level of
5.49 ppb in Iowa, which is much lower than the current MCL of 700 ppb [55].

In our study, atrazine was detected in 9% of the PWS samples, with only two samples
exceeding the MCL of 3 ppb. Atrazine and its metabolite DEA were the most frequently
detected herbicides in surface water [56]; atrazine contamination is more prevalent in PWS
derived from surface water (53% of the samples) than in PWS derived from groundwater
(1.7% of the samples). Analyses of untreated source waters also showed similar results,
with atrazine at levels above LOD in 13% of groundwater samples and 92% of surface
water samples. Reduced reliance on surface water as a source for the public water system
has led to decreased atrazine detection in PWS, as the percentage of public water systems
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using surface water has decreased from 14.9% (1986–1999) to 7.1% (2000–2014). Over
three million pounds of atrazine was used annually in 1992–2012 in Iowa [43,44]. In the
treated PWS water derived from surface water, atrazine detections were most prevalent
in the south-central region and in late spring and early summer, resulting from atrazine
applications and runoff following rainfall events in these seasons [50]. There was a strong
correlation between atrazine concentrations in runoff and stream water [57]. Atrazine
persists after application to soils, with up to one-third remaining in the upper few cm of
the soil for a month within the application areas. This residual atrazine can then run off
to streams or leach into groundwater during recharge [51,57]. This is further supported
by high rates of atrazine detection in groundwater samples from the alluvial aquifer in
late spring and summer, as described in previous studies in Iowa [58–60]. Previous studies
have shown that atrazine is less frequently detected in winter in groundwater, owing to the
hindrance of recharge from less precipitation and soil freezing [61,62]. According to a USGS
study of The Mississippi River between Minneapolis and New Orleans, atrazine, DEA, and
DIA are the major pesticides transported along the river, with downstream concentrations
much higher than upstream levels [63–66]. The land surfaces in the northern and western
regions of Iowa are higher in elevation than other regions, and much of Iowa’s land used
for row crop corn drains toward the east and south, eventually flowing into The Mississippi
River [67,68]. This has resulted in significantly higher detections of atrazine in the surface
water of the south-central region.

Although atrazine is much more of a threat to surface water than groundwater, atrazine
was nonetheless detected in Iowa’s private wells, being found in 3% of the well water
samples. The atrazine contamination in groundwater was affected by the amount of annual
atrazine use and hydrogeologic characteristics. Atrazine detections were more prevalent in
northwest and northeast Iowa compared to other regions. The northwest region of Iowa
is characterized by alluvial sediments forming shallow unconfined aquifers, while the
northeast region has a high risk of groundwater contamination due to the presence of local
karst conditions [37]. On the other hand, the north-central region had the lowest detections
of atrazine. This is likely because the use of atrazine per corn acre was low, and the aquifers
are deeper than 100 feet in this area [37,43–45].

Although 10% of atrazine typically remains in the soil after one year, during this
time the missing 90% is metabolized to DEA and DIA by bacterial communities in the
soil [69,70]. This metabolism is affected by geochemical and physical properties of the
soil including pH, moisture, and temperature [69]. The DEA detection rates and concen-
trations are much higher than the DIA, as the degradation rate of atrazine into DIA is
slow compared with DEA [23,71]. These dealkylated metabolites are more soluble than
atrazine and their absorption into soil is weaker, implying a strong ability to move and
leach into groundwater [57,72,73]. Further atrazine metabolism in groundwater involves
chemical degradation processes such as hydrolysis, which can be influenced by specific
mineral content and pH [74]. Atrazine may degrade much slower in deep groundwater
aquifers due to lower levels of oxygen and microbial activity, and its metabolites, DEA
and DIA, can be stable once they enter the saturated zone of the aquifer [75]. On the other
hand, surface water contains higher levels of sunlight and microbial activity, leading to
additional mechanisms of atrazine degradation such as photolysis and biodegradation [74].
These processes can cause faster breakdown of atrazine in surface water compared to
groundwater [74].

In this study, we found that atrazine metabolites were frequently detected in the
groundwater. DEA was more prevalent than DIA in both private well water and PWS water,
as DEA is the dominant degradation product of atrazine and more stable than DIA [76–78].
Only atrazine is regulated currently; neither DEA nor DIA have MCLs. Although the
concentrations of degradates are lower, toxicities of DEA and DIA may be larger as the
oral 50% lethal dose (LD50) (DEA 1110 mg/kg bodyweight and DIA 1240 mg/kg) in rats is
lower than atrazine (1870 mg/kg) [79]. Therefore, DEA and DIA should be considered for
monitoring in drinking water supplies.
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Our study provides insights into the factors that contribute to higher levels of water
contaminant detection and violations of current water quality regulations. By identifying
these factors, targeted investigations and interventions can be implemented to improve wa-
ter quality in affected communities. Effective and cheap monitoring practices are critical for
this purpose, and previous studies in Mexico, Bangladesh, and other regions of the US have
demonstrated the efficacy of using portable field testing kits to measure arsenic in drinking
water [80–82]. Adopting this approach on a frequent and periodic basis can help overcome
challenges related to seasonality and timing of sampling, and enable the rapid dissemina-
tion of results to affected communities. Additionally, incorporating participatory-based
monitoring activities, such as citizen scientist engagement, can help increase awareness of
regular monitoring, and expand the sampling size in affected communities [83,84].

5. Conclusions

This longitudinal study reveals that the levels of arsenic and atrazine contamination
in Iowa’s drinking water vary depending on multiple factors such as source, region, hy-
drogeology, and human activity. These findings indicate that some residents may be at
a greater risk of health issues due to potential disparities in the quality of their drinking
water. Protecting water supply sources from pesticides, including atrazine, can be achieved
through several methods, such as integrated pest management, establishing buffer zones,
adopting conservation practices, and proper land use management [85–87]. Implement-
ing these protective measures can help reduce the risk of pesticides entering drinking
water supplies. Thorough water quality tests should be conducted before adding new
water sources, and filtration systems such as ion exchange, ultrafiltration, and reverse
osmosis should be used to remove these contaminants from drinking water to minimize
exposure [88,89]. It is also crucial to monitor and regulate the major atrazine degradates
due to their high detection rates and toxicity. This study highlights the need for further
research on the causes of increased drinking water contamination and the necessity for
local, regional, and federal public health departments to closely monitor and mitigate the
trends in drinking water contamination.
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