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Abstract: The Child-Specific Aggregate Cumulative Human Exposure and Dose 
(CACHED) framework integrates micro-level activity time series with mechanistic 
exposure equations, environmental concentration distributions, and physiologically-based 
pharmacokinetic components to estimate exposure for multiple routes and chemicals. 
CACHED was utilized to quantify cumulative and aggregate exposure and dose estimates 
for a population of young farmworker children and to evaluate the model for chlorpyrifos 
and diazinon. Micro-activities of farmworker children collected concurrently with 
residential measurements of pesticides were used in the CACHED framework to simulate 
115,000 exposure scenarios and quantify cumulative and aggregate exposure and dose 
estimates. Modeled metabolite urine concentrations were not statistically different than 
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concentrations measured in the urine of children, indicating that CACHED can provide 
realistic biomarker estimates. Analysis of the relative contribution of exposure route and 
pesticide indicates that in general, chlorpyrifos non-dietary ingestion exposure accounts  
for the largest dose, confirming the importance of the micro-activity approach. The risk 
metrics computed from the 115,000 simulations, indicate that greater than 95% of these 
scenarios might pose a risk to children’s health from aggregate chlorpyrifos exposure. The 
variability observed in the route and pesticide contributions to urine biomarker levels 
demonstrate the importance of accounting for aggregate and cumulative exposure in 
establishing pesticide residue tolerances in food.  

Keywords: children; farmworker; organophosphate pesticides; physiologically-based 
pharmacokinetic; risk; micro-activity; mixtures 

 

1. Introduction  

Passage of the Food Quality Protection Act (FQPA) in 1996 required that in determining pesticide 
residue limits for food, the United States Environmental Protection Agency (US EPA) take into 
account the health risks associated with aggregate (multiple route) and cumulative (multiple chemicals 
exhibiting a common mechanism of toxicity) pesticide exposure and incorporate an additional  
safety factor to protect children. Subsequently, multiple studies have been completed to measure 
organophosphate (OP) pesticides in multiple exposure media (e.g., air, water, food, dust, soil) as well 
as in children’s urine [1-3]. Typically only the non-specific metabolites common to OPs are quantified 
in urine to provide a measure of exposure to this class of pesticides, but this does not provide levels of 
exposure to individual pesticides [4]. However, methods are needed to quantify the contribution of 
each route and pesticide to the levels of non-specific biomarkers in urine and provide estimates  
of aggregate and cumulative dose, necessary for comparing to toxicological benchmarks like the US 
EPA Reference Dose [5,6]. Dose estimates for each exposure route and pesticide are essential for 
performing the aggregate and cumulative risk assessments necessary for setting food tolerance levels 
under the FQPA. 

Many aggregate exposure and dose models assume a fractional absorption without taking into account 
the physiological pharmacokinetic processes of uptake [7-10]. However, even for a widely studied 
chemical like chlorpyrifos, there is not a consensus on the appropriate absorption fractions for each route. 
Due to variations in these absorption fractions and other assumptions, studies evaluating residential 
aggregate exposure and dose to chlorpyrifos identify different dominant exposure routes [11-13]. More 
recently, a physiologically-based pharmacokinetic (PBPK) model was developed to estimate aggregate 
absorption of chlorpyrifos [6]. However, the model developers did not account for many of the 
physiological differences between young children and adults. Furthermore they assumed no dermal 
exposure and utilized conservative assumptions for non-dietary exposure factors. The resulting model 
substantially underestimated chlorpyrifos metabolite levels in children’s urine, and it is not clear if  
this is due to an inadequate representation of children’s physiology or underestimation of aggregate 
chlorpyrifos exposure. 
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The first objective of this study was to develop a new model, the Child-Specific Aggregate 
Cumulative Human Exposure and Dose (CACHED) framework, by linking our previously developed 
aggregate and cumulative exposure model [14,15] with a child-specific PBPK model (Figure 1). The 
second objective is to validate CACHED with non-specific OP pesticide metabolite levels in urine 
obtained from children. The third objective of this study was to use CACHED to assess the relative 
contributions of multiple OP pesticides and exposure routes to absorbed dose and estimate risk for  
a population of young farmworker children as a case study. While all children may be exposed to 
pesticides through drinking water, diet and residential-use pathways [1,16,17], potential sources of 
additional pesticide exposure for children in farmworker homes includes aerosol drift from agriculture, 
and occupational take-home contamination on clothing, shoes or skin [18-21]. These potential sources 
of additional pesticide exposure unique to the farmworker child may contribute the greatest proportion 
towards non-dietary exposure routes. Assessment of route and chemical contribution towards aggregate 
exposure and dose is therefore of particular importance for this sensitive population to ensure that 
pesticide food tolerances are protective of susceptible populations.  

Figure 1. Child-Specific Aggregate Cumulative Human Exposure and Dose (CACHED) 
model framework including cumulative, aggregate and PBPK capabilities. Modules 
highlighted in yellow are from Cumulative Aggregate Simulation of Exposure (CASE) [15]. 

 

2. Experimental Section  

2.1. Study Population 

The study population for these modeling simulations has been described previously [3,14,22]. 
Briefly, pesticide measurements were obtained from indoor and outdoor air, surface and toy wipes, 
house dust, duplicate diets, union suits and sock dosimeters, and urine from 20 children residing in the 
Salinas Valley of California [3,23]. In a second study, activity patterns were obtained via videotaping 
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methodologies from 23 children in this region, including 11 children who participated in the first  
study [22]. The activities quantified were: time spent indoors and outdoors and sequential dermal and 
mouthing contacts. All children were between 6 and 27 months of age, of Mexican origin and lived 
with at least one farmworker. 

2.2. Aggregate Cumulative Exposure Model and Estimates 

We have previously used the Cumulative and Aggregate Simulation of Exposure (CASE) model to 
estimate inhalation, dermal and non-dietary ingestion exposure to two OP pesticides, chlorpyrifos and 
diazinon, for this population [14,15]. CASE is a physical-stochastic model that integrates complex 
human behavior through detailed activity patterns known as micro-level activity time series, with 
mechanistic exposure equations and Monte Carlo simulations of parameter distributions. Micro-level 
activity time series provide a second-by-second documentation of the child’s dermal and mouthing 
contacts and microenvironments visited. In this work, five thousand simulations were completed with 
each set of activity patterns obtained from each farmworker children (n = 23) in conjunction with 
parameter distributions developed from residential pesticide concentrations measured in farmworker 
residences from the same community (n = 20) to achieve a total of 115,000 unique exposure  
estimates (Table 1). Chlorpyrifos and diazinon were selected because of their widespread agricultural 
use in the Salinas Valley during the study period, common mechanism of toxicity, non-specific OP 
metabolites, and prevalence in residential environments and density of available literature data 
necessary for providing model input parameters. Although chlorpyrifos and diazinon were detected in 
all media from these homes, no families reported residential applications of these pesticides. Therefore 
we assumed that these measurements represent variability that children in this unique population might 
encounter within their homes and throughout the Salinas Valley. 

Table 1. Farmworker children’s route-specific exposure estimates [14]. 

Pesticide Route Range Mean Median 
Chlorpyrifos Inhalation (ng/m3) 0.37–10.81 1.87 1.83 

 Dermal (ng/cm2) 0.01–0.77 0.10 0.08 
 Non-Dietary Ingestion (ng/h kg) 0.31–15.03 2.79 2.54 
 Dietary Ingestion (ng/h kg) a 0–30.95 3.67 1.59 

Diazinon Inhalation (ng/m3) 0.08–140.03 4.26 3.97 
 Dermal (ng/cm2) 0.01–0.24 0.05 0.04 
 Non-Dietary Ingestion (ng/h kg) 0.23–4.23 1.52 1.43 
 Dietary Ingestion (ng/h kg) a 0–3.30 0.49 0.35 

a Dietary ingestion exposure estimates are from current work. See Section 2.3. 

2.3. Dietary Exposure Estimates 

To complete the calculation of aggregate dose, it was necessary for us to estimate dietary exposures 
for this population [24]. Food diaries meeting the demographic characteristics (i.e., ethnicity, age, 
gender) were extracted from the US Department of Agriculture (USDA) Food Commodity Intake 
Database [25]. There were 342 unique commodities obtained from the food diaries meeting the 
demographic criteria. Residue levels for chlorpyrifos and diazinon were assigned to each commodity. 
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These residue values were extracted from the following databases: California Pesticide Monitoring 
Database 1986–1993, US Food and Drug Administration (US FDA) Compliance and Surveillance 
Monitoring Program 1992–1994, USDA Microbiological and Residue Computer Information System 
1990–1995, Pesticide Residue Information System 1987–1994, USFDA Total Diet Study 1982–1984 
and 1994–1999, USDA Pesticide Data Program 1994–1998 and 1999–2000 and US Fish and Wildlife 
1995. If multiple databases provided values for the same commodity, a weighted average was calculated 
based upon the number of samples in each database. Dietary exposure was calculated for each of the 
food diaries as: 

 (1)  

where Eq is the dietary exposure corresponding to food diary q [μg/kg h], Cj is the residue 
concentration for commodity j [μg/g], p is the number of commodities in food diary q and Iqj is the 
food intake rate of commodity j for food diary q [g/kg h]. To correspond with the non-dietary exposure 
estimates 5000 random samples of dietary exposure were obtained for each child from food diaries that 
corresponded to their demographic characteristics (Table 1). 

As part of the quantitative exposure assessment in the 20 farmworker homes, duplicate diets and 
food diaries were collected for the children who provided urine samples [3]. Since only 4% and 2% of 
the duplicate diet samples had detectable values for chlorpyrifos and diazinon, respectively, comparison 
of model estimates and measured values was based on treating non-detected values as equal to 0, half 
the limit of detection, and the limit of detection (Figure 2). Modeled estimates for both chlorpyrifos 
and diazinon correspond well to the measured values from the duplicate diets. 

Figure 2. Comparison between dietary exposure estimates and duplicate diet 
measurements [3], with non-detected values (ND) equal to zero, half the limit of detection 
(LOD), or LOD. 

Estimated ND=0 ND=LOD /2 ND=LOD

Chlorpyrifo s Diazinon  
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2.4. Development of Child-Specific PBPK Model 

We developed a PBPK model capable of estimating aggregate and cumulative dose based on 
simultaneous exposures to chlorpyrifos and diazinon [24,26]. Within our PBPK model, separate PBPK 
modules are used to characterize the chemical-specific distributions of chlorpyrifos, diazinon, and  
their metabolites in the body. Two existing PBPK models developed for chlorpyrifos and diazinon 
independently provided the basis for their modules as well as for their oxon-analogs [27,28]. These 
modules are linked through additional modules we created for diethyl phosphate (DEP) and 
diethylthiophosphate (DETP)—the common metabolites for both chloryrifos and diazinon—and are 
collectively described as dialkyl phosphates (DAPs) for this study. To complete estimation of 
aggregate dose, we added additional sub-modules to account for absorption of chlorpyrifos and 
diazinon across the lungs, and altered the skin modules to account for diffusion across the stratum 
corneum and viable epidermis. A mass balance was performed for each compartment, resulting in a 
series of differential equations that were solved utilizing an ordinary differential equation solver for 
stiff equations (i.e., ode15s) in Matlab (Student Version, Release 14, The MathWorks, 2004). 

For ethical reasons there are no children volunteer studies, therefore we validated our PBPK model 
with published studies where adult volunteers were exposed to chlorpyrifos and diazinon [29-31]. The 
input parameters required for the model are: volumes and blood flow rates of various organs in the 
body, chemical-specific tissue-air partition coefficients, fraction of chemical bound to plasma proteins, 
ingestion and dermal absorption parameters, metabolic parameters, and chemical-specific urinary 
clearance rates. These parameters were obtained from the experimental literature, estimated or 
optimized during model development. Complete model details including detailed code and validation 
of the model in adults is presented elsewhere [24,26]. 

Children are not merely miniature adults and the processes controlling the absorption, distribution, 
metabolism, and excretion of chemical toxins are likely to be immature or altered [32]. We calculated 
age-specific tissue volumes and perfusion rates as a function of body weight, height and gender 
according to methods described by Price et al. [33]. Age-specific alveolar air volumes and ventilation 
rates were obtained from ICRP [34]. We assumed a linear relationship between ages. Chemical-specific 
tissue:air partition coefficients were estimated according to Poulin and Krishnan [35], as a function of 
tissue composition (i.e., water and lipids). We estimated age-specific tissue:air partition coefficients as 
a function of tissue composition at different ages obtained from ICRP [36]. For our metabolic 
parameters, the maximum velocity (Vmax) was scaled as a function of liver mass assuming a constant 
microsomal protein content. We assumed the value of the Michaelis-Menten coefficient (Km) was 
constant with age [37]. The first-order rate constants for the metabolism of DETP and DEP were also 
scaled as a function of body weight to obtain age-specific values. Age-specific urinary clearance rates 
were estimated as a function of age-specific partition coefficients and glomerular filtration rates 
according to the methods in Bjorkman [38] utilizing data from Behrman et al. [39]. Creatinine 
excretion was also estimated as a function of age according to data from ICRP [34]. Assuming that 
chemical toxins behave similarly to pharmaceuticals, age-specific chemical protein binding fractions 
were estimated according to the equation derived by McNamara and Alcorn [40]. Hand surface area, 
necessary for estimating dermal absorption from hand contacts was estimated as a function of age 
using values presented in the US EPA Child-Specific Exposure Factors Handbook [41]. According to 
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these methods, we calculated PBPK parameters for each child as a function of their age, height, 
weight, and gender (Table 2). A summary of the PBPK parameters estimated for the children are in 
Table 3. Complete equations and data sets are available in Beamer [24]. 

Table 2. Farmworker children’s demographics and physiological characteristics. 

Age Group Gender n Age (Months) Weight (kg) Height (cm) 
Range Median Range Median Range Median 

Infants Male 5 6–12 9 8.7–12.3 9.5 69–76 71 
 Female 8 6–13 8 6.8–10.9 8.6 66–70 69 

Toddlers Male 5 20–26 23 11.8–12.5 12.3 76–89 86 
 Female 5 22–27 26 11.4–16.0 12.3 86–93 88 

Table 3. PBPK parameters used for the child-specific model estimated using each child’s 
age, height and weight. Tissue: Blood partition coefficient only shown for chlorpyrifos as 
an example. 

Parameter Compartment/Chemical Range Mean Median 
Compartment Volume (m3) Blood 0.0006–0.0012 0.0009 0.0008 

Brain 0.0006–0.0010 0.0008 0.0008 
Slowly Perfused 0.0017–0.0031 0.0024 0.0022 
Richly Perfused 0.00040–0.00078 0.00057 0.00055 
Fat 0.0023–0.0084 0.0048 0.0049 
Liver 0.00022–0.00044 0.00032 0.00032 
Kidneys 0.00004–0.00008 0.00006 0.00006 
Alveolar Air 0.00037–0.00088 0.00060 0.00055 

Perfusion Rate (m3/h) Brain 0.020–0.031 0.026 0.025 
Slowly Perfused 0.007–0.013 0.010 0.009 
Richly Perfused 0.009–0.017 0.013 0.013 
Fat 0.004–0.015 0.009 0.009 
Liver 0.013–0.026 0.019 0.019 
Kidneys 0.008–0.016 0.011 0.012 

Cardiac Output (m3/h)  0.062–0.119 0.087 0.087 
Ventilation Rate (m3/h)  0.14–0.25 0.20 0.22 
Renal Clearance (m3/h) Chlorpyrifos 0.00038–0.00053 0.00046 0.00044 

Chlorpyrifos Oxon 0.00027–0.00038 0.00032 0.00031 
Diazinon 0.0028–0.0040 0.0034 0.0033 
Diazinon Oxon 0.000001–0.00107 0.00005 0.000001 
DETP 0.0033–0.0047 0.004 0.0038 
DEP 0.017–0.024 0.021 0.020 

Creatinine Excretion (mol/h)  0.00003–0.00007 0.00005 0.00004 
Tissue:Blood Partition 
Coefficient 

Blood 2.09–2.10 × 106 2.09 × 106 2.09 × 106 
Brain 4.2–5.1 4.6 4.5 
Slowly Perfused 3.3–3.5 3.4 3.4 
Richly Perfused 3.3–3.5 3.4 3.4 
Fat 86.4–112.3 102.5 108.7 
Liver 5.1–5.6 5.4 5.3 
Kidneys 4.1–4.5 4.3 4.3 
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Table 3. Cont. 

Parameter Compartment/Chemical Range Mean Median 
Maximum Velocity Vmax 
(mol/h) 

Chlorpyrifos → Chlorpyrifos  
Oxon 

0.00009–0.00018 0.00013 0.00013 

Chlorpyrifos → DETP 0.00017–0.00033 0.00024 0.00024 
Chlorpyrifos Oxon → DEP 0.006–0.0117 0.0086 0.0087 
Diazinon → Diazinon Oxon 0.0002–0.00039 0.00028 0.00029 
Diazinon → DETP 0.00031–0.0006 0.00044 0.00044 
Diazinon Oxon → DEP 0.19–0.35 0.27 0.27 

First Order Metabolism 
(mol/h) 

DETP 0.5–0.98 0.72 0.73 
DEP 0.23–0.44 0.32 0.33 

Protein Binding (fraction 
bound) 

Chlorpyrifos 0.962–0.963 0.962 0.962 
Chlorpyrifos Oxon 0.974–0.976 0.975 0.975 
Diazinon 0.937–0.939 0.938 0.937 
Diazinon Oxon 0.863–0.868 0.865 0.864 
DETP 0.912–0.915 0.913 0.913 
DEP 0.079–0.083 0.081 0.08 

Hand Surface Area (m2)  0.01–0.018 0.014 0.013 

2.5. Estimation of Cumulative and Aggregate Dose and Urine Concentration 

We used the child-specific PBPK model to calculate the concentration of DEP and DETP in urine and 
aggregate dose from exposure to chlopyrifos and diazinon for the 23 farmworker children (Table 1). Five 
thousand simulations were completed for each child by randomly selecting, without replacement, their 
5000 dietary, inhalation, non-dietary ingestion, and dermal exposure estimates for each chemical. Since 
temporally-averaged estimates were used for inhalation and dermal exposure and ingestion exposure 
estimates are in mass per time, the model was run at steady state. Hand rinse studies have confirmed that 
children’s dermal exposure seems to be at steady state within one hour of a hand cleaning [42]. The 
ingestion and skin (i.e., diffusivity, skin partition coefficients) absorption parameters were assumed to be 
constant for all children. 

Dermal exposure was only estimated for the hands. In a different study, we have previously 
quantified surface contacts for 15 different body parts [43]. Although feet have the highest contact 
frequency, bare hands have a greater contact frequency with surfaces than bare feet. We assumed that 
the majority of dermal absorption occurred through the hands.  

At steady state the mass of chlorpyrifos and diazinon entering a child’s body through absorption 
must equal the mass of chlorpyrifos, diazinon and their metabolites exiting the body. The mass of 
chlorpyrifos and diazinon entering the body is their absorbed dose in units of mass per time.  
Therefore dose was calculated by estimating the mass exiting the body at steady state. In our PBPK 
model framework chlorpyrifos, diazinon, their respective oxons, DETP and DEP may only exit  
the body through exhalation and renal excretion. Chlorpyrifos and diazinon may also exit via fecal 
excretion while DETP and DEP may also be metabolized. Complete equations are provided  
in Beamer [24].  
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2.6. Model Evaluation by Comparison with Measured Urine Concentration 

To evaluate the CACHED modeling framework the estimated urine concentrations from aggregate 
exposure to chlorpyrifos and diazinon for the 23 children who participated in video-activity pattern 
collection were compared with the measured DAP urine concentrations obtained from the 20 children 
whose houses were sampled for pesticides. We assumed that chlorpyrifos and diazinon exposure 
account for 100% of these DAP (DETP and DEP) levels in the urine. For the purpose of this analysis 
we have excluded the dimethyl metabolite levels. Chlorpyrifos and diazinon together account for 96% 
of the OP pesticides applied in 2002 in Monterey County that metabolize into DEP and DETP [44]. 
Similarly, together they also account for 99% of the fresh fruit and vegetable samples that had a 
diethyl OP pesticide residue detected by the USDA as part of the 2002 Pesticide Data Program [45]. 
Two urine samples were collected for each child during the 24-hour sampling period: one spot sample 
and one overnight diaper sample [3]. Since the data were not normally distributed, non-parametric tests 
were used to assess for statistical significance. The Wilcoxon rank sum test was used to determine if 
there were statistical differences in the measured spot and overnight urine samples and the estimated 
urine concentrations. Spearman’s rank correlation was used to assess relationships between modeled 
and measured urine concentrations for the 11 children that participated in both studies [3,22].  

2.7. Calculation of Route and Pesticide Contribution to Aggregate Cumulative Dose 

The steady state dose and urine concentration was computed for each child, first for exposure from 
all routes and chemicals simultaneously and subsequently for each route and each chemical separately 
to assess chemical and route contribution. It was assumed that the absorption from each exposure route 
and pesticide is independent and that dose and urine concentration could be summed across exposure 
routes and pesticides. Percent of route and chemical contribution was also calculated to normalize 
across different dose amounts. Although child-oriented simulations were not completed, whereby each 
child’s simulations would be only calculated based upon measurements taken from their own home, 
we did estimate the within- and between-child variability for the simulations to understand the role  
of environmental concentrations and micro-level activity patterns in the overall variability of this 
population. We used log-transformed values to estimate within-child and between-child variance 
according to Rappaport [46]. Dose and urine concentrations were tested for differences between age 
groups (i.e., infants and toddlers) and genders using the Wilcoxon rank sum test. 

2.8. Estimation of Aggregate and Cumulative Risk 

To understand the potential risks faced by this vulnerable population we calculated aggregate  
and cumulative risk metrics utilizing the methods employed by US EPA in their individual aggregate 
risk assessments of chlorpyrifos and diazinon, as well as their cumulative risk approach for OP 
pesticides [47-49]. Different endpoints are used by the US EPA for aggregate and cumulative risk 
assessments. For aggregate risk, route-specific margin of exposure was computed for each pesticide by 
dividing the route-specific no-observable-adverse-effect-level (NOAEL) (Table 4) for plasma and red 
blood cell cholinesterase inhibition by the estimated exposure route dose for the farmworker children 
from CACHED [50]. The risk index (RI) is then calculated by dividing the margin of exposure by the 
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route-specific uncertainty factor for inter- and intra-species extrapolation and the FQPA safety factor 
to protect children’s health. Due to the increased risk from exposure to multiple routes, the aggregate 
risk index (ARI) is equal to the inverse of the sum of the inverse of each RI. An ARI or RI of less than 
one suggests a “risk of concern” [50].  

Table 4. Toxicity endpoints, uncertainty and FQPA safety factors for calculation of aggregate 
and route-specific risk from chlorpyrifos and diazinon exposure. 

Pesticide  Dermal Inhalation Ingestion 
chlorpyrifos a NOAEL (mg/kg/day) 0.03; 3% absorption 0.03 0.03 
 uncertainty factor 100 100 100 
 FQPA safety factor 10 10 10 
diazinon b NOAEL (mg/kg/day) 1 0.026 c 0.02 
 uncertainty factor 300 300 100 
 FQPA safety factor 1 1 1 

a [47]; b [48]; c Based on lowest-observable-adverse-effect-level (LOAEL) [48]. 

US EPA uses benchmark dose10 values (BMD10) instead of NOAEL to compute cumulative risk. 
For assessment of cumulative risk from OP exposure, BMD10 is based on an estimated 10% reduction 
in brain cholinesterase activity compared to controls. US EPA has developed relative potency factors 
(RPF) as the ratio of an OP pesticide BMD10 to that of the index pesticide, methamidphos [49]. The 
oral RPF is 0.06 and 0.01 for chlorpyrifos and diazinon, respectively. The US EPA did not develop 
RPFs for the dermal or inhalation routes due to the low risk posed by the remaining residential uses. 
As a result, the dose estimates for each pesticide were multiplied by the appropriate oral RPF and then 
risk metrics were computed using the route-specific BMD10, uncertainty factors, and FQPA safety 
factors for methamidphos (Table 5). 

Table 5. Toxicity endpoints, uncertainty and FQPA safety factors for calculation of 
cumulative risk from methamidphos (index pesticide) exposure a. 

Factor Dermal Inhalation Ingestion 
BMD10 (mg/kg/day) 2.12 0.39 0.08 
uncertainty factor 100 100 100 
FQPA safety factor 3 3 3 

a Note that chlorpyrifos and diazinon dose are converted to methamidphos dose using RPF [49,51]. 

3. Results and Discussion  

Our previous experiences and data collection efforts in this farmworker community [3,22] provide 
us with an opportunity to evaluate CACHED, and in particular the “microactivity” approach and  
child-specific PBPK modules. In Figure 3, the estimated DAP urine concentrations (n = 115,000, 
median = 4.1 nmol DAP/mmol creatinine) simulated from videotaped activity patterns for the 
farmworker children population is compared with the measured urine concentrations obtained from 
overnight and spot urine samples (n = 20). No significant differences were found using the Wilcoxon 
rank sum test between the median modeled values and the measured values from the overnight 
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(median = 0.7 nmol DAP/mmol creatinine, p = 0.08) and spot (median = 7.2 nmol DAP/mmol 
creatinine, p = 0.31) samples. The median DAP urine concentration estimates for the 11 children that 
participated in both videotaping and biomarker sampling were positively correlated with the measured 
values from their overnight (ρ = 0.69, p = 0.02) and spot urine samples (ρ = 0.21, p-value = 0.56). 
Interestingly, for these 11 children, there is a non-significant positive correlation between their 
overnight and spot urine samples (ρ = 0.41, p-value = 0.24).  

Figure 3. Comparison of DAP urine concentration estimated by CACHED for the children 
that had their activities videotaped [22] with the DAP concentration measured in the 
overnight and spot urine samples of farmworker children [3]. 

 

The CACHED modeling framework was developed to represent the physical processes of exposure 
and dose through the incorporation of micro-activity time series, exposure mechanisms, and PBPK 
components. Utilizing careful assumptions for exposure factors and age-specific physiological 
parameters, CACHED simulations completed with activity patterns and environmental concentrations 
collected from the same farmworker children population, resulted in realistic estimates of pesticide 
metabolite concentration in the children’s urine (Figure 3). These simulations also provide a rigorous 
and successful evaluation of the “microactivity” exposure assessment approach. Young children’s 
mouthing contacts with hands and non-dietary objects are very frequent (42 events/h), and of short 
duration (2 s) [22], and realistic representations of these events are necessary to obtain accurate  
non-dietary ingestion exposure estimates, and to evaluate exposure route contribution. Given that 
children are not merely miniature adults, functions were created for the PBPK module of CACHED to 
adjust input parameters based on the demographic characteristics of the individual being simulated. 
While other PBPK models have been created for children [38,52-55], unlike the one developed for 
CACHED, they have not been rigorously or successfully evaluated with biomonitoring data from 
children [56]. Although we were able to use our model to successfully estimate pesticide metabolite 
urine concentration for this population of farmworker children, further investigations should be 
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completed to evaluate the model with other populations of children simultaneously exposed to 
chlorpyrifos and diazinon.  

The aggregate cumulative dose estimates for the simulated farmworker children population  
(n = 115,000) are depicted in Figure 4, as well as the dose estimates for each route for each pesticide. 
Chlorpyrifos had a median aggregate dose of 0.294 nmol/kg-day, and contributed substantially more to 
the cumulative dose than diazinon, which had a median aggregate dose of 0.148 nmol/kg-day. Dietary 
exposure contributed the most to the higher aggregate dose estimates for chlorpyrifos (Table 6), however 
below the 65th percentile, non-dietary ingestion exposure contributed substantially. Non-dietary 
ingestion exposure was the primary exposure route for diazinon. Neither inhalation nor dermal 
exposure contributed substantially to aggregate exposure for chlorpyrifos or diazinon. Even though 
chlorpyrifos contributed more to cumulative dose in general, there were simulations where diazinon 
contributed the most to cumulative dose, as evident by the range in Table 6. This demonstrates how 
important it is to account for exposure to multiple pesticides in determining food tolerances under the 
FQPA, in particular for diazinon. The non-dietary ingestion exposure route contributed the most to 
aggregate dose (Table 6), also demonstrating how important it is to account for exposure from routes 
other than dietary ingestion. Dietary ingestion was the second most significant route for aggregate 
dose. However, as evident by the range of proportional contributions, there were simulations when 
dietary exposure and even inhalation exposure were the most significant routes. The variability 
observed in the route and pesticide contributions to dose simulated by CACHED (Table 6) confirms 
the importance of accounting for aggregate and cumulative exposure in establishing pesticide residue 
tolerances in food under the FQPA.  

Figure 4. Population dose distributions for each route, pesticide, and for cumulative and 
aggregate simulations (n = 115,000).  
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Table 6. Dose estimations (nmol/kg-day) for the farmworker children population  
(n = 115,000) by pesticide and route. 

Pesticide Route Range Mean Median 
chlorpyrifos dermal 0.000–0.003 (0.0–1.5%) 0.001 (0.3%) 0.001 (0.2%) 
 inhalation 0.000–0.011 (0.0–5.3%) 0.002 (0.9%) 0.002 (0.8%) 
 non-dietary ingestion 0.023–1.206 (1.5–84.5%) 0.189 (56.6%) 0.175 (59.2%) 
 dietary 0.000–2.120 (0.0–94.4%) 0.252 (42.2%) 0.109 (39.4%) 
 aggregate a 0.031–2.43 (28.2–96.8%) 0.444 (67.5%) 0.314 (65.7%) 
diazinon dermal 0.000–0.003 (0.0–1.4%) 0.001 (0.5%) 0.001 (0.4%) 
 inhalation 0.000–0.166 (0.0–42.4%) 0.006 (4.8%) 0.006 (4.0%) 
 non-dietary ingestion 0.018–0.365 (1.2–60.1%) 0.123 (72.1%) 0.113 (76.2%) 
 dietary 0.000–0.260 (0.0–56.0%) 0.039 (22.6%) 0.314 (18.6%) 
 aggregate a 0.028–0.551 (3.2–71.8%) 0.169 (32.5%) 0.158 (34.3%) 
cumulative dermal 0.000–0.005 (0.0–2.9%) 0.001 (0.3%) 0.001 (0.3%) 
 inhalation 0.001–0.170 (0.1–43.5%) 0.009 (2.1%) 0.009 (1.7%) 
 non-dietary ingestion 0.051–1.48 (3.0–99.1%) 0.312 (59.5%) 0.292 (62.4%) 
 dietary 0.000–2.20 (0.0–96.5%) 0.290 (38.1%) 0.150 (34.7%) 
 aggregate 0.061–2.78  0.613  0.496  

a percent contribution of pesticide to cumulative dose. 

Our results indicate that the absorbed dose from dermal exposure is two orders of magnitude lower 
than that from either ingestion route. Because bare hands have the greatest contact frequency we only 
estimated dermal absorption from the hands. However, this may have underestimated the contribution 
of dermal absorption. As part of the environmental sampling completed in the farmworker households, 
the children wore union suits and socks that were later analyzed for pesticide loading [3]. Our dermal 
exposure estimates for the hand were comparable to the pesticide loading on the socks [14]. We did not 
estimate dermal absorption for the feet because the children for the most part were wearing shoes and 
socks. However even had we included dermal absorption from the feet our absorbed dermal dose would 
approximately double and still be two orders of magnitude lower than other routes. The pesticide loading 
on the union suits was an order of magnitude lower than on the socks. For example, the mean 
chlorpyrifos loading was 0.01 ng/cm2 and 0.11 ng/cm2 for the union suit and socks, respectively. Given 
that the children were clothed and the lower pesticide loading on other parts of the body, it is not likely 
that dermal absorption from these other body parts would have contributed substantially to aggregate 
dose. Future investigations should be completed that examine relative dermal exposure from different 
body parts in relation to contact frequency, duration, surface area and clothing. 

Our estimation of dietary exposure utilizing food diaries and pesticide residue values from national 
databases does not account for any contribution of ingestion exposure from handling the food by the 
child or other family members. In addition, the food may have higher pesticide residues depending 
upon how it is stored in these homes that may have increased residential pesticide contamination due 
to proximity to agricultural fields or through direct contact with contaminant surfaces [57]. Although 
few pesticides were detected in the duplicate diet measurements, these measurements do account for 
potential contamination during food storage and preparation. As our estimated exposures are similar to 
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the duplicate diet measurements (Figure 2), these additional potential sources of dietary exposure may 
not be substantial. However, due to their young age, the children in our study ate mostly with their 
hands. Simulations from a different study indicate that children’s handling of food can account for  
20–80% of their dietary intake [58]. A major limitation of our current study is that we do not account 
for these additional sources of dietary exposure, thus underestimating the contribution of this route to 
aggregate dose. Although these exposures do contribute to overall dietary exposure, they should  
be quantified separately so that food tolerances developed under the FQPA take into account these 
additional exposures unique to children. It is also not currently clear how food handling may affect 
other routes of exposures. For example, it may decrease dermal exposure as a removal mechanism 
which in turn may decrease their non-dietary ingestion exposure. 

Non-dietary ingestion exposure contributes most to aggregate cumulative dose and is a function  
of the children’s hand-to-mouth and object-to-mouth frequency. Hand-to-mouth frequency is highest 
during eating events and thus there is substantial non-dietary exposure while a child is handling food 
as well. Given that the mouthing frequencies quantified in these children [22] exceed US EPA’s 
recommendations for use in risk assessments [49], risk estimates based on their guidelines might 
underestimate the potential risk of residential pesticide exposure in children.  

There was much higher within-child variability than between-child variability for absorbed cumulative 
dose for cumulative aggregate, inhalation and dietary exposure (Table 7). However, there was much 
greater between-child variability compared to within-child variability for cumulative absorbed dose 
from non-dietary ingestion and dermal exposure. These findings are consistent with our analyses of 
exposures in this population [14]. Given that we used the same pesticide concentration and exposure 
factor distributions for each child, and the within-child variability is so small, the variability between 
children for dermal and non-dietary ingestion dose is most likely attributed to their individual activity 
patterns even after accounting for differences in their physiology. There is over an order of magnitude 
difference in the non-dietary ingestion dose for the child with lowest exposure and the child with the 
highest exposure, highlighting that some children may be at substantially higher risk for residential 
pesticide exposure. In setting appropriate food tolerances under the FQPA, it is important that they are 
protective of at-risk children exhibiting unique activity patterns. Considering the recent associations 
with neurodevelopment and attention deficit/hyperactivity disorder and organophosphate pesticide 
exposure [59-61], it would be important to examine in the future if these children’s increased exposure 
is as a function of increased activity during the first few years of life.  

Table 7. Within-child and between-child variance calculated for the 5000 simulations for 
each of the 23 children according to Rappaport [46]. 

Pesticide Route Within-Child Variance Between-Child Variance 
Chlorpyrifos Dermal 0.01 0.26 
 Inhalation 0.04 0.04 
 Non-dietary ingestion 0.03 0.39 
 Dietary 8.35 0.98 
 Aggregate 0.43 0.13 
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Table 7. Cont. 

Pesticide Route Within-Child Variance Between-Child Variance 
Diazinon Dermal 0.01 0.23 
 Inhalation 0.18 0.06 
 Non-dietary ingestion 0.02 0.37 
 Dietary 5.12 0.51 
 Aggregate 0.07 0.16 
Cumulative Dermal 0.01 0.24 
 Inhalation 0.09 0.04 
 Non-dietary ingestion 0.02 0.38 
 Dietary 5.05 0.79 
 Aggregate 0.27 0.12 

As in our analyses of our exposure simulations, no significant differences were observed in absorbed 
dose for any route as a function of gender for either chlorpyrifos or diazinon [14]. However, several 
significant differences in absorbed dose were identified between infants (6–13 months) and toddlers 
(20–26 months) (Figure 5). Toddlers had a higher dietary dose on a per body weight basis than infants 
(p = 0.02). Conversely, infants had a higher non-dietary ingestion (p = 0.008) and aggregate diazinon 
dose than toddlers (p = 0.02). Both of these findings have particular importance for setting appropriate 
pesticide tolerances for food under the FQPA. Toddlers may be the most at-risk group for direct 
ingestion of pesticides from food, and special consideration should be given to their increased food 
consumption rates. Infants, however, are of particular concern because they receive a substantially 
larger dose from routes other than food ingestion, highlighting the importance of accounting for these 
routes of exposure in determining allowable pesticide levels on food. 

Figure 5. Significant differences (p < 0.05) between infants and toddlers in aggregate 
diazinon and cumulative dietary and non-dietary ingestion dose (nmol/kg-day). 
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The computed RIs and ARI for the farmworker children population according to the methods used 
by US EPA for aggregate exposure to chlorpyrifos and diazinon [47,48] and cumulative aggregate 
exposure to organophosphate pesticides [49] are presented in Table 8. According to these metrics, only 
less than 4% of the estimated non-dietary ingestion and aggregate diazinon doses pose a risk for this 
population. Conversely, while none of the children in the population (n = 115,000) are potentially at 
risk from inhalation exposure to chlorpyrifos, approximately 4%, 57%, 83% and 98% are at risk from 
dermal, dietary, non-dietary ingestion and aggregate exposure to chlorpyrifos. As demonstrated in 
Table 8, none of the exposure scenarios present a risk from cumulative exposure to chlorpyrifos and 
diazinon. However, the toxicological endpoint used for cumulative risk is the BMD10, which is much 
higher than the NOAEL used for risk estimates of singular pesticides (Tables 4 and 5). Given the very 
different results, it is not clear if the aggregate risk assessments using the NOAEL are too conservative 
or if the cumulative risk assessments using the BMD10 are not protective enough. However, several 
adverse effects on neurodevelopment in children have already been associated with urinary DAP 
metabolite levels in the larger cohort of Latino children in our agricultural study community [59-61]. 
This highlights the importance in determining more specific endpoints for risk analysis of pesticide 
exposure in children.  

Table 8. Route-specific and aggregate risk indices for farmworker children simulations  
(n = 115,000) from chlorpyrifos, diazinon and cumulative exposure. An ARI or RI of less 
than one suggests a “risk of concern” [50]. 

Pesticide Route Range Mean Median 
Chlorpyrifos a Dermal 0.5–10.3 4.6 4.3 
 Inhalation 5.9–78.6 36.1 34.7 
 Non-dietary ingestion 0.05–Inf 4.2 0.7 
 Dietary 0.04–2.4 0.7 0.5 
 Aggregate 0.02–1.1 0.3 0.2 
Diazinon a Dermal 5280–42,100 19,200 19,500 
 Inhalation 13.6–259 53.4 46.2 
 Non-dietary ingestion 1.8–Inf 1,070 23.0 
 Dietary 0.5–29.0 7.4 5.8 
 Aggregate 0.4–13.2 4.4 4.0 
Cumulative b Dermal 163,000–2,800,000 1,280,000 1,220,000 
 Inhalation 9130–96,300 45,000 43,300 
 Non-dietary ingestion 16.0–Inf 2310 257 
 Dietary 12.4–780 217 161 
 Aggregate 7.7–480 105 91 

a Calculated using parameters for aggregate risk in Table 4; b Calculated using parameters for 
cumulative risk Table 5. 

While the modeled DAP urine concentration was quite similar to measured values collected from 
children in the same population (Figure 3), the aggregate dose estimates are quite different than 
estimates from other studies (Table 9). Other studies assumed values for necessary exposure factors, 
activity, and absorption fractions for each route to estimate aggregate dose from environmental 
concentrations, making it complicated to compare aggregate and route-specific dose estimates. O’Rourke 
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and colleagues [62] calculated “theoretical” absorbed daily dose assuming 100% clearance from the 
maximum DAP urine concentration measured in agricultural children 3–5 years old in Arizona.  
This resulted in aggregate dose estimates for chlorpyrifos and diazinon that were about an order of 
magnitude higher than the estimates from CACHED. Wilson and colleagues [13] assumed that the 
contribution of dermal exposure is negligible, and their estimates for children 2–5 years old in North 
Carolina were lower than the estimates from CACHED, especially for diazinon. In a follow up study in 
the same population, estimated aggregate exposures for diazinon under-predicted urinary 
measurements by an order of magnitude [63]. While these were not farmworker children, the 
environmental concentrations, with the exception of outdoor air, measured in their homes were 
comparable to the values in the farmworker children’s homes [3]. The differences between these 
studies and the current study underscore how differences in the methods and assumptions used can 
result in very different estimates of absorbed dose and aggregate risk. 

Similarly, Lu et al. estimated aggregate chlorpyrifos dose for children in Washington using a linked 
exposure-PBPK model and from the TCP urine levels directly [6]. They indicated that there model 
only reasonably predicted TCP metabolite levels for the two children who had chlorpyrifos quantified 
in their duplicate diet measurements. However, these children had comparable measured TCP levels in 
their urine with those that were assumed to have no dietary exposure. Assuming no-dietary exposure 
for children with duplicate diets may have underestimated their dietary exposures substantially  
(Figure 2). Similarly they assumed no dermal exposure, only 20 hand-to-mouth contacts per day, and 
100 mg/day of dust ingestion. We have previously demonstrated that these assumptions may vastly 
underestimate dermal and non-dietary ingestion exposure [14], which our current analyses demonstrate 
are important components of aggregate exposure. Similarly, Lu et al. [6] did not adjust many of the 
PBPK parameters that are likely to be altered in young children such as partition coefficients, clearance 
rates and protein binding [6]. In our model these are some of the most sensitive parameters [24,26]. It is 
likely that both inadequacies in aggregate exposure estimation and in developing their child-specific 
PBPK model, led to their models underestimation of TCP levels in urine. 

A few studies have provided route-specific dose estimates for chlorpyrifos. Pang and colleagues [11] 
estimated aggregate chlorpyrifos dose for 80 individuals over the age of 10 in Maryland. While their 
median estimate was lower than the CACHED estimates their reported range and mean values were 
comparable. Pang et al. [11] also report the dose for each route, and determined inhalation of indoor 
air to account for 85% of aggregate dose (Table 9). They assumed 100% absorption of chlorpyrifos 
inhaled, which resulted in an inhalation dose much higher than the estimates from CACHED which 
were based on blood:air partition coefficients and child-specific ventilation rates. However, their 
estimated values for dose from the other routes are much lower than the current study, especially  
from ingestion for which they assumed 50% absorption. Morgan et al. [12] also report aggregate and  
route-specific chlorpyrifos dose estimates for children <1 to 5 years in North Carolina. While they did 
include dermal exposure, they used lower absorption fractions for inhalation and ingestion than  
Wilson et al. [13]. This resulted in estimates that were much lower than Wilson et al. [13] and the 
values in this current study (Table 9). Their estimated values for each exposure route were lower than 
the CACHED estimates, especially for dietary and non-dietary ingestion. Morgan and colleagues [12] 
also measured TCP in the children’s urine. Their aggregate dose estimates were unable to account for 
over 60% of the measured metabolite levels in urine. In contrast, the success of CACHED to simulate 
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the DAP urine concentration of the farmworker children (Figure 3) demonstrates the importance of 
utilizing a model that accounts for the physical process of exposure and dose, and incorporates  
micro-level activity patterns based on real children. Activity patterns from videotape were collected as 
part of the studies in Arizona and North Carolina [12,13,62]. Thus, these studies could provide a 
unique opportunity to further evaluate the CACHED modeling framework and assess the relative 
contribution of exposure routes to aggregate risk in different children populations. 

Table 9. Comparison of route-specific and aggregate dose estimates from CACHED and 
other studies. 

Study Units Statistic Dermal Inhalation Dietary Non-Dietary Aggregate 
Current ng/kg-day Range 0.1–1.2 0.1–3.9 0.0–743 8.0–423 10.9–853 
  Mean 0.3 0.9 88.2 66.2 157 
  Median 0.2 0.9 38.1 61.4 110 
 ng/day Range 0.8–13.3 1.5–42.5 0.0–8096 86.8–4609 118.4–9302 
  Mean 2.7 9.4 962 722 1,696 
  Median 2.2 9.6 402 656 1,128 
Morgan [12] ng/kg-day Range 0.0–11.9 0.0–30.3 0.0–3.3 0.0–10,200 0.5–179 
  Mean 0.1 2.1 0.3 285 8.1 
  Median 0.0 0.8 0.1 0.0 3 
Pang [11] ng/day Range 0.0–241 0.0–13,900 0.0–10,200 0.0–217 13.5–12,800 
  Mean 4.3 594 285 4.3 1,390 
  Median 0.0 103 0.0 0.0 112 
O’Rourke [62] ng/kg-day Range     2,430–13,000 
  Mean     6006 
  Median     2590 
Wilson [13] ng/kg/day Range     10.6–329 
  Mean     76.1 
  Median     30.0 
Wilson [63] ng/kg/day Range     0.86–164 
  Mean      
  Median     8.22 
Lu  ng/kg/day Range     <1–2302 
(Predicted) [6]  Mean     180 
  Median     4 
Lu  ng/kg/day Range     40–1320 
(Measured) [6]  Mean     420 
  Median     330 

Children’s aggregate and cumulative risk from exposure to multiple pesticides via multiple routes 
involves many complex mechanisms and processes. The CACHED modeling framework was developed 
in an attempt to describe these processes through mathematical calculations, with a particular emphasis 
on the complex mechanisms governing dermal and non-dietary ingestion exposure. Given the complexity 
of these exposure routes and the PBPK components, and the numerous assumptions made in developing 
the equations and selecting appropriate parameter values, it is remarkable that the estimates from 
CACHED were not significantly different from what was measured in the children. However, there are 
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still several mechanisms of dermal and non-dietary exposure that should be explored in the future [14]. 
For example, our modeling efforts did not account for non-dietary ingestion exposure from handling of 
food with contaminated hands or for dermal exposure to body parts other than the hands. For both the 
exposure and PBPK components there are still several parameters for which there is limited experimental 
data and assumptions had to be made. For dermal exposure more data is needed regarding the transfer of 
pesticides to the hands in residential settings, where the pesticides may be present in numerous phases 
(e.g., a residue or adhered to dust particles). There is also not much experimental data for two of the 
key parameters for non-dietary ingestion exposure: surface area of mouthing or saliva removal 
efficiency. Additional data on these parameters would also help refine estimates. The PBPK model is 
most sensitive to partition coefficients and the fraction of pesticide or metabolite bound to plasma 
proteins. There are currently very few experimental values for these parameters for chlorpyrifos and 
diazinon and virtually no experimental data for their metabolites. For our purposes these parameters 
were estimated and optimized during the initial PBPK model evaluation. Furthermore, there is also no 
experimental data for these parameters in children. Although the assumptions we have made in 
calculating these parameters for children seems to be adequate from the model evaluation, it would be 
helpful in the future to verify these assumptions with experimental measurements to refine future 
exposure models for children. 

4. Conclusions  

The CACHED modeling framework was developed with an attempt to represent the physical processes 
of exposure and dose through incorporation of micro-level activity time series, exposure mechanisms, and 
PBPK components. Utilizing careful assumptions for exposure factor and age-specific physiological 
parameters, CACHED simulations using micro-activities and environmental concentrations collected 
from the same farmworker children population resulted in realistic estimates of pesticide metabolite 
concentration in the children’s urine. These simulations with the CACHED framework provide  
a rigorous yet successful evaluation of the “microactivity” exposure assessment approach. Young 
children’s mouthing contacts with hands and non-dietary objects are very frequent (42 events/h) and of 
short duration (2 s) [22], and detailed estimations of these events are necessary to obtain accurate non-
dietary ingestion exposure estimates, and to evaluate exposure route contribution. These simulations 
also represent the first time that a PBPK model was successfully evaluated using biomarker 
measurements from children. 

Analysis of the route and chemical contribution of the dose estimates from CACHED demonstrate 
non-dietary ingestion exposure is the most significant route and chlorpyrifos is the dominant pesticide. 
However, dietary exposure contributes the most to risk from aggregate chlorpyrifos exposure. The 
between-child variability observed in the route and pesticide contributions to dose and resulting DAP 
urine concentration, indicates the importance of accounting for aggregate and cumulative exposure in 
establishing pesticide residue tolerances in food under the FQPA and that certain children may be most 
at-risk due to their unique behaviors. The risk metrics computed from the CACHED estimates, which 
are based on measured pesticide levels in the homes of real farmworker children, indicate that over 95% 
of these exposure scenarios might pose a potential risk to children in this community from aggregate 
chlorpyrifos exposure even after the ban for residential use. Given that adverse neurodevelopment 
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outcomes have been associated with pesticide exposures in this community, and none of the families 
that participated in the measurement study reported any residential use of OP pesticides [3], it is 
important to determine the contribution of the agricultural spray drift and occupational take-home 
exposure pathways to these risk estimates to determine if farmworker children have increased risk 
compared to other children. The CACHED modeling framework could be used in the future to test 
intervention scenarios, aimed at reducing the risk to these children.  
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