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Abstract: Residents of Bangladesh are exposed to numerous chemicals due to local industries, includ-
ing dyeing mills, cotton mills, and the use of biomass in daily cooking. It is, therefore, important to
characterize the exposome and work to identify risk factors of exposure. We used silicone wristband
passive samplers to evaluate exposure to volatile and semi-volatile organic compounds in a sample
of 40 children in the Araihazar upazila of Bangladesh. We used stepwise linear regression models to
determine which demographic, exposure, diet, and socioeconomic factors best predict exposure to
single chemicals and classes of chemicals. Male sex at birth was associated with a decrease in the
number of chemicals detected above their median concentration (3 = —2.42; 95%CI: —5.24, 0.399),
as was ownership of a flush toilet (f = —3.26; 95%CI: —6.61, 0.097). Increased body mass index
(B =1.81; 95%CI: 0.587, 3.03), father’s smoking (3 = 2.74; 95%CI: —0.0113, 5.49), and father’s employ-
ment in the garment industry ( = 3.14; 95%CI: 0.209, 6.07) were each associated with an increase in
the average number of chemicals detected above their median concentration. The observed results
motivate future evaluation with health outcomes of these exposures.

Keywords: exposome; volatile organic compounds; silicone wristband personal monitoring; wearable
sensor; Bangladesh; children; multipollutant

1. Introduction

Rural communities in Bangladesh encounter a unique mixture of chemicals from
various sources in their daily lives. Some of these exposures have been well characterized
in drinking water (e.g., inorganic arsenic) [1-4], but many other exposures and exposure
sources are largely unexplored. Some aspects of these communities increase their likelihood
of encountering certain chemicals. For example, nearly all the residents of rural Bangladesh
use biomass—such as dried plants or animal dung—as cooking fuel [5]. These solid fuels
can lead to exposure to fine particulate matter (PM2.5) containing polycyclic aromatic
hydrocarbons (PAHs) and carbon monoxide [6-8]. Garment industry work is also prevalent
in Bangladesh, which can lead to exposure to dyes [9]. Many studies have explored
exposure to heavy metals/metalloids in these communities [1,4], but few characterized
volatile and semi-volatile organic compound exposures, which may significantly contribute
to health in the region [10,11].

A novel method for personal passive sampling makes the characterization of organic
compound exposures possible. Silicone wristbands have been used in previous studies to
examine relative exposures to a variety of chemicals; for example, Wang et al. used them to
investigate semi-volatile organic chemical exposure in France and Italy, Doherty et al. used
them to investigate chemical exposures in a birth cohort in New Hampshire, and McLarnan
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et al. investigated PAH exposure in a birth cohort based in New York [11-13]. They are
worn by each participant for a predetermined length of time, then screened for up to
1528 chemicals, depending on the laboratory platform and chemicals of interest, that have
diffused into the wristband both from the air and from the sweat of the participant [14-16].
This technology has been validated across many studies and allows for the external ex-
posome of an individual to be quantified across the study period and compared to other
individuals [17,18].

This method is particularly novel when applied to the Bangladeshi population. Rural
regions of Bangladesh have limited access to electricity, making many other methods
of characterizing the exposome in these regions unreliable. For this reason, there has
been limited ability to study the exposome in resource-limited communities such as the
one described in this study. The silicone wristband devices have made it possible to
effectively characterize exposures that may be unique to the children who reside in this
region of Bangladesh.

The resulting data can then be used to investigate the risk factors associated with
exposure to certain chemicals and evaluate potential adverse health outcomes that may
occur because of these exposures. For example, exposure to indoor particulate matter that
arises from cooking with biomass fuel has been linked with asthma development, adverse
cardiopulmonary outcomes, and adverse neurological symptoms [19,20]. Garment work is
associated with a decreased immune response, which may result from occupational chemi-
cal exposures [21]. Some combination of these exposure sources may be responsible for
the increased prevalence of chronic obstructive pulmonary disease, cardiovascular disease,
diabetes, and chronic kidney disease in Bangladesh [22-24]. Therefore, characterization
of the exposome of residents of rural Bangladesh can help to determine sources of toxic
exposures and aid in identifying the most effective interventions to improve public health.

The goal of this pilot study was two-fold. First, we determined the prevalence of
exposure to certain volatile and semi-volatile organic chemicals using silicone wristband
passive sampling technology in a pediatric population of the Araihazar upazila (subdistrict)
of Bangladesh. Second, we investigated the relationship between key demographic and
lifestyle factors and exposure to the chemicals detected in the silicone wristbands. With this
study, we enhance knowledge of the exposome of children residing in rural Bangladesh.

2. Materials and Methods
2.1. Study Population

The participants in this study are enrolled in the Bangladesh Environmental Research
in Children’s Health (BiRCH) cohort, which is composed of the children of those enrolled in
the Health Effects of Arsenic Longitudinal Study (HEALS). Both of these cohorts have been
previously described [25,26]. Briefly, 11,746 married residents of the Araihazar upazila in
Bangladesh were enrolled in the HEALS cohort between 22 October 2000, and 19 May 2002,
and later expanded to include more than 35,000 participants. Between 2014 and 2016,
500 children of female participants in the HEALS cohort were enrolled in the BiRCH
cohort as mother—child pairs. The children were between 5 and 7 years old at enrollment.
In November 2021, forty children (20 male and 20 female) were randomly chosen to
participate in this passive sampling study of semi-volatile organic compounds. This study
was approved by the University of Illinois Chicago Office for the Protection of Research
Subjects (protocol #2014-0408).

2.2. Covariate Data Collection

Covariate data were collected via an interview with the participant’s mother to quan-
tify potential exposures that may have occurred during pregnancy or early childhood. Data
were obtained to describe the demographic information, potential sources of exposure,
diet, and socioeconomic status. Assigned sex at birth, age, height, weight, birth order,
and health of the child were collected as descriptive factors. Measured height and weight
data were used to calculate body mass index (BMI). The sources of exposure that were
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investigated included the smoking status of either parent, the smoking status of other
individuals in the house, ownership of agricultural land, and paternal employment in the
garment industry. Because garment/dye work is one of the main industries in Araihazar,
a binary variable representing whether the parent worked in the garment industry was
created. The following reported occupations were considered garment work: power loom,
dyeing, garments, and cloth. To describe the diet of the child, the mother reported the
child’s weekly consumption of the following items: rice, beans, fish, meat, vegetables, fruit,
sweets, milk, juice, and water. Socioeconomic status was estimated from the following
covariates: ownership of a television, type of toilet, and maternal educational attainment.

2.3. Exposure Data Collection

Silicone wristbands were obtained from 24 Hour Wristbands (Houston, TX, USA),
rinsed with filtered water, and heated to at least 280 °C in a vacuum oven (Blue-M, New
Columbia, PA, USA) at 0.1 torr for 3 h to remove any volatile impurities from the bands as
previously described [12,14,27,28]. The participants were instructed to wear the wristband
24 h a day for a total of seven days, at which point the wristband was sealed into a
polytetrafluoroethylene (PTFE) bag and stored at 4 °C at the field laboratory until all
wristbands were returned. Wristbands were shipped overnight to MyExposome Inc. and
stored at —20 °C until extraction.

MyExposome analyzed the wristbands used in this study for a total of 1528 chem-
icals [15,16]. To remove any particles and contaminants, the wristbands were cleaned
before analysis with two rinses with 18 M()-cm of ultrapure water, then one rinse with
isopropanol. They were then stored in amber glass jars at —20 °C until extraction could
be performed. Chemicals were extracted sequentially into two 50 mL volumes of ethyl
acetate. These two volumes were combined, and the sample was evaporated until 1 mL of
solvent remained (Turbo-Vap L, Biotage, Charlotte, NC, USA) [12,14,27,28]. Samples were
stored at 4 °C, then cleaned prior to analysis via solid phase extraction using acetonitrile
and C18 columns to reduce analytical background and improve quantitative results and
detection. The cleaned extracts were solvent exchanged into iso-octane and again stored at
4 °C until analysis could be completed.

To quantify the chemicals in the provided samples, MyExposome implemented gas
chromatography (6890 N Gas Chromatograph, Agilent, Santa Clara, CA, USA) and mass
spectrometry (5975B Mass Selective Detector), along with Automated Mass Spectral Decon-
volution and Identification (AMDIS) software as described elsewhere, including reporting
limits and analytical performance [16]. A matrix was produced containing the detected
concentrations of each chemical found on each participant’s wristband. These concentra-
tions were presented in units of nanogram chemical per gram wristband. If a chemical was
not detected, a value of zero was assigned for that chemical.

Quality control samples were included to ensure results did not contain chemical
detections or concentrations from the laboratory or the silicone itself. These quality control
samples included blank unworn wristbands, solvent extraction blanks, instrument blanks,
and continuing calibration verification samples to ensure instrument performance during
analysis. Among all of the tested blanks, only 3 compounds were detected, bis(2-ethylhexyl)
phthalate, diethyl phthalate and di-n-butyl phthalate. The highest content present among
all blanks was background subtracted from all samples.

2.4. Statistical Analysis

Descriptive statistics were conducted and presented for the participants in this study.
In the chemical exposure data, we imputed 0.0001 for nondetectable values for the purposes
of log transformation and statistical analysis. Detection rates and summary statistics were
calculated for every chemical detected in more than 50% of the study population. These
chemicals were used in further analysis. Simple linear regression was performed to evaluate
associations between sociodemographic and dietary variables with each chemical.
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Stepwise linear regression models were constructed to determine which covariates
best predicted the presence of the most widely detected chemicals in the wristbands. Each
chemical that was detected in more than 50% of the participant samples was individually
modeled as an outcome, with the following covariates investigated for inclusion in the
model: assigned sex at birth, age, BMI, birth order, child’s overall health, parent smoking
status, smoking status of other people in the house, whether the family owns agricultural
land, paternal employment in the garment industry, diet variables, whether the family
owns a television, toilet type, and maternal educational attainment. In models where sex at
birth and/or age were not selected for inclusion, these variables were manually added back
into the model. Models were additionally run replacing the BMI variable with the child’s
height, the child’s weight, and the child’s height and weight as a sensitivity analysis.

In further analyses, we constructed a cumulative exposure score by summing the num-
ber of chemicals detected above their median level. This score was based only on chemicals
that were detected in at least 50% of the samples. Stepwise models were performed, the
outcome of which was the cumulative exposure score.

The chemicals were then divided into categories based on the MyExposome chemical
class (e.g., PAH, chemicals in commerce, pesticide). For this purpose, one chemical could
be represented in multiple classes. Within each chemical class, we made a count of the
number of chemicals detected above their median level. For each class represented among
the most commonly detected chemicals, a stepwise linear regression model was conducted
with the covariates listed above to determine which factors best predict the exposure score
for each chemical class. Assigned sex at birth and age were again manually added into
each model.

Lastly, we performed principal component analysis (PCA) to reduce dimensionality.
The chemical concentrations were log-transformed and scaled before PCA implementation.
PCs with an eigenvalue greater than one were retained for analysis, and loadings were
evaluated using a varimax rotation. Chemicals with a loading of more than 0.5 or less than
—0.5 were considered to be represented by the principal component for the purposes of
interpretation. The PCs were then individually modeled as the outcomes of interest using
linear regression. All covariates described above were evaluated, and stepwise selection
was implemented to determine which set of covariates best predicted the exposure to
the given groupings of chemicals. These results were then compared to the findings in
the single-chemical linear regression models to produce a more complete analysis of the
demographic predictors correlated with these exposures. All analyses were performed in
R (v. 4.2.1).

3. Results
3.1. Descriptive Statistics

Forty children participated in this study, 20 male and 20 female. They were between
five and six years old at enrollment. Among this sample, 58% reported family ownership
of agricultural land, which may indicate pesticide or herbicide exposure. While none of
the mothers reported smoking, 48% reported paternal smoking, and 28% reported smoke
exposure in the home by another smoker (Table 1). Approximately 33% reported paternal
employment in the garment industry (Table 1). A full description of the cohort is reported in
Table 1. For the purposes of comparison, we constructed a count of the number of chemicals
detected above their median concentration in each wristband. We separately described
those below the 25th percentile of exposure (based on chemical count) and those above the
75th percentile of exposure (Table 1). Participants exposed to a greater number of chemicals
were more likely to be female, healthy, second-born, have a higher BMI, have a father who
works in the garment industry, and have parents who own farmland than participants
exposed to a fewer number of chemicals (Table 1). Participants exposed to a greater number
of chemicals were less likely to have a non-parent smoker in the house or own a television
as compared to participants with a fewer number of chemical exposures (Table 1).



Int. |. Environ. Res. Public Health 2024, 21, 1691

50f 15

Table 1. Descriptive statistics stratified by the number of chemicals detected above the mean.

Full Cohort Lower Exposed Participants Higher Exposed Participants
Characteristic
N=40"1 N=101 N=121

Gender

Female 20 (50%) 5 (50%) 9 (75%)

Male 20 (50%) 5 (50%) 3 (25%)
Child age (years)

5 11 (28%) 3 (30%) 2 (17%)

6 29 (73%) 7 (70%) 10 (83%)
Body Mass Index 14.34 (13.54, 15.19) 13.38 (12.96, 13.88) 15.11 (13.90, 16.05)
Birth Order

1 10 (25%) 3 (30%) 1(8.3%)

2 14 (35%) 2 (20%) 7 (58%)

3 8 (20%) 2 (20%) 2 (17%)

4 3 (7.5%) 1 (10%) 1 (8.3%)

5 5 (13%) 2 (20%) 1(8.3%)
Health

Almost Always Unwell 6 (15%) 3 (30%) 1 (8.3%)

Sometimes Quite 111 3 (7.5%) 1 (10%) 0 (0%)

Healthy 31 (78%) 6 (60%) 11 (92%)

Very Healthy 0 (0%) 0 (0%) 0 (0%)
Mother Smokers

Yes 0 (0%) 0 (0%) 0 (0%)

No 40 (100%) 10 (100%) 12 (100%)
Father Smokes

Yes 19 (48%) 4 (40%) 6 (50%)

No 21 (53%) 6 (60%) 6 (50%)
Other Smokers in the House

Yes 11 (28%) 4 (40%) 3 (25%)

No 29 (73%) 6 (60%) 9 (75%)
Own Farm Land

Yes 23 (58%) 4 (40%) 9 (75%)

No 17 (43%) 6 (60%) 3 (25%)
Father Employed in Garment Industry

Yes 13 (33%) 1 (10%) 6 (50%)

No 27 (68%) 9 (90%) 6 (50%)
Television Ownership

Yes 32 (80%) 8 (80%) 6 (50%)

No 8 (20%) 2 (20%) 6 (50%)
Toilet Type

Pit Latrine 21 (53%) 7 (70%) 5 (42%)

Hanging Toilet 9 (23%) 1 (10%) 3 (25%)

Flush 10 (25%) 2 (20%) 4 (33%)
Maternal Educational Attainment

No formal education 2 (5%) 1 (10%) 0 (0%)

Up to primary 11 (28%) 3 (30%) 2 (17%)

Secondary school certificate 25 (63%) 5 (50%) 9 (75%)

Higher secondary certificate or higher 0 (0%) 0 (0%) 0 (0%)

Unknown 2 (5%) 1 (10%) 1 (8%)

1N (%); Median (Q1, Q3). For each participant, we constructed a count of the number of chemicals detected above
their median concentration (from the study population). Participants whose count was below or equivalent to
the 25th percentile were considered “lower exposed” in this table, and those who were in the 75th percentile of
exposure were considered “higher exposed”.
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3.2. Exposure Assessment

A total of 83 chemicals were detected in at least one study participant. Descrip-
tive statistics for all 83 chemicals and the chemical class that they fall into are shown in
Supplementary Table S1. Eighteen chemicals were present in only one wristband
and eight chemicals were detected in only two wristbands. The median number of
chemicals detected on a single wristband was 27.5 (interquartile range = 6.25;
Table 2). PAHs were the chemical class most highly represented in the wristbands
(median = 13 chemicals/wristband, interquartile range = 2; Table 2), followed by chemi-
cals in commerce (median = 9 chemicals/wristband, interquartile range = 3; Table 2). One
chemical, bis(2-ethylhexyl) phthalate (DEHP), was detected in every wristband (Table 3).

Table 2. Statistics of chemicals per wristband.

Chemical Median Range
emica (25th Percentile, 75th Percentile) &
Total 27.5 (23, 29.25) (14, 37)
Chemicals in Commerce 9(8,11) (5,14)
Consumer Products 1(0,1) 0, 4)
Dioxins and Furans 0(0,0) 0, 1)
Flame Retardant 0(,1) ©,2)
Personal Care 64,7) (1,11)
Pesticides 6(5,7) 3,9
Pharmacological 0(0,0) 0,1)
Polycyclic Aromatic Hydrocarbons (PAHs) 13 (12, 14) (5, 20)
Volatile Organic Compounds (VOC) 1(1,2) 0, 2)
Chemical classes were assigned by MyExposome Inc.
Table 3. Chemicals (ng/g silicone) detected in wristbands in at least 50% of study samples.
. o Median (25th and cpe e
Chemical CASN CID %o Detected 75th Percentile) MyExposome Classification
. Chemicals in Commerce and
Bis(2-ethylhexyl)phthalate 117-81-7 8343 100 1540 (874, 2360) Pesticides
Benz[a]anthracene 56-55-3 5954 97.5 28.2 (20.8, 34.9) Polycyclic Aromatic Hydrocarbons
Chemicals in Commerce and
Pyrene 129-00-0 31,423 97.5 176 (133, 207) Polycyclic Aromatic Hydrocarbons
Acenaphthylene 208-96-8 9161 95 17.8 (12.5,24.8) Polycyclic Aromatic Hydrocarbons
Benzyl salicylate 118-58-1 8363 95 374 (170, 822) Personal Care
Diisobutyl phthalate 84-69-5 6782 95 1260 (601, 2960) Chemicals in Commerce
Diethyl phthalate 84-66-2 6781 925 436 (238, 1090) Chemicals in Commerce and
Pesticides
o Polycyclic Aromatic Hydrocarbons
Naphthalene 91-20-3 931 92.5 11.6 (9.04, 16) and Volatile Organic Compounds
Di-n-nonyl phthalate 84-76-4 6787 90 328 (177, 572) Chemicals in Commerce
Permethrin 52645-53-1 40,326 87.5 207 (92.4, 584) Pesticides
. Chemicals in Commerce, Personal
Di-n-butyl phthalate 84-74-2 3026 85 3080 (618, 9200) Care, and Pesticides
Benzo[a]pyrene 50-32-8 2336 82.5 18.6 (10.5,22.2) Polycyclic Aromatic Hydrocarbons
Anthracene 120-12-7 8418 77.5 124 (39.7, 183) Polycyclic Aromatic Hydrocarbons
Cyclopenta[cd]pyrene 27208-37-3 33,743 77.5 59.1 (30.2, 82.1) Polycyclic Aromatic Hydrocarbons
2-Methylphenanthrene 2531-84-2 17,321 725 17.4 (0, 23.2) Polycyclic Aromatic Hydrocarbons
Fluoranthene 206-44-0 9154 70 152 (0, 202) Polycyclic Aromatic Hydrocarbons
Galaxolide 1222-05-5 91,497 70 91.8 (0, 279) Chemicals in Commerce and
Personal Care
Benzophenone 119-61-9 3102 65 21.7 (0, 30.4) Chemicals in Commerce and
Personal Care
Tonalide 1506-02-1 89,440 60 29.4 (0, 61.6) Personal Care
Triphenylene 217-59-4 9170 52.5 9.48 (0, 30.4) Polycyclic Aromatic Hydrocarbons
Benzyl benzoate 120-51-4 2345 50 18.9 (0, 176) Pesticides

CID: PubChem Compound Identifier [29].
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For the purposes of these analyses, only the 21 chemicals that were detected in 50% or
more of the wristbands were considered for further analyses. The median concentrations
in wristbands of these chemicals are shown in Table 3, but it should be noted that these
concentrations cannot be directly compared from chemical to chemical because they may
diffuse into the wristband at different rates. Among this subset of 21 chemicals, PAHs
(48%), chemicals in commerce (38%), and pesticides (24%) are the most common. Spear-
man correlations for the chemicals are shown in Figure 1, with the strongest correlations
observed among PAHs.

Di-n-butyl phthalate
(2-ethylhexyl)phthalate
Fluoranthene

Diisobutyl phthalate
2-Methylphenanthrene

Benz[alanthracene
Benzo[a]pyrene
B C

yclopenta[cd]pyrene

Pyrene
Di-n-nonyl phthalate

Permethrin

Tenalide
Acenaphthylene

Be nzylpsalicylate
Naphthalene

Benzyl benzoate
Diethyl phthalate
Galaxolide
Benzophenone
Anthracene

Triphenylene
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Di—n—bulyrphthalate
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g
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Figure 1. Spearman correlation plot of chemicals detected in >50% of wristbands. Blue indicates more
positive correlation while red indicates negative. * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001.

3.3. Single Chemical Linear Regression

To characterize the associations between the demographic variables and the detected
chemicals in each wristband, stepwise linear regression analyses were used. The number
of predictors for each chemical ranged from five to nineteen, with tonalide being predicted
by the fewest covariates (5 covariates, r? = 0.203) and benzophenone being predicted by
the highest number of covariates (19 covariates, r> = 0.617, Supplementary Table S2). Some
covariates appeared in prediction models more than others, with some occurring in as few
as four models and some being featured in fifteen models. Vegetable consumption was
included in the fewest models, while BMI was included in the most prediction models,
apart from sex at birth and age which were manually included in each of the models
(Supplementary Table S2). The R-squared of the prediction models ranged from 0.146
(fluoranthene) to 0.626 (diisobutyl phthalate; Supplementary Table 52).

We additionally investigated the total number of chemicals detected above their
median concentration in each wristband, representing the overall cumulative exposure
score (Table 4). Overall cumulative exposure score was positively associated with father’s
smoking status and father’s garment work and inversely associated with socioeconomic
status—as measured by television ownership and toilet type. We additionally found that
male children were exposed to fewer chemicals than female children and that higher BMI
was positively associated with the overall cumulative exposure score. Models in which
height, weight, or height and weight were used in place of the BMI variable were not
appreciably different from those constructed with the BMI variable and are reported in
Supplementary Tables S3-S5.
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Table 4. Stepwise modeling of predictors in relation to overall and class-specific cumulative expo-
sure score.

Class-Specific Cumulative Exposure Score (Beta Coefficient and 95% Confidence Interval)

Overall Cumulative
Personal Care

Commerce Pesticide PAHs VOCs Exposure Score
Product
Male Sex at Birth ~1.05 ~107 —0.838 123 0.0135 242
(—2.48,0.37) (—1.79, —0.344) (—1.51, —0.166) (~3.18,0.73) (~0.325, 0.351) (—5.24,0.399)
Ave 0.279 0.933 0.107 0.563 0.0983 139
8 (~1.13,1.69) (0.0836, 1.78) (—0.734, 0.948) (~1.93, 3.05) (—0.265, 0.461) (—2.08, 4.86)
. —0528
Child Health (—1.07, 0.0113)
BMI 0.831 0.718 0.358 1.01 0.114 1.81
(0349, 1.31) (0.381, 1.06) (0.0788, 0.637) (0.152,1.87)  (—0.00212, 0.230) (0.587,3.03)
. ~0332 ~0.129
Birth Order (—0.830, 0.167) (—0.262, 0.00435)
Father Smoke 0.710 0.540 1.87 2.74
(—0.356, 1.78) (~0.160, 1.24) (~0.170,3.92) (—0.0113, 5.49)
209 236
Other Smokers (—4.39, 0.215) (—5.43, 0.707)
0.610
Own Farm Land (—0.206, 1.43)
Garment 0.776 0.500 0.652 223 3.14
(—0.394,1.95) (—0.247,1.25) (—0.0657, 1.37) (0.153, 431) (0.209, 6.07)
Rice ~0.141 0.700
(~0.323, 0.0407) (0.130,1.27)
Beans 0.0764 0.0402 0.0397 0.115
(0.013, 0.140) (—0.00376, 0.0842) (0.00102, 0.0783) (—0.0365, 0.267)
Meat 0.0133 ~0.166
ca (—0.00182, 0.0284) (—0.367, 0.0355)
Vesetables 00657 ~0.0591 ~0.0799 0.0859
8 (—0.146, 0.0148) (—0.109, —0.00940)  (—0.219, 0.0593) (—0.0434, 0.215)
Sweets ~0.0502 00331 00320 ~0.113
(~0.109,0.00886)  (—0.0735,0.00724)  (—0.0694, 0.00550) (—0.27, 0.0443)
Milk ~0.0302 00344
(—0.0652, 0.00474)  (—0.0685, —0.000298)
Juice —0.0885 ~0.119 —0179
(—0.151, —0.0257) (—0.284, 0.0463) (—0.418, 0.0591)
0499
Water (—1.06, 0.0569)
‘ 192 295
TV in House (—3.36, —0.474) (—6.52, 0.628)
Hanging Toilet —0.442 213 31
(—1.42,0.535) (—5.04, 0.793) (~7.05,0.852)
Fluch —0815 362 326
(—1.71,0.0752) (—6.25, —0.979) (~6.61, 0.0967)
. —0.147 0.0465
Mother Education  _ 355" 0645) (—0.0105, 0.104)
R-Squared 0.471 0.529 0.366 0217 0.246 0.411

Abbreviations: Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Reported
values are beta coefficients (95% confidence interval). This portion of the analysis included only the 21 chemicals
there were detected in at least 50% of the participants. The median was calculated from only the wristbands where
the chemicals were detected. Rice, beans, fish, meat, fruit, vegetables, sweets, milk, and juice are recorded as the
number of days per month that the child consumes the food. Water consumption is recorded in units of L/day.

3.4. Analysis by Chemical Classification

Class-specific cumulative exposure scores were also evaluated (Table 4). The number
of chemicals detected above their median concentration in a given wristband ranged from
0 to 8 for commerce chemicals, 0 to 5 for personal care products, 0 to 4 for pesticides,
0 to 10 for PAHs, and 0 to 1 for volatile organic compounds (VOC). From stepwise linear
regression models, we observed a similar pattern of results to the overall cumulative
exposure score. In general, child BMI, father’s employment in the garment industry, and
father’s smoking were positively associated with nearly every class-specific cumulative
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exposure score, whereas various measures of socioeconomic status—meat consumption,
sweets consumption, juice consumption, television ownership, toilet type, or maternal
educational attainment—were inversely associated with class-specific cumulative exposure
score (Table 4).

3.5. PCA Analysis

Principal components (PC) analysis produced nine PCs that had eigenvalues greater
than 1, which explain a cumulative 74.6% of the variance in the chemical detection dataset
(Figure 2). Loadings are shown in Table 5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Principal Component Number

Cutoff for Inclusion in Modeling

Eigenvalue

3
2
1

0

16 17 18 19 20 21

Figure 2. Eigenvalue associated with each principal component. Principal components with eigen-
values greater than 1 (red line) were used in the analysis. This included principal components 1
through 9.

Table 5. Varimax rotated loadings for principal component analysis.

PC1 PC2 PC3 PC4 PC5 PCé PC7 PC8 PC9

Bis(2-ethylhexyl)phthalate —0.018 —0.240 —0.193 0.049 0.110 —0.231 —0.002 0.668 0.247
Benz[a]anthracene —0.126 —0.048 0.071 0.055 —0.132 0.174 0.764 0.010 0.113
Pyrene —0.051 —0.024 —0.038 —0.070 —0.018 —0.854 —0.011 0.050 0.089
Acenaphthylene 0.036 —0.139 0.006 —0.023 0.739 0.002 0.053 0.056 0.068
Benzyl salicylate —0.111 0.052 0.021 —0.894 0.020 —0.036 —0.038 —0.181 0.038
Diisobutyl phthalate 0.078 —0.103 0.340 —0.810 —0.023 —0.110 0.005 0.107 —0.064
Diethyl phthalate 0.018 —0.268 0.073 —0.001 —0.201 0.321 —0.676 —0.034 0.093
Naphthalene —0.183 —0.078 —0.112 0.039 0.770 —0.025 —0.018 0.109 —0.107
Di-n-nonyl phthalate 0.209 0.154 0.009 —0.023 —0.156 0.001 0.021 —0.289 —0.780
Permethrin 0.514 —0.015 0.324 0.187 —0.018 —0.074 0.032 —0.483 —0.285
Di-n-butyl phthalate 0.423 —0.226 0.555 —0.148 —0.062 —0.089 0.042 —0.032 —0.024
Benzola]pyrene —0.056 —0.105 0.324 —0.031 0.390 0.022 0.081 0.688 —0.188
Anthracene 0.800 0.196 —0.152 0.105 —0.065 0.002 —0.098 0.074 —0.067
Cyclopenta[cd]pyrene 0.060 —0.489 0.162 —0.055 0.177 0.033 0.652 0.151 0.057
2-Methylphenanthrene —0.172 —0.865 0.050 —0.094 0.199 —0.010 0.031 0.086 —0.096
Fluoranthene —0.222 0.354 —0.002 0.161 —0.362 0.144 0.315 0.584 —0.035
Galaxolide 0.765 —0.041 0.000 —0.128 —0.096 0.079 —0.042 —0.173 —0.101
Benzophenone 0.270 —0.309 —0.448 —0.584 0.105 0.256 —0.005 0.258 —0.025
Tonalide 0.056 —0.300 —0.018 —0.007 0.185 0.119 —0.125 0.170 —0.815
Triphenylene —0.185 0.039 0.864 —0.138 —0.009 0.152 0.071 0.011 0.025
Benzyl benzoate —0.286 0.446 0.203 —0.147 0.520 0.357 0.146 —0.068 0.104
Eigenvalue 3.1 2.6 2 1.8 1.6 1.3 1.2 1 1
Variance Percent Explained 14.9% 12.3% 9.7% 8.4% 7.6% 6.1% 5.8% 5.0% 4.9%
Cumulative Variance Explained 14.9% 27.2% 36.9% 45.3% 52.9% 59.0% 64.8% 69.8% 74.6%

Bolded values indicate that they loaded more than 50% onto the principal component, either positively or
negatively. They are considered to be included in that principal component for the purposes of analysis.

Results from stepwise linear regression modeling for each PC are summarized in
Figure 3. Again, similar predictors consistently emerged in these analyses. Father’s
smoking was associated with PC2, PC3, PC4, PC6 and PC7. Father’s employment in the
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Variables
Gender
Age
Health
BMI
Birth Order
Father Smoke
Other Smokers
Own Farm Land
Father in Garment Work
Rice Consumption
Bean Consumption
Fish Consumption
Meat Consumption
Fruit Consumpiion
Vegetable Consumption
Sweets Consumplion
Milk Consumption
Juice Consumptlion

garment industry was associated with PC1, PC2, PC4, PC5, PC6, PC8 and PC9. Various
proxies of socioeconomic status were associated with PC3, PC4, PC6, PC7, and PC9.

ey

—_——
— g

Water C
TVin House

Pit Latrine

Hanging Toilet
Mother Education

Variables
Gender
Age
Health
=]
Birth Order
Father Smoke
Other Smokers
Own Farm Land
Father in Garment Work
Rice Consumption
Bean Consumption
Fish Consumption
Meat Consumption
Fruit Consumption
Wegetable Consumption
Sweets Consumption
Milk Consumption
Juice Consumption
Water Consumption
TV in House
Pit Latrine
Hanging Tailet
Mother Education

Variables

Gender

Age

Health

BMI

Birth Order

Father Smoke

Other Smaokers

Own Farm Land
Fatherin Garment Work
Rice Consumption
Bean Consumption
Fish Consumption
Meat Consumplion
Fruit Consumption
Vegetable Consumption
Sweets Consumption
Milk Consumption
Juice Consumption
Water Consumption
TVin House

Pit Latine

Hanging Toilet
Mother Education

PC2

0
Beta Estimate

1

0
Beta Estimate

PC5

PC3

-3 -2 =1 0 1
Beta Estimate

PC6

Beta Estimate

pC7

-15 = -05 0 05
Beta Estimate

PCo

—
e
-

-2 =1
Beta Estimate

0

-05

Beta Estimate

! o 1
Beta Estimate

Figure 3. Principal components analysis results. Rice, beans, fish, meat, fruit, vegetables, sweets,

milk, and juice consumption are all reported in units of days the food was consumed per month.

Water consumption is reported in units of L/day.
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4. Discussion

This study presents novel data on the prevalence and patterns of organic chemical
exposures among children residing in a rural community in Bangladesh. We observed
that exposures to PAHs, chemicals in commerce, and pesticides were more prevalent than
other chemical classes. We assessed various constructs of exposure patterns and observed
consistent positive associations between father’s smoking status and father’s employ-
ment in the garment industry with higher exposure prevalence, whereas socioeconomic
status was generally associated with lower exposure prevalence. Child characteristics,
including female sex at birth and higher BMI, were also generally associated with higher
exposure prevalence.

Many dietary variables were included in various models, though they were associated
with very small effect sizes, suggesting that they were included to improve the variance
of the models rather than because they were strong predictors. This is not surprising
because, in many cases, the consumed food item is unlikely to directly affect VOC and
SVOC chemicals detected on the wristbands in this cohort. One exception is that meat and
vegetables may reflect exposures resulting from cooking these foods. Because much of the
cooking is done using biomass, consumption of food that requires cooking on the stove can
lead to increased exposure to PAHs [5-8]. Some of the other diet variables may be acting as
a proxy for socioeconomic status, such as consumption of sweets, meat, and juice.

Benz(a)anthracene was detectable in all but one participant sample. Compared to other
silicone wristband sampling studies, the prevalence observed in our study was notably
higher [30,31]. This can be attributed to the widespread use of biomass fuel for cooking, as
benz(a)anthracene is a known PAH resulting from biomass burning [32].

We identified several previous studies investigating children’s chemical exposure
using passive wristband samplers. One study focused on PAH exposure in 24 children in
Uruguay [33]. This study found a much broader variety of PAHs than our study, with 18
PAHs being detected in more than 50% of tested wristbands compared to the 10 found in
this study. However, the concentrations they detected were much lower, with the highest
median concentration observed being 16.3 ng/g wristband, while the highest median
concentration for a PAH in our study was 175.5 ng/g wristband. Only two of the ten PAHs
highly detected in our study had a lower median concentration than the participants in
the Uruguay study, suggesting that the children in our study were more highly exposed to
PAHs than the children studied in Uruguay. Some of the PAHs detected in the Uruguay
study were not detected in our Bangladesh population. This finding may be due to a
difference in the limit of detection between this study and our study. Targeted exposure
studies have lower limits of detection than untargeted studies, such as our study [16]. It
may be that the undetected PAHs were in fact present in our study, but at levels below the
limit of detection.

Additionally, a few passive wristband studies have been conducted that focus on other
pediatric exposures in communities. Many of these studies focus on organophosphates (OP),
commonly used as flame retardants and pesticides [27,34-36]. Targeted studies conducted
in Uruguay (sample size N = 24), Oregon (sample size N = 92), New York (sample size
N = 64), and South China (sample size N = 94) each investigate these exposures and, in
all cases, detect OPs in more than 50% of their participants, while we did not widely
observe any of these chemicals. This suggests that the children in Araihazar may be less
exposed to this type of chemical than children in other places around the world [27,34-36].
Alternatively, this finding may be explained by the targeted nature of these studies: the
children in our study may have been exposed to OPs, but at levels below the limit of
detection of the broader chemical analysis.

Some studies focused on other pesticides and generally found different exposure
profiles than those identified in our current study. In one targeted study conducted in
10 children in North Carolina, permethrin was detected in only 40% of the participants
compared to 87.5% in our study, and a targeted study conducted with 38 children in South
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Africa detected both deltamethrin and chlorpyrifos at high rates, while we did not detect
any deltamethrin, and we detected chlorpyrifos in only 7.5% of participants [37,38].

One study targeting only phenol exposure in 203 residents of North Carolina detected
many more parabens than were present in our current study, including methyl- and
ethylparaben, which we did not detect in any participant [39]. There was one study that
targeted nicotine and tobacco by-products which found nicotine at high levels in children
whose parent smokes, while it was not detected at all in our present study [40]. These
different exposure profiles among children indicate that the chemical exposures faced by
children in Bangladesh may be substantially different from their peers in other countries,
suggesting that this region is in need of further study.

One previous wristband passive sampling study was conducted in an adult Bangladeshi
population, specifically in Dhaka’s e-waste dismantlers (N = 15) [11]. This study investi-
gated exposure to brominated diphenyl ethers (BDEs), novel brominated flame retardants,
dechlorane plus, and organophosphate esters, and they found phthalates and BDEs at very
high detection rates [11]. Our current study showed very low detection rates for these
types of chemicals, and the differences are likely because the Dhaka study was targeted
towards BDEs and was conducted in an occupational cohort, while the present study was
conducted in a community-based cohort of children. The findings of the current study
represent an approximation of the community exposures that are encountered in the region,
though they may be affected by the prevalence of the garment industry.

This study has some limitations. First, the small sample size limited the power of
our analysis and the ability to conduct more nuanced statistical analysis. Second, the
passive wristband samplers cannot directly attribute an exposure to any given source or
behavior, and therefore, if there is an important exposure source that was not explored
in the questionnaire, we may have missed important contributors. Third, we cannot
compare concentrations between different chemical species within the same wristband
because the chemicals may differ in their ability to absorb into the wristbands. Fourth, the
questionnaire data were collected upon enrollment, which was five to seven years before
the wristbands were distributed and may have changed. Lastly, caution must be used
when comparing the findings from this study to other studies because much of the existing
literature consists of targeted exposure investigations, with lower limits of detection for the
specific chemicals investigated.

The use of passive wristband samplers was a strength of this study because they
represent a very noninvasive way of collecting personal data on volatile and semi-volatile
exposures and we were able to quantify a variety of chemicals in these wristbands. This
technology provided the opportunity to evaluate exposures of children in a rural region of
Bangladesh, with limited and inconsistent access to electricity. Recent scientific evidence
suggests that wristband sampling devices correlate well with some serum biomarkers,
SVOC concentrations in dust, and other passive samplers [30,39,41]. Additionally, because
of the timing of the questionnaire data collection, we were able to take a prospective
viewpoint of the factors that may result in exposure.

The purpose of this study was to characterize the exposome of the children in the
Araihazar region of Bangladesh. These children are highly exposed to arsenic through their
water and have higher risk of diabetes, chronic obstructive pulmonary disease, chronic
kidney disease and adverse cardiovascular outcomes as they age [22-24]. These outcomes
cannot be fully explained by arsenic exposure, so evaluating other chemical exposures
is crucial to investigating whether other environmental exposures may be responsible
for these increased risks of adverse health outcomes. The findings of this study will be
implemented to evaluate the impact of these exposures on the health of the children studied.

5. Conclusions

Overall, this study presents novel information on patterns of organic chemical ex-
posures in children residing in rural Bangladesh. The most prevalent exposure classes
included PAHs, chemicals in commerce, and pesticides. Father’s smoking status and
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employment in the garment industry were consistently observed to be associated with
exposure prevalence, whereas television ownership, toilet type, and mother education (all
proxies of socioeconomic status) were observed to be inversely associated with exposure
prevalence. In the future, the results acquired here may be used to evaluate the relationship
between these exposures and adverse health outcomes.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390/ijerph21121691/s1, Table S1: Chemicals Detected in Wrist-
bands; Table S2: Results from Stepwise Modeling with Single Chemical Outcomes; Table S3: Results
from sensitivity analyses replacing BMI with height; Table S4: Results from sensitivity analyses
replacing BMI with weight; Table S5: Results from sensitivity analyses replacing BMI with height
and weight.
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