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Abstract: Organophosphorus (OP) pesticides are used in agriculture and several are 

registered for home use. As young children age they may experience different pesticide 

exposures due to varying diet, behavior, and other factors. We measured six OP 

dialkylphosphate (DAP) metabolites (three dimethyl alkylphosphates (DMAP) and three 

diethyl alkylphosphates (DEAP)) in urine samples collected from ~400 children living in 

an agricultural community when they were 6, 12, and 24 months old. We examined 
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bivariate associations between DAP metabolite levels and determinants such as age, diet, 

season, and parent occupation. To evaluate independent impacts, we then used generalized 

linear mixed multivariable models including interaction terms with age. The final models 

indicated that DMAP metabolite levels increased with age. DMAP levels were also 

positively associated with daily servings of produce at 6- and 24-months. Among the  

6-month olds, DMAP metabolite levels were higher when samples were collected during 

the summer/spring versus the winter/fall months. Among the 12-month olds, DMAP and 

DEAP metabolites were higher when children lived ≤60 meters from an agricultural field. 

Among the 24-month-olds, DEAP metabolite levels were higher during the summer/spring 

months. Our findings suggest that there are multiple determinants of OP pesticide 

exposures, notably dietary intake and temporal and spatial proximity to agricultural use. 

The impact of these determinants varied by age and class of DAP metabolite. 

Keywords: children; organophosphorus; pesticides; exposure; agriculture; biomarkers; diet 

 

1. Introduction 

Public health concerns about pesticide exposure to young children have received increased attention 

following the publication of “Pesticides in the diets of infants and children” in 1993 [1]. In 1996, the 

U.S. Food Quality Protection Act (FQPA) required the U.S. Environmental Protection Agency  

(U.S. EPA) to set food tolerances that account for dietary and non-dietary exposure and protect 

sensitive populations [2]. Biomonitoring studies have confirmed that children are widely exposed to 

pesticides, including organophosphorus (OPs), pyrethroid, fungicide, and organochlorine pesticides  

[3-6]. Diet is an important source of pesticide exposure in children. For example, Lu et al. [7] reported 

that the median urinary concentrations of the specific metabolites for malathion and chlorpyrifos 

decreased to undetectable levels after the introduction of organic diets in school-aged children. Several 

studies have confirmed that children may also be exposed to pesticide contamination in home and 

daycare environments [8-13].  

Children living in agricultural areas may also be exposed to pesticides through drift during 

applications or volatilization from nearby fields and parental take-home exposures [10,11,14-22].  

Lu et al. [18] found that children (9 months to six years old) who live in agricultural communities  

had five times higher OP metabolite levels in their urine compared to children who resided  

in nonagricultural communities. These researchers also found higher residential OP pesticide 

contamination and/or elevated urinary metabolite levels in children living near orchards [18]. Higher 

exposure to children living in agricultural areas has raised environmental justice concerns and has 

resulted in proposals to define farmworker children as a vulnerable population that need additional 

protections by the U.S. EPA [23]. 

Identifying pesticide exposure determinants is needed to identify sources and pathways of pesticide 

exposure in children and contribute to policies aiming to reduce exposure. To date, no longitudinal 

studies have investigated factors associated with pesticide exposure in very young children. We 

hypothesize that exposure factors will vary over time given the changes in diet, behavior, and family 
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practices that occur as children age [24]. In this study, we report levels of OP pesticide metabolites in  

6, 12, and 24 month old children (n = 417) participating in the CHAMACOS birth cohort study in the 

Salinas Valley of California, an agricultural area. We examined potential determinants of exposure 

associated with OP urinary metabolite levels at each age point, including sex, child behavior, diet, 

home pesticide use, season, parental work status, and proximity of homes to fields. We focused on OPs 

because they are commonly used in the Salinas Valley and were the first pesticide class re-examined 

under the FQPA. 

2. Methods 

2.1. Participants and Recruitment 

The Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) is a 

longitudinal cohort study investigating environmental exposures and health of pregnant women and 

their children living in the Salinas Valley, Monterey County, California [25]. Between October 1999 

and November 2000, 601 pregnant women were enrolled in the CHAMACOS birth cohort study, 

resulting in 538 live births. Eligible women were ≥18 years old, <20 weeks gestation, Spanish- or 

English-speaking, eligible for Medi-Cal, receiving prenatal care at local community clinics, and 

planning to deliver at the county hospital in Salinas, California. We collected urine samples from 97% 

(420 of 434) of children at 6 months, 92% (407 of 441) of children at 12 months, and 92% (382 of 414) 

of children at 24 months of age. Participating children turned six months of age between August 2000 

and December 2001; 12 months of age between February 2001 and June 2002; and, 24 months of age 

between February 2002 and June 2003. Written informed consent was obtained from all participants 

and the study was approved by the Committee for the Protection of Human Subjects at the University 

of California, Berkeley. 

2.2. Interviews and Home Assessments  

Mothers were interviewed when the children were 6, 12, and 24 months old. Interviews were 

conducted in Spanish or English by bilingual interviewers. Information collected included 

demographics, household enumeration, occupational status, whether work clothes were worn into the 

home, home pesticide use, presence of pets, daily servings of child fruit and vegetable consumption 

based on a modified food frequency questionnaire, time spent in child care, location of child care 

relative to fields, and frequency of hand washing and how often child fingers, hands, or toes are placed 

in the mouth. The interview also included a Child Behavior Checklist (CBCL) which uses a 

standardized format to assess parent-reported behavioral characteristics of children. Based on the 

CBCL, we selected child temperament indicators that we hypothesized could be associated with 

behaviors that affect pesticide exposure: “Can’t sit still, restless, or hyperactive”, “Gets into 

everything”, “Quickly shifts from one activity to another”, and “Underactive, slow moving, or  

lacks energy.” 

Shortly after each interview, study staff conducted a home inspection. Recorded information 

included distance between the home and agricultural fields, carpeting, housekeeping quality, and a 
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detailed inventory of home pesticides [26]. Home visits were completed for 87%, 84%, and 87% of the 

enrolled children at 6-, 12-, and 24-months, respectively. 

2.3. Meteorological Data 

Based on previous analyses that showed inverse associations between rainfall and air concentrations 

of OP pesticides [27], we hypothesized that daily rainfall may be associated with lower urinary 

metabolite levels. We obtained daily rainfall amounts near each home from the California Climate 

Data Archive [28]. We also examined season (Spring/Summer versus Fall/Winter) as a potential 

determinant of exposure since most agricultural pesticide use in this region occurs in spring and 

summer [29].  

2.4. Child Urine Sample Collection  

Random spot urine samples were collected from each child at 6, 12, and 24 months of age. A 

standard infant urine collection bag (Hollister, Libertyville, IL) was used during the study visit. If the 

child could not provide the sample during the visit, a spot sample was collected on the next day at the 

child’s home. Upon collection, urine samples were aliquotted and stored at −80 °C until analysis.  

2.5. Laboratory Analysis 

Urine samples were analyzed by the Centers for Disease Control and Prevention in Atlanta, Georgia. 

We measured six non-specific DAP metabolites of OP pesticides (three dimethyl alkylphosphate 

(DMAP) metabolites: dimethylphosphate (DMP); dimethyl-dithiophosphate (DMDTP); 

dimethylthiophosphate (DMTP); and three diethyl alkylphosphate (DEAP) metabolites: 

diethylphosphate (DEP); diethyldithiophosphate (DEDTP); and diethyl-thiophosphate (DETP)) by 

isotope dilution gas chromatography-tandem mass spectrometry (GC-MS/MS) [30]. We measured 

DAPs, rather than pesticide-specific metabolites, because there are no laboratory methods to measure 

specific metabolites of several OP pesticides used in the study area, such as oxydemeton-methyl. 

Approximately 80% of the OP pesticides used in the Salinas Valley devolve to a DAP metabolite 

(Supplementary Material, Table S1). Creatinine concentrations were determined in urine using a 

commercially available diagnostic enzyme method (Vitros CREA slides, Ortho Clinical Diagnostics, 

Raritan, NJ). 

Laboratory quality control included repeat analysis of three in-house urine pools enriched with 

known amounts of pesticide residues whose target values and confidence limits were previously 

determined. The validity of each analytical run was determined using the Westgard rules for quality 

control [31]. The limits of detection (LODs) ranged from 0.08 g/L for DMDTP to 1.1 g/L for 

DMTP. Metabolite levels below the LOD were randomly imputed based on a log-normal probability 

distribution. Because individual OP pesticides can devolve to more than one DAP metabolite, we 

summed the DAPs on a molar basis to reflect total DMAP or DEAP metabolites. Frozen field blanks, 

prepared earlier by CDC, were defrosted, re-packaged in the field in a manner identical to collection 

procedures for actual samples, and then shipped blinded to CDC. The mean levels of individual DAP 
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metabolites in 57 blank field samples were <2 g/L. The median values of the DAP metabolites in the 

field blanks were all below the detection limit. 

2.6. Data Analysis 

All data analyses were performed with Stata Version 10 (StataCorp LP, College Station, TX). We 

first computed descriptive statistics and percentiles for individual and total DMAP and DEAP 

metabolites at each sampling time point. We used Pearson correlations and ANOVA to assess bivariate 

associations between the metabolite levels (log10-transformed) and potential exposure determinants 

selected a priori, including sex, age, produce intake, breastfeeding, season, distance to agricultural 

fields, occupation of household members, wearing work clothes or shoes into the home, home 

pesticide use, presence of carpets, presence of pets, and housekeeping quality. We examined post facto 

additional determinants which may be related to drift of pesticides from fields, including daily rainfall, 

behaviors which may modify exposures (see Methods above), time spent in child care, and proximity 

of child care to agricultural fields [10,11,14-21,27]. 

We then constructed generalized linear mixed models (GLLAMM procedure in Stata Version 10 

(StataCorp LP, College Station, TX) with log10-transformed DMAP or DEAP metabolite levels as the 

dependent variables and potential exposure determinants found to have significant (p < 0.1) bivariate 

relationships. The models included a random effects term to adjust for the lack of independence of 

repeated measures on the same subject. Because children’s development, diet, and behavior differ at 

different age points, we also examined whether age modified any associations, with 12-month olds 

(yes/no) and 24-month olds (yes/no) compared to 6-month olds as the reference. All interaction terms 

were included in the final DMAP and DEAP models. Based on the final models, we used linear 

combination equations to compute the percent differences in log DMAP and DEAP metabolites for the 

predictor variables to determine the effect of these predictors on metabolite levels among the 6-, 12- 

and 24-month old children. To assess bias due to loss to follow up, we ran the models with weights 

equal to the inverse probability of inclusion in the final sample at each time-point [32,33]. We then 

performed the analyses without the weights for comparison. 

For statistical analyses, we present results that are not adjusted for creatinine. Analyses were 

repeated with creatinine-adjusted values to confirm our bivariate results. We also included urinary 

creatinine as an independent variable in the final multivariable mixed DMAP and DEAP models for 

comparison with models without the urinary creatinine variable [34]. 

3. Results 

3.1. Demographic Characteristics  

Table 1 presents the demographic characteristics of the CHAMACOS mothers (n = 460) when their 

children were 6-months old. Fifteen percent of mothers were employed as agricultural workers, and 

66% percent shared a home with at least one agricultural worker. Sixty-six percent of mothers were 

living at or below the U.S. federal poverty threshold. The average ages (SD) of the children at the three 

sampling time points were 6.7 (1.1); 13.0 (1.7); and 24.6 (1.1) months, respectively. 
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Table 1. Demographic characteristics of participating families (n = 460). 

Characteristic n (%) 

Mother’s age (mean (SD) = 26.5 (5.2) years) a 

18–24 207 (45.0) 

25–29 142 (30.9) 

30–35 83 (18.0) 

35+ 28 (6.1) 

Mother’s country of birth 

Mexico 392 (85.2) 

United States 60 (13.0) 

Other 8 (1.7) 

Mother’s length of residence in the United States b   

Less than 5 years 214 (46.5) 

5 or more years 246 (53.5) 

Mother’s highest level of education b   

Some elementary school (grades 1 to 6) 207 (45.0) 

Grades 7 to 12 163 (35.4) 

High school graduate 90 (19.6) 

Language spoken at home 

Spanish mostly 409 (88.9) 

English mostly 25 (5.4) 

Both equally 21 (4.6) 

Other 5 (1.1) 

Family income relative to federal poverty threshold c 

At or below poverty threshold 302 (65.6) 

Above poverty threshold but below 200% of poverty  114 (24.8) 

200% poverty threshold or greater 4 (0.9) 

Not reported 40 (8.7) 

Total number of household members when child is 6-months old 

2–3 30 (6.5) 

4–5 129 (28.0) 

6–9 205 (44.6) 

10 or more 61 (13.3) 

Not reported 35 (7.6) 

Mother’s work status when child is 6-months old 

Not working 294 (63.9) 

Field work 51 (11.1) 

Ag work 18 (3.9) 

Other work 64 (13.9) 

Not reported 33 (7.2) 

Other agricultural workers in household when child is 6-months old 

0 124 (27.0) 

1–3 246 (53.5) 

4–9 57 (12.4) 

10 or more 1 (0.2) 

Not reported 32 (7.0) 
a
 At time of child’s birth.  

b 
During pregnancy (i.e., at time of entry into the CHAMACOS project). 

c 
Poverty thresholds were calculated using the U.S. Department of Health and Human 

Services’ (HHS) level for the year 2000. 



Int. J. Environ. Res. Public Health 2011, 8         

 

 

1067 

3.2. Urinary Metabolite Concentration Data 

Table 2 presents descriptive statistics for the total DEAP, DMAP and DAP molar concentrations at 

each sampling point. The DMAP metabolites were dominated by DMTP and DMP (68 and 50% 

detection frequency, respectively, at 6-months), whereas the DEAP metabolites were dominated by 

DEP (68% detection frequency at 6-months). Oxydemeton methyl, malathion, and dimethoate were the 

most common dimethyl OP pesticides used in the region, while chlorpyrifos and diazinon were the 

most common diethyls (Supplementary Material, Table S1). Most participants had at least one DAP 

detected with 6-, 12- and 24-month detection frequencies of 93%, 94% and 95%, respectively. 

Consistent with previous studies, the DMAP metabolite levels were higher than the DEAP metabolite 

levels [8,35,36]. 

DMAP metabolite levels were about three-fold higher at 24-months and two-fold higher at  

12-months compared to the 6- month-old children. There is no clear pattern in the change in DEAP 

levels with age. Pearson correlations between the 6-, 12- and 24-month sampling time points ranged 

from −0.03 to 0.07 for the DEAP metabolites (p-values > 0.05), 0.07 to 0.22 for the DMAP 

metabolites, and 0.02 to 0.19 for the total DAP metabolites. These results suggest weak inter-sample 

correlations (Pearson r~0.2) in DMAPs and total DAPs in urine collected at 12 and 24 months  

(p-values < 0.001). Within each sampling cross-section (6, 12, and 24 months), the DMAP and DEAP 

metabolites were moderately correlated: 0.29; 0.50; and 0.48 (all p < 0.001), respectively. The 

children’s 6- 12- and 24-month creatinine-adjusted urinary metabolite levels are presented in the 

Supplementary Material, Table S2.  

Table 2. Children’s urinary DAP metabolite levels at three time points, at 6, 12 and  

24 months (nmol/L)
 a
. 

 
Detection 

Frequency (%) 

Geometric 

Mean 
Percentiles 

Child 6 months (N = 416)   25 50 75 90 Max 

DMP 49.9 <LOD <LOD <LOD 26.8 97.1 1,291 

DMTP 68.1 6.4 <LOD 6.8 27.0 153 4,059 

DMDTP 25.5 <LOD <LOD <LOD 0.6 22.4 777 

Total DMAP 79.1 18.5 5.4 15.2 62.0 293 5,329 

        

DEP 67.6 3.6 <LOD 6.5 17.2 43.7 17,777 

DETP 31.3 <LOD <LOD <LOD 5.4 10.8 311 

DEDTP 13.9 <LOD <LOD <LOD <LOD 3.6 1,041 

Total DEAP 79.1 8.6 <LOD 10.8 25.7 58.8 17,786 

        

Total DAP (N = 409) 93.3 40.0 13.7 36.1 110 356 17,838 

Child 12 months (N = 404)   25 50 75 90 Max 

DMP 62.7 8.7 <LOD 11.1 39.7 110 1,464 

DMTP 56.0 6.1 <LOD 6.9 46.6 203 2,834 

DMDTP 52.7 1.2 <LOD 1.0 7.6 34.5 463 

Total DM 76.8 26.4 3.6 28.2 116 354 3,257 
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Table 2. Cont. 

 
Detection 

Frequency (%) 

Geometric 

Mean 
Percentiles 

DEP 81.1 6.1 2.6 8.7 21.3 49.7 341 

DETP 73.1 2.4 <LOD 4.3 6.9 14.6 110 

DEDTP 33.6 <LOD <LOD <LOD 2.4 5.8 131 

Total DE 91.4 14.2 7.7 16.2 32.9 67.7 389 

        

Total DAP (N = 402) 94.3 54.3 19.2 53.9 160 433 3,298 

Child 24 months (N = 381)   25 50 75 90 Max 

DMP 61.9 10.7 <LOD 16.1 64.7 129 964 

DMTP 92.1 21.8 7.5 20.6 67.2 178 1,656 

DMDTP 32.6 <LOD <LOD <LOD 3.4 10.5 270 

Total DMAP 94.5 45.0 13.2 50.3 141 309 2,305 

        

DEP 57.2 3.1 <LOD 7.6 35.9 79.1 608 

DETP 63.0 1.4 0.3 1.8 4.6 13.2 350 

DEDTP 9.5 <LOD <LOD <LOD <LOD <LOD 44.4 

Total DEAP 72.2 8.4 <LOD 12.2 45.6 92.1 724 

        

Total DAP (N = 381) 95.3 66.3 23.1 75.8 192 391 2,380 
a Detection limits from multiple batches of urinary metabolite data: DMP=0.4–0.6 g/L;  

DMTP = 0.2–0.3 g/L; DMDTP = 0.08–0.1 g/L; DEP = 0.1–0.2 g/L; DETP = 0.1 g/L;  

DEDTP = 0.1 g/L. 

3.3. Determinates of DMAP metabolites 

The unadjusted relationships between covariates and DMAP and DEAP metabolite levels at the 

different ages are shown in the Supplementary Material, Tables S3 and S4; the only consistent 

association across the three ages was that DMAP metabolites were positively associated with the 

number of children’s daily servings of fruits and vegetables (fresh and processed combined)  

(Pearson r = 0.17, 0.12, and 0.12, respectively (p < 0.05)). For other exposure determinants, the 

relationship with DMAP metabolites varied with age category. At 6-month olds, DMAP metabolites 

were higher in females versus males (geometric mean = 22 vs. 15 nmol/L (p < 0.05)); in samples 

collected in spring/summer vs.winter/fall (25 vs. 13 nmol/L (p < 0.01)); when at least one agricultural 

worker lived in the home vs.none (21 vs. 11 nmol/L (p < 0.01)); when the mother currently worked as 

an agricultural worker vs. not (29 vs. 16 nmol/L (p < 0.01)); with the child having spent  

>15 hours/week in child care (25 vs. 16 nmol/L (p < 0.05)); and with having the child care facility  

≤ 60 m from a field (45 vs. 17 nmol/L (p < 0.05)). DMAP metabolite levels were also associated with 

the number of household members wearing agricultural work clothes (r = 0.19, p < 0.01) and shoes 

inside the home and mean millimeters of rainfall in the week prior to urine collection (r = −0.16,  

p < 0.01). For 12-month olds, higher DMAP levels were found in those living < 60 meters vs.  

> 60 meters from an agricultural field (60 vs. 25 nmol/L (p < 0.05)). No other covariates including 
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housekeeping quality, exposure-related behaviors, and temperament indicators as reported by the 

mother were associated with DMAP metabolite levels. 

Table 3 (see also Supplementary Material, Figure S1) presents results from the multivariable 

GLLAMM analysis for DMAP levels. DMAP metabolites increased 59%, 36%, and 104% for each 

additional daily serving of fruits and vegetables among the 6-, 12- and 24-month old children; the 

results were not significant at 12-months. DMAP metabolites increased 56% when urine collection 

occurred during the spring/summer versus the winter/fall months (p-value < 0.05) for 6-month olds but 

not significantly at the other ages. For the 12-month old children, mean daily rainfall in the prior week 

was significantly associated with decreasing DMAP levels (−13% per millimeter of rain) and living  

≤60 m vs. >60 m from an agricultural field was associated with increased levels (change = 192%;  

p-value < 0.01). No other covariates were related to DMAP levels at any of the ages. Overall, the 

DMAP multivariable model results were similar when creatinine was included as a covariate (results 

not shown). 

3.4. Determinants of DEAP Metabolites 

Supplementary Material, Table S4 presents the unadjusted relationships between covariates and 

DEAP levels at the different ages. At 6 months of age, there was a significant positive association 

between DEAP metabolites and having the child’s child care facility ≤60 m from an agricultural field 

(geometric mean = 18 vs. 8 nmol/L (p < 0.05)) and a negative association with rainfall measured 

locally during the period prior to urine collection. At 12 months of age, those living ≤60 m vs. >60 m 

from an agricultural field had significantly higher levels (26 vs.13 nmol/L (p < 0.05)). At 24 months of 

age, DEAP metabolites were significantly higher when urine samples were collected in the 

spring/summer vs.winter/fall (12 vs. 6 nmol/L (p < 0.01)) and were positively correlated with the 

number of daily servings of fruits and vegetables (Pearson r = 0.15 (p < 0.01)). No other covariates 

were associated at any of the ages including child temperament. 

The multivariable DEAP model confirmed the univariate findings and were notably different than 

the DMAP findings (see Table 3 and Supplementary Material, Table S4 and Figure S2). Among the  

6-month olds, mean daily rainfall (millimeters) was negatively associated with DEAP levels. Among 

the 12-month olds, similar to the DMAP findings, DEAP metabolite levels were 107% higher among 

12-month olds living ≤60 m vs. >60 m from an agricultural field. Among the 24-month olds, DEAP 

metabolite levels were 109% higher in the spring/summer versus the winter/fall months, but, in 

contrast to the findings for the 6-month olds, DEAP metabolites was positively associated with 

average daily rainfall. No other significant associations were observed between children’s DEAP 

metabolites and predictors of exposure in multivariable models, including daily servings of fruits and 

vegetables (Table 3). Results were similar after creatinine adjustment (not shown). 
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Table 3. Results from generalized linear mixed models of exposure predictors and DMAP and DEAP metabolites (log10) in children  

6, 12- and 24-months old (416 children, 1201 urine samples).  

 
6-Month 

%
a
 (95% CI) 

12-Month 

%
a
 (95% CI) 

24-Month 

%
a
 (95% CI) 

DMAP metabolites 

Daily servings of fruits and vegetables (≤ vs. > 1) 59.1 * (9.6, 131.0) 35.8 (−24.3, 143.5) 104.0 * (3.4, 302.2) 

Agricultural worker living in the home (yes/no) 30.5 (−19.7, 111.9) −5.7 (−42.0, 53.5) −3.9 (−41.1, 57.0) 

Average daily rainfallb −8.7 (−16.9, 0.2) −12.7 * (−23.6, −0.3) 22.3 † (−1.0, 51.0) 

Child’s sex (Girl = 1) 32.3 (−6.9, 88.2) −19.7† (−43.7, 14.7) −20.2 (−46.0, 18.0) 

Distance between home and fields (≤60 m = 1) −16.7 (−54.7, 53.1) 192.3 **† (53.4, 456.8) −20.3 (−66.0, 87.1) 

Farmworkers wearing work clothes / shoes insidec 11.7 (−0.7, 25.6) 4.6 (−6.4, 16.9) −9.3 † (−21.9, 5.3) 

Spring/summer (vs. winter/fall) 56.1 * (9.2, 123.2) −12.0 † (−38.9, 26.8) 4.0 (−29.7, 53.8) 

Child care > 15 hours/wk (yes/no) 7.8 (−29.5, 64.8) 4.6 (−31.4, 59.5) −21.7 (−48.4, 18.8) 

Child care distance to fields (≤60 m = 1) 69.9 (−27.3, 296.8) 2.6 (−57.6, 148.3) 9.1 (−47.6, 127.4) 

DEAP metabolites 

Daily servings of fruits and vegetables (≤1 vs. >1) 25.0 (−12.0, 77.6) 3.1 (−40.5, 78.5) 56.5 (−17.3, 196.0) 

Agricultural worker living in the home (yes/no) −3.1 (−38.7, 53.0) 44.4 (−8.6, 128.2) −12.9 (−45.0, 38.0) 

Average daily rainfallb −12.1 ** (−19.5, −4.0) −8.2 (−19.0, 4.1) 25.6 *† (3.0, 53.1) 

Child’s sex (Girl = 1) −6.5 (−32.9, 30.2) −14.2 (−38.5, 19.6) −22.0 (−45.9, 12.4) 

Distance between home and fields (≤60 m = 1) −41.4 (−66.8, 3.7) 106.9 *† (13.2, 278.2) −15.3 (−61.9, 88.2) 

Farmworkers wearing work clothes / shoes insidec −0.8 (−11.3, 10.9) −10.6 * (−19.4, −0.8) 5.0 (−8.7, 20.9) 

Spring/summer (vs. winter/fall) 13.8 (−18.7, 59.5) −20.3 (−43.4, 12.3) 109.0 **† (45.0, 201.2) 

Child care >15 hours/wk (yes/no) −7.1 (−37.8, 38.9) 11.9 (−24.8, 66.6) −19.7 (−45.7, 18.6) 

Child care distance to fields (≤60 m = 1) 107.5 (−6.6, 361.1) −2.9 (−57.6, 122.5) −30.1 † (−64.9, 39.2) 

* p-value < 0.05; ** p-value < 0.01 

† Significant interaction with age (p < 0.1) based on two indicator variables created to examine whether age modified any associations:  

12-months old (yes/no) and 24-month olds (yes/no) compared to 6-month olds as the reference. 
a Percent change in DMAP or DEAP metabolite levels associated with 1-unit increase or a yes/no difference in exposure characteristic. 
b Mean daily millimeters of rainfall measured in Salinas, CA during the 1 week period prior to urine collection.  

c Number of farmworkers in household who wear agricultural work clothes or shoes inside the home. 
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4. Discussion 

We investigated the relationship between potential exposure determinants and urinary (OP) 

pesticide metabolite levels in ~400 children followed through infancy and toddlerhood living in an 

agricultural community. All children had detectable levels of OP metabolites in their urine. Consistent 

with previous studies, the DMAP metabolite levels were higher than the DEAP metabolite  

levels [8,35,36]. 

We observed three-fold higher DMAP levels in 24-month olds and two-fold higher levels in  

12-month olds relative to 6 month olds; however DEAPs declined between 12 and 24 months. Nearby 

agricultural use of dimethyl and diethyl OP pesticides was generally stable over the study period, 

however, most residential uses of chlorpyrifos and diazinon, two diethyl OP pesticides, were  

cancelled [29,37-41]. CHAMACOS children turned 12 months during the first year of the residential 

ban, which was phased in gradually. Thus, the decrease in DEAP metabolite levels among 24-month 

olds may be related to reduced indoor contamination of chlorpyrifos and diazinon (both diethyl OP 

pesticides), due to the residential use ban. This hypothesis is supported by our finding in a separate 

study that chlorpyrifos and diazinon house dust levels declined in Salinas Valley homes between  

2000 and 2006 [42]. However, the ontogenetic increase in DMAP levels cannot be explained by 

changes in dimethyl pesticide use which did not change substantially during this time. The increase in 

DMAP levels may be due to increasing exposure-related behaviors and changes in diet as the children 

age in an environment where dimethyl OP pesticide use was relatively constant.  

Associations between the two classes of DAP metabolites (DEAPs and DMAPs) and exposure 

determinants were not consistent at different age points. Possible reasons include differences in usage 

patterns, physical-chemical properties of the pesticides, field degradation, environmental transport, and 

metabolism of the dimethyl versus the diethyl OP pesticides. For example, malathion, which devolves 

to a DMAP metabolite, has a relatively high vapor pressure compared to other OP pesticides, and, thus, 

may result in greater exposures via inhalation. The spring/summer season, when malathion use is 

higher, was associated with higher DMAP levels in six-month olds, who are not yet crawling, 

suggesting an inhalation exposure pathway. We also found that recent rainfall was associated with 

lower DMAP levels in the younger children, a finding consistent with our previous study that showed 

rainfall was associated with lower OP levels in air [27]. Together, these findings support the 

hypothesis that inhalation may be an important pesticide exposure route for very young children.  

Overall, our findings suggest that agriculture-related determinants of pesticide exposure  

(e.g., proximity to field or occupational status) may be associated with measured exposure at some 

ages, but we did not observe consistent associations across age points, or between DMAP and DEAP 

metabolites. The high variability in pesticide application frequency and the nature of transient,  

non-persistent exposures in young children may create too much variability to statistically model the 

association of these variables and child exposures. In contrast, intake of fruits and vegetables was 

consistently and positively associated with both classes of urinary metabolites in children at all ages, 

and was statistically significant for DMAP metabolites in 6- and 24-month old children, suggesting 

that diet is an important pesticide exposure pathway. This finding is consistent with recent studies that 

indicate diet is an important source of pesticide exposure to children [7,43].  



Int. J. Environ. Res. Public Health 2011, 8         

 

 

1072 

Few studies report levels of pesticide metabolites in children 6- to 24-months old. Median total 

DAP metabolite levels in the CHAMACOS children at 6, 12, and 24 months of age (36, 54, and  

76 nmol/L, respectively) were lower than levels in 10 crawling infants and 10 toddlers sampled in the 

Salinas Valley in 2002 (130 and 100 nmol/L, respectively) [8]. These twenty children were from 

farmworker homes and sampled in the summer, when levels might have been higher; direct 

comparisons, however, are limited by the small sample size. Median total DMAP and DEAP 

metabolite levels in the CHAMACOS 6- to 24-month olds were lower by ~30–70% than levels in 

children 24- to 72-months old living in Washington state agricultural or suburban areas [6,10,15]; 

however, the Washington children were older than the CHAMACOS participants and the samples 

were collected between 1997 and 1999, before restrictions on residential use of chlorpyrifos and 

diazinon were implemented. Thus, these populations may not be directly comparable.  

Creatinine-adjusted levels were similar to adjusted concentrations reported in 41 5- to 73-month old 

farmworker children living on the US/Mexico border [21]. Due to age differences, it was not possible 

to compare DAP levels in these CHAMACOS children with levels in older children studied by the 

National Health and Nutrition Examination Survey (NHANES) [5]. Representative pesticide-exposure 

studies of national and state-wide populations are needed to compare to regional or local studies in  

impacted communities. 

Our study has several limitations. In a setting where multiple OP pesticides are used, measurement 

of the non-specific DAP metabolites does not provide information on exposure to the specific parent 

OP compound [44]. As noted above, the many OP pesticides used in the Salinas Valley have widely 

varying usage, environmental persistence, and physical-chemical properties [14,45], adding variability 

to biomonitoring measurements and possibly biasing statistical models toward null results. Future 

studies focusing on parent compounds or pesticide-specific metabolites may be able to clearly 

elucidate associations between individual pesticide use and exposure. Additionally, DAPs in urine may 

reflect exposure to preformed DAPs in the environment or food rather than exposure to the parent 

compound [43,46] and thus overestimate OP pesticide exposure. Finally, the modified food frequency 

questionnaire we used quantified maternal reported servings of fruits and vegetables consumed by the 

child each day, but was not calibrated to specific portion sizes. Thus, the use of reported servings in 

the analyses may have introduced uncontrolled variability. However, this type of non-differential 

exposure misclassification would tend to bias results toward the null hypothesis. 

In conclusion, we found that children living in an agricultural area are likely exposed to OP 

pesticides from multiple pathways, and total urinary DAP, in particular DMAP, metabolite levels 

increased with age. Diet and regional pesticide use are possible exposure sources. Given the health 

benefits of fresh fruit and vegetable consumption, we do not suggest that children limit intake of these 

foods but encourage washing of all produce before eating. While the OP pesticide metabolite levels in 

this population do not appear significantly higher than other populations, there are limited reference 

data available to make valid comparisons. OP pesticide exposures in children have been associated 

with poorer neurodevelopmental outcomes [47-49]. Given the significance of these health studies, 

additional research is needed to better explain the trend of increasing OP urinary metabolites with age 

and the dietary, behavioral, and other factors that determine exposure. 
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Notes Added in Proof 

The maximum value for the 6 month DEP, DEAP, and DAP is driven by a high value (Table 2 and 

Supplementary Material, Table S2). We have no reason to believe the measurement was incorrect. 
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Supplementary Material 

Table S1. OP pesticide usage in the Salinas Valley
 a,b,c

 and associated urinary dialkyl 

phosphate metabolites. 

Pesticide
 d 

Kilograms 

applied in 2001
 

% applied in 2001
 

Metabolites
 

Azinphos-methyl 56 0.1 DMP, DMTP, DMDTP 

Dimethoate 15,523 15.3 DMP, DMTP, DMDTP 

Malathion 44,181 43.5 DMP, DMTP, DMDTP 

Methidathion 6,449 6.3 DMP, DMTP, DMDTP 

Methyl parathion 0 0 DMP, DMTP 

Naled 7,749 7.6 DMP 

Oxydemeton-methyl 26,244 25.8 DMP, DMTP 

Phosmet 1,436 1.4 DMP, DMTP, DMDTP 

Total dimethyls 101,638 100  

 

Chlorpyrifos 25,283 27.5 DEP, DETP 

Diazinon 61,944 67.4 DEP, DETP 

Disulfoton 4,634 5.1 DEP, DETP, DEDTP 

Total diethyls 91,861 100  
a 

Includes agricultural, landscape maintenance, structural pest control and right-of-way 

pesticide usage (DPR 2001).  
b 
Pesticide usage is reported in kilograms of active ingredient. 

c 
Agricultural pesticide applications in California, representing 90% of all reported use, are 

geocoded to one-square-mile units based on the Public Land Survey System. Pesticide use 

is reported to the County Agricultural Commissioner’s office who then reports it to the 

California Department of Pesticide Registration (CDPR) of the California Environmental 

Protection Agency (EPA). To summarize agricultural pesticide use in the Salinas Valley, 

we identified the PLSS sections within the Salinas Valley, and abstracted from the 

California PUR dataset the pesticide use within the SV. 
d 

OP pesticides that do not metabolize to dialkyl phosphate compounds (e.g., bensulide, 

acephate, etc.) are not listed. 
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Table S2. Children’s creatinine-adjusted urinary DAP metabolite levels at three time 

points, at 6, 12 and 24 months (nmol/g)
 a
. 

 
Detection 

Frequency (%) 

Geometric 

Mean 
Percentiles 

Child 6 months (N = 414)   Min 25 50 75 90 Max 

DMP 49.9 <LOD <LOD <LOD <LOD 124 407 7,289 

DMTP 68.1 32.3 <LOD <LOD 36.6 145 656 7,457 

DMDTP 25.5 <LOD <LOD <LOD <LOD 4.4 133 1,629 

Total DMAP 79.1 92.6 <LOD 24.5 80.0 298 1,371 10,066 

 

DEP 67.6 18.2 <LOD <LOD 31.2 106 194 77,968 

DETP 31.3 <LOD <LOD <LOD <LOD 19.2 59.9 4,852 

DEDTP 13.9 <LOD <LOD <LOD <LOD <LOD 16.8 3,552 

Total DEAP 79.1 42.9 <LOD 14.2 59.3 139 297 78,010 

         

Total DAP 93.3 200 <LOD 75.1 182 587 1,661 78,237 

(N = 409) 

Child 12 months (N = 405)   Min 25 50 75 90 Max 

DMP 62.7 37.3 <LOD <LOD 42.8 163 459 9,559 

DMTP 56.0 26.4 <LOD <LOD 29.0 171 731 8,530 

DMDTP 52.7 5.1 <LOD <LOD 3.7 30.3 133 3,087 

Total DM 76.8 114 <LOD 22.0 124 451 1,408 10,298 

 

DEP 81.1 26.4 <LOD 13.2 40.3 90.0 167 1,597 

DETP 73.1 10.4 <LOD <LOD 15.4 32.7 65.7 641 

DEDTP 33.6 2.1 <LOD <LOD <LOD 8.3 36.1 696 

Total DE 91.4 61.7 <LOD 30.8 69.4 148 254 1,972 

         

Total DAP 94.3 235 <LOD 77.9 228 638 1,744 10,552 

(N = 404) 

Child 24 months (N = 381)   Min 25 50 75 90 Max 

DMP 61.9 35.5 <LOD <LOD 52.9 182 444 2,506 

DMTP 92.1 72.5 <LOD 24.0 73.4 216 544 3,897 

DMDTP 32.6 <LOD <LOD <LOD <LOD 8.8 28.0 864 

Total DMAP 94.5 150 <LOD 53.7 165.3 415 1,017 5,843 

 

DEP 57.2 10.3 <LOD <LOD 38.1 101 243 1,071 

DETP 63.0 4.7 <LOD <LOD 4.8 15.7 44.4 3,122 

DEDTP 9.5 <LOD <LOD <LOD <LOD <LOD 4.3 494 

Total DEAP 72.2 28.1 <LOD <LOD 49.6 128 308 3,924 

         

Total DAP 95.3 221 <LOD 95.5 230 550 1,371 5,944 

(N = 381) 
a Detection limits from multiple batches of urinary metabolite data: DMP = 0.4–0.6 g/L;  

DMTP = 0.2–0.3 g/L; DMDTP = 0.08–0.1 g/L; DEP = 0.1–0.2 g/L; DETP = 0.1 g/L;  

DEDTP = 0.1 g/L.  
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Table S3. Summary of children’s geometric mean DMAP urinary metabolite levels (nmol/L) and exposure prediction factors
 a
. 

 6-Month 12-Month 24-Month 

 
 

n (%) 

GM (95th % CI) 

or Correlation
b
 

 

n (%) 

GM (95th % CI) 

or Correlation
b
 

 

n (%) 

GM (95th % CI) 

or Correlation
b
 

Child’s sex        

 Boy 208 (50.2) 15.2 (12.0, 19.2) 198 (49.0) 30.1 (22.6, 40.3) 189 (49.6) 49.6 (39.0, 63.1) 

 Girl 206 (49.8) 21.5 (16.7, 27.7)* 206 (51.0) 23.3 (18.0, 30.1) 192 (50.4) 40.9 (33.0, 50.8) 

Daily servings of fruits and vegetables       

 Pearson r 414 (100) 0.17 ** 404 (100) 0.12 * 381 (100) 0.12 * 

Breastfeeding at time of urine collection       

 No 231 (57.9) 16.9 (13.5, 21.1) 313 (78.6) 25.3 (20.3, 31.6) 367 (96.6) 45.0 (38.1, 53.0) 

 Yes 168 (42.1) 20.5 (15.4, 27.2) 85 (21.4) 30.9 (20.1, 47.5) 13 (3.4) 43.7 (18.9, 100.7) 

Season of urine collection       

 Winter / Fall 200 (48.3) 13.0 (10.1, 16.7) ** 213 (52.9) 28.0 (21.5, 36.5) 179 (47.0) 45.4 (35.9, 57.3) 

 Spring / Summer 214 (51.7) 24.5 (19.4, 31.0) 190 (47.1) 25.0 (18.8, 33.2) 202 (53.0) 44.7 (35.8, 55.9) 

Distance between home and fields       

 >60 m (200 feet) 375 (90.8) 17.9 (14.9, 21.4) 370 (91.6) 24.5 (20.0, 30.0) 355 (94.2) 45.5 (38.5, 53.7) 

 ≤60 m (200 feet) 38 (9.2) 21.4 (11.9, 38.7) 34 (8.4) 59.8 (34.3, 104.4) * 22 (5.8) 43.3 (20.1, 93.5) 

Agricultural worker living in the home       

 No 104 (25.2) 10.8 (7.7, 15.1) 99 (24.5) 27.4 (18.2, 41.2) 94 (24.8) 52.7 (37.8, 73.4) 

 Yes 308 (74.8) 21.4 (17.6, 26.1) ** 305 (75.5) 26.1 (20.9, 32.5) 285 (75.2) 43.0 (35.7, 51.8) 

Mom currently works in agriculture       

 Other job or not working 339 (82.5) 16.3 (13.5, 19.6) 331 (83.8) 24.7 (20.0, 30.5) 293 (79.2) 50.6 (42.2, 60.7) 

 Works in agriculture 72 (17.5) 29.2 (18.6, 48.8) * 64 (16.2) 38.4 (22.2, 66.6) 77 (20.8) 30.7 (21.2, 44.4) 

Any fresh produce brought home from the field       

 No 324 (94.4) 20.1 (16.5, 24.4) 351 (89.1) 25.9 (21.0, 31.9) 310 (83.8) 49.0 (41.0, 58.6) 

 Yes 19 (5.6) 9.9 (4.5, 21.8) 43 (10.9) 32.4 (18.1, 58.0) 60 (16.2) 33.5 (22.6, 49.7) 
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Table S3. Cont.
 

 6-Month 12-Month 24-Month 

 
 

n (%) 

GM (95th CI) or 

Correlation
b 

 

n (%) 

GM (95th CI) or 

Correlation
b 

 

n (%) 

GM (95th CI) or 

Correlation
b 

# farmworkers wearing work clothes/shoes inside  408 (98.6) r = 0.19 ** 396 (98.0) r = 0.04 329 (86.4) r = −0.10 

Home OP pesticide use in the last six months       

 No 354 (98.3) 19.2 (15.9, 23.2) 341 (98.0) 26.5 (21.4, 32.8) 346 (99.4) 42.7 (36.2, 50.5) 

 Yes 6 (1.7) 20.9 (5.4, 80.8) 7 (2.0) 58.7 (11.1, 309.7) 2 (0.6) -- 

Carpet/rug in any room in house       

 No carpet or rug 31 (7.8) 25.2 (13.8, 45.8) 32 (7.9) 23.9 (12.3, 46.6) 44 (11.6) 52.4 (32.5, 84.4) 

 Either carpet or rug-not specified 366 (92.2) 17.9 (14.9, 21.6) 372 (92.1) 26.6 (21.8, 32.6) 336 (88.4) 43.9 (40.0, 52.2) 

Pets—Any dog or cat currently in the home       

 No 404 (97.6) 17.9 (15.0, 21.4) 395 (97.8) 25.9 (21.4, 31.5) 371 (97.4) 45.6 (38.8, 56.7) 

 Yes 10 (2.4) 24.4 (6.8, 87.5) 9 (2.2) 58.2 (9.0, 375.3) 10 (2.6) 27.1 (7.6, 103.7) 

Average daily rainfall
c
 391 (94.4) r = −0.16 ** 381 (94.3) r = −0.08 368 (96.6) r = 0.08 

Quality of housekeeping       

 Less clean/Average 261 (69.6) 20.7 (16.6, 25.9) 271 (74.2) 26.5 (20.9, 33.7) 165 45.8) 47.9 (38.0, 60.3) 

 More clean 114 (30.4) 14.7 (10.8, 20.1) 94 (26.8) 26.9 (17.8, 40.8) 195 54.2) 39.6 (31.3, 49.9) 

Child spends >15 hrs/wk in child care        

 No 294 (71.5) 15.8 (13.0, 19.2) 283 (71.5) 26.1 (20.8, 32.8) 204 (55.0) 48.1 (38.2, 60.5) 

 Yes 117 (28.5) 25.3 (17.7, 36.1) * 113 (28.5) 27.3 (18.5, 40.4) 167 (45.0) 41.8 (33.2, 52.6) 

Distance between child care and ag field       

 >60 m  389 (94.6) 17.2 (14.4, 20.4) 377 (95.2) 26.1 (21.3, 31.9) 339 (91.4) 45.2 (38.1, 53.6) 

 ≤60 m  22 (5.4) 44.6 (18.6, 106.9) * 19 (4.8) 35.4 (17.5, 71.5) 32 (8.6) 44.6 (24.8, 79.9) 

How often child mouths fingers and toes       

 Almost never/some of the time 231 (56.1) 21.4 (16.8, 27.4) 286 (72.2) 27.2 (21.5, 34.3) 339 (91.1) 43.9 (37.0, 52.2) 

 Most of the time 181 (43.9) 14.3 (11.3, 18.1) 110 (27.8) 24.7 (17.1, 35.6) 33 (8.9) 64.0(37.8, 108.4) 

* p-value < 0.05. ** p-value < 0.01.  
a P-values are from Pearson correlations or ANOVA of log transformed DMAP metabolite levels. 
b Geometric means and 95th confidence interval except when Pearson coefficient (r) is presented. 
c Mean daily millimeters of rainfall measured in Salinas, CA during the 1 week period prior to urine collection. 
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Table S4. Summary of children’s geometric mean DEAP urinary metabolite levels (nmol/L) and exposure prediction factors
 a
. 

 6-Month 12-Month 24-Month 

 
 

n (%) 

GM (95th CI) or 

Correlation
b
 

 

n (%) 

GM (95th CI) or 

Correlation
b
 

 

n (%) 

GM (95th CI) or 

Correlation
b
 

Child’s sex       

 Boy 205 (50.4) 8.3 (6.6, 10.4) 197 (48.9) 15.0 (12.3, 18.3) 189 (49.5) 9.8 (7.3, 13.0) 

 Girl 202 (49.6) 8.3 (6.6, 10.6) 206 (51.1) 13.5 (11.3, 16.1) 192 (50.4) 7.2 (5.5, 9.6) 

Daily servings of fruits and vegetables       

 Pearson r 407 (100) 0.07 403 (100) −0.004 381 (100) 0.15 ** 

Breastfeeding at time of urine collection        

 No 228 (58.2) 7.5 (5.9, 9.5) 314 (79.1) 13.6 (11.7, 15.8) 367 (96.6) 8.6 (7.1, 10.6) 

 Yes 164 (41.8) 10.0 (8.0, 12.5) 83 (20.9) 17.1 (13.0, 22.7) 13 (3.4) 3.1 (0.8, 12.4) 

Season of urine collection       

 Winter/ Fall 198 (48.6) 7.3 (5.7, 9.3) 213 (53.0) 15.4 (13.0, 18.1) 179 (47.0) 5.8 (4.2, 7.8) 

 Spring / Summer 209 (51.4) 9.4 (7.5, 11.6) 189 (47.0) 13.2 (10.7, 16.3) 202 (53.0) 11.7 (9.1, 15.1) ** 

Distance between home and fields       

 >60 m (200 feet) 368 (90.6) 8.8 (7.4, 10.4) 369 (91.6) 13.4 (11.7, 15.4) 355 (94.2) 8.4 (6.9, 10.4) 

 ≤60 m (200 feet) 38 (9.4) 5.2 (3.2, 8.5) 34 (8.4) 26.4 (17.6, 39.6) 
** 22 (5.8) 7.2 (3.0, 17.3) 

Agricultural worker currently living in the home       

 No 104 (25.7) 7.9 (5.7, 10.9) 99 (24.6) 13.2 (9.8, 17.8) 94 (24.8) 9.8 (6.4, 15.0) 

 Yes 301 (74.3) 8.5 (7.0, 10.3) 304 (75.4) 14.5 (12.5, 16.8) 285 (75.2) 8.0 (6.4, 10.1) 

Mom's current work categories       

 Not working or other job 335 (82.9) 8.0 (6.7, 9.6) 331 (84.0) 14.0 (12.1, 16.3) 293 (79.2) 9.2 (7.3, 11.5) 

 Agricultural work 69 (17.1) 9.7 (6.6, 14.3) 63 (16.0) 15.3 (11.5, 20.4) 77 (20.8) 6.5 (4.2, 10.2) 

Any fresh produce brought home from the field       

 No 316 (94.3) 8.7 (7.2, 10.5) 350 (89.1) 14.1 (12.2, 16.3) 310 (83.8) 8.6 (6.9, 10.8) 

 Yes 19 (5.7) 4.8 (2.1, 10.9) 43 (10.9) 15.3 (10.3, 22.7) 60 (16.2) 8.6 (5.3, 13.9) 
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Table S4. Cont. 

 6-Month 12-Month 24-Month 

  

n (%) 

GM (95
th

 CI) or 

Correlation
b
 

 

n (%) 

GM (95
th

 CI) or 

Correlation
b
 

 

n (%) 

GM (95
th

 CI) or 

Correlation
b
 

# farmworkers wearing work clothes/shoes inside 401 (98.5) r = −0.01 395 (98.0) r = −0.07 329 (86.4) r = −0.001 

Home OP pesticide use in the last six months       

 No 348 (98.3) 8.8 (7.4, 10.5) 341 (98.0) 14.6 (12.6, 16.9) 346 (99.4) 8.1 (6.6, 10.0) 

 Yes 6 (1.7) 22.3 (6.3, 78.6) 7 (2.0) 13.9 (3.7, 52.1) 2 (0.6) -- 

Carpet/rug in any room in house       

 No carpet or rug 30 (7.7) 9.8 (4.8, 20.3) 33 (8.2) 14.1 (8.3, 24.0) 44 (11.6) 13.8 (7.7, 24.6) 

 Either carpet or rug-not specified 360 (92.3) 8.4 (7.1, 9.9) 370 (91.8) 14.2 (12.4, 16.3) 336 (88.4) 7.8 (6.3, 9.7) 

Pets - Any dog or cat currently in home       

 No 397 (97.5) 8.3 (7.0, 9.8) 394 (97.8) 14.0 (12.2, 16.0) 371 (97.4) 8.4 (6.8, 10.2) 

 Yes 10 (2.5) 8.0 (2.3, 27.8) 9 (2.2) 27.3 (12.8, 58.5) 10 (2.6) 10.1 (2.1, 47.3) 

Average daily rainfall
c
 384 (94.3) r = 0.15* 380 (94.3) r = −0.05 368 (96.6) r = 0.07 

Quality of housekeeping       

 Less clean/Average 256 (69.4) 8.6 (6.9, 10.5) 271 (74.5) 13.7 (11.5, 16.1) 165 (45.8) 10.1 (7.6, 13.5) 

 More clean 113 (30.6) 9.8 (7.2, 13.3) 93 (25.6) 17.2 (13.4, 22.0) 195 (54.2) 7.0 (5.2, 9.3) 

Child spends >15 hrs/wk in child care       

 No 289 (71.5) 8.1 (6.7, 9.8) 283 (71.7) 13.8 (11.8, 16.1) 204 (55.0) 8.8 (6.7, 11.6) 

 Yes 115 (28.5) 8.8 (6.4, 12.1) 112 (28.4) 15.2 (11.7, 19.8) 167 (45.0) 8.2 (6.0, 11.1) 

Distance between child care and ag field       

 >60 m 382 (94.6) 8.2 (6.9, 9.7) 376 (95.2) 14.1 (12.3, 16.1) 339 (91.4) 8.8 (7.1, 10.8) 

 ≤60 m 22 (5.5) 17.7 (8.7, 36.0) * 19 (4.8) 16.5 (9.4, 29.0) 32 (8.6) 6.3 (3.0, 13.3) 

How often child mouths fingers and toes       

 Almost never/some of the time 228 (56.3) 8.5 (6.8, 10.6) 286 (72.4) 14.8 (12.7, 17.3) 339 (91.1) 8.0 (6.5, 9.9) 

 Most of the time 177 (43.7) 7.9 (6.2, 10.1) 109 (27.6) 12.6 (9.7, 16.5) 33 (8.9) 15.3 (7.1, 32.8) 

* p-value < 0.05. ** p-value < 0.01. 
a P-values are from Pearson correlations or ANOVA of log transformed DEAP metabolite levels. 
b Geometric means and 95th confidence interval except when Pearson coefficient (r) is presented. 
c Mean daily millimeters of rainfall measured in Salinas, CA during the 1 week period prior to urine collection. 
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Figure S1. Percent change (and 95% CI) in DMAP metabolite per unit change or yes/no 

difference in predictor variable by child’s age. 
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* p-value < 0.05. 

Figure S2. Percent change (and 95% CI) in DEAP metabolite per unit change or yes/no 

difference in predictor variable by child’s age. 

-100

-50

0

50

100

150

200

250

300

6
 m

o
s

1
2
 m

o
s

2
4
 m

o
s

6
 m

o
s

1
2
 m

o
s

2
4
 m

o
s

6
 m

o
s

1
2
 m

o
s

2
4
 m

o
s

6
 m

o
s

1
2
 m

o
s

2
4
 m

o
s

Predictor variable

P
e
rc

e
n

t 
c
h

a
n

g
e
 i

n
 c

h
il

d
 D

E
A

P
 m

e
ta

b
o

li
te

s

    *

   *

    *

     *

Daily servings of fruit and 

vegetables (<=1 or >1)

Daily rainfall (mm/day) Proximity to field (<60m = 1) Season (spring/summer vs 

fall/winter)

 

* p-value < 0.05. 
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