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Abstract: Cumulative risk assessment has been proposed as an approach to evaluate the 

health risks associated with simultaneous exposure to multiple chemical and non-chemical 

stressors. Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models 

can allow for the inclusion and evaluation of multiple stressors, including non-chemical 

stressors, but studies have not leveraged PBPK/PD models to jointly consider these 

disparate exposures in a cumulative risk context. In this study, we focused on exposures to 

organophosphate (OP) pesticides for children in urban low-income environments, where 

these children would be simultaneously exposed to other pesticides (including pyrethroids) 

and non-chemical stressors that may modify the effects of these exposures (including diet). 

We developed a methodological framework to evaluate chemical and non-chemical 

stressor impacts on OPs, utilizing an existing PBPK/PD model for chlorpyrifos. We 

evaluated population-specific stressors that would influence OP doses or acetylcholinesterase 

(AChE) inhibition, the relevant PD outcome. We incorporated the impact of simultaneous 

exposure to pyrethroids and dietary factors on OP dose through the compartments of 
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metabolism and PD outcome within the PBPK model, and simulated combinations of 

stressors across multiple exposure ranges and potential body weights. Our analyses 

demonstrated that both chemical and non-chemical stressors can influence the health 

implications of OP exposures, with up to 5-fold variability in AChE inhibition across 

combinations of stressor values for a given OP dose. We demonstrate an approach for 

modeling OP risks in the presence of other population-specific environmental stressors, 

providing insight about co-exposures and variability factors that most impact OP health 

risks and contribute to children’s cumulative health risk from pesticides. More generally, 

this framework can be used to inform cumulative risk assessment for any compound 

impacted by chemical and non-chemical stressors through metabolism or PD outcomes. 

Keywords: cumulative exposure; risk assessment; pesticides; health disparities; diet 

 

1. Introduction  

Cumulative risk assessment has recently emerged as an area of interest among regulators as well as 

stakeholders concerned about environmental justice [1–3]. The U.S. EPA’s Framework for Cumulative 

Risk Assessment defines cumulative risk formally as “the combined risks from aggregate exposures to 

multiple agents or stressors” [4]. Of note, the EPA considers cumulative risk assessment to include 

both chemical and non-chemical stressors, the latter of which may potentially include (but not be 

limited to) low income, low community property values, limited access to health care, psychosocial 

stress, and other stressors not commonly within the purview of EPA decision-making. 

Despite the inclusion of non-chemical stressors in the definition of cumulative risk, cumulative risk 

assessments to date have typically ignored those stressors [5]. This is largely because toxicological 

studies do not have the capacity to consider most non-chemical stressors, as well as because of the 

limited availability of epidemiological evidence. However, a recent report evaluating risk assessment 

methods [6] reinforced the priority that needs to be placed on evaluating risks from multiple stressors 

simultaneously, with a particular emphasis on identifying how multiple chemical and non-chemical 

stressors impact individual and population health.  

Conceptual frameworks have been developed for cumulative risk assessments that capture chemical 

and non-chemical stressors [7], but such frameworks have not been linked with the methods 

commonly used for modeling exposures and health outcomes within risk assessment. In particular, 

there are limited methods to date to evaluate the impacts of chemical and non-chemical stressors on the 

internal doses or resulting health effects of an environmental toxicant. 

Pesticides have been at the forefront of the cumulative risk discussion, based on the Food Quality 

Protection Act of 1996, which specifically mandates that pesticides with a common mechanism of 

action be evaluated for their cumulative health risks [8]. Cumulative risk assessments have been 

conducted for organophosphate (OP) pesticides, which as a group have a common primary mechanism 

of action, acetylcholinesterase (AChE) inhibition [9–11]. These assessments have included multiple 

OPs and exposure pathways, capturing one key dimension of modeling neurocognitive effects, but did 

not consider other potential stressors with similar mechanisms or that would impact the metabolism of 
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OPs or their mechanism of action. Non-chemical physiological and psychosocial stresses can have 

indirect biochemical and neurological effects similar to those of the OPs. This issue may be 

particularly salient for children in low-income urban environments, who have been shown to have 

simultaneous exposure to multiple pesticides [12] and who exhibit high levels of three important  

non-chemical stressors: obesity, inadequate nutrition, and psychosocial stress. A recent study in urban 

public housing [13] found 56% of children to be overweight, with 41% of caregivers not allowing their 

children to play outside due to neighborhood violence and 84% of caregivers of children under age 8 

reporting fear of violence. However, no studies have formally considered how these stressors could 

influence the health risks associated with OP exposures. 

Within this study, our aim was to develop a theoretical risk framework for evaluating cumulative 

risk to OPs in the presence of other chemical and non-chemical stressors, using physiologically-based 

pharmacokinetic/pharmacodynamic (PBPK/PD) models to quantify the impacts of these stressors on 

OP internal dose and AChE inhibition. We developed methods for incorporating the biochemical 

effects of a subset of common non-chemical stressors affecting metabolism and the pharmacodynamic 

outcome. We simulated internal doses and AChE inhibition for children characteristic of an urban  

low-income environment and discuss the relative impacts of multiple stressors on OP doses and factors 

that contribute most to increased risk of AChE inhibition amongst this population. The theoretical 

framework developed here, with OPs as an illustrative example, can be utilized for any chemical that 

may be impacted by stressors through metabolism or mechanism of action, and provides a first effort 

at a methodological framework to quantify the cumulative impact of chemical and non-chemical 

stressors on an individual’s health risk. 

2. Methods 

2.1. Cumulative Risk Framework Development 

We developed a framework for cumulative risk assessment that relies on an understanding of the 

physiologic processes that lead to a critical health outcome, such as AChE inhibition. Figure 1 shows a 

diagram of our conceptual framework using an OP, chlorpyrifos (CPF), and exposure and stressors for 

urban low-income children as an example (described in detail in sections to follow). In this framework 

approach, biochemicals, metabolic processes and target tissues are identified that would be affected by 

exposure to OPs or stressors, including the general pool of enzyme proteins, enzymes specific to OP 

metabolism, and the pool of AChE enzyme, particularly in the brain. Specific stressors are identified 

that have direct effects on AChE (e.g., CPF-oxon metabolite) and that affect the general pool of 

enzyme proteins available for physiological needs, including AChE (e.g., diet).  

The elements of the framework are integrated by a PBPK/PD model to describe the internal 

relationships of tissue concentrations, enzymatic processes and the quantitative effects of chemical and 

non-chemical stressors, and quantification of a health relevant outcome, in this case changes in AChE 

inhibition. Thus, within the present study, framework development involved systematically evaluating 

which stressors were both relevant for our urban low-income population of children and could 

influence PBPK/PD model parameters. Specifically, we sought out evidence about stressors that would 

influence general physiological factors, or that would impact the metabolism of OPs and the percent 
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AChE inhibition, both model components that would directly impact CPF-oxon doses or the health 

outcome. We then used the developed framework to infuse changes that would reflect CPF PBPK/PD 

model parameter impacts due to stressors relevant for our population with this example. 

Figure 1. Diagram of risk framework using PBPK/PD model application for OPs with 

chemical and non-chemical stressors (Parentheses depict specifics for this example). 

 
 

Within this study, though OP doses vary with age, gender, and other characteristics, we simulated 

sets of individuals with a fixed set of characteristics in order to isolate the impacts of the additional 

stressors of interest. We modeled 2-year-old females with a median height, noting that 2-year-olds will 

have greater enzyme levels than younger children. We performed our stressor simulations using a 

modified version of the CPF PBPK/PD model, previously developed by Timchalk et al. [14].  

2.2. Evaluation of Additional Chemical Stressors 

Both pyrethroids and OP pesticides were found frequently in the homes of children in the  

low-income population we use to generate our study population, with many homes having five or more 

pesticides across both groups [12]. OPs and pyrethroids are metabolized by similar CYP enzymes, 

with pyrethroids also being primarily detoxified by carboxylesterase enzymes (which are almost 

irreversibly bound to OPs). Significant associations were found between CPF metabolites and 

CYP3A4/5, CYP2C8, CYP2C19 and CYP1A2 [15]. Human CYP450 isoforms that showed activity 

toward multiple pyrethroids were CYP2C8, CYP2C9, CYP2C19, and CYP3A4 [16], indicating that an 

overlapping profile of metabolizing enzymes exists for the two groups. While OPs impact pyrethroid 

metabolism significantly, pyrethroids have been found to be weak inhibitors of OPs [17]. However, the 
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combined exposure and shared metabolic enzymes indicate that pyrethroids also have the potential to 

have an effect on OP dosimetry. Other chemical stressors may have been present in the residential 

environment that could impact CPF or CPF-oxon doses, but they were unknown or not characterized 

for this population. No other chemicals were present to our knowledge that directly impacted AChE 

inhibition (e.g., carbamates).  

2.3. Evaluation of Non-Chemical Stressors 

Within our literature review, we focused on non-chemical stressors that were relevant to low-income 

urban children, which would potentially influence the effects of OP exposure, and had sufficient data 

available to indicate how the PBPK/PD model should be modified. While there is insufficient 

information to understand the majority of the possible interactions that could occur between chemical 

and non-chemical stressors, we sought to capture how selected common non-chemical stressors might 

modify general physiological parameters (e.g., weight), metabolic parameters (e.g., Vmax, maximum 

velocity of reaction), and AChE inhibition (e.g., through estimating underlying AChE levels).  

A host of potential stressors relevant to urban or low-income children have been reported. Given 

our emphases listed above, we found the most consistent and relevant evidence to support psychosocial 

stress (often related to exposure to community violence) and diet as non-chemical stressors for this 

population. Stress and diet were thus further evaluated for their potential impacts on physiology,  

OP metabolism, and AChE inhibition.  

First considering psychosocial stress, studies confirmed its importance for a variety of health 

outcomes as well as consistently elevated rates in low-income urban populations [18,19]. Exposure to 

community violence represented a particular stressor within these communities [20–22]. Severe acute 

or chronic stress has been shown to impact important metabolic pathways, particularly causing 

hormonal changes that can lead to increased susceptibility to environmental toxicants [23,24]. 

However, evaluations of direct impacts of acute and repeated stress in animals prior to CPF exposure 

showed no impact on AChE inhibition [25]. Thus, although psychosocial stress is clearly important for 

numerous outcomes and likely impacts these exposures in some capacity, quantitative evidence did not 

presently exist to suggest a direct impact on either OP metabolism or AChE inhibition, and data 

regarding general impacts were not available that could be incorporated in this assessment.  

For diet, obesity rates are highest among low-income, minority, urban children [26], with a recent 

study in urban public housing [13] finding 56% of children to be overweight. Irigoyen et al. also found 

obesity percentages for urban low-income children ages 1–5 to be 7.5% (age 1), 20% (age 2), and 30% 

(ages 3–5) [26]. Increased weight leads to increased fat volumes, which could lead to prolonged 

exposure to OPs for obese children due to the high fat partition coefficients for OPs. Furthermore,  

low-income children were more likely to have a diet comprised of lower protein and a higher 

percentage of fat and sugars, with mean percentage of calories from carbohydrates, protein, and fat of 

57%, 13%, and 32%, respectively, with between 69–94% not meeting the minimum number of 

servings of fruit, vegetables, grain, meat/poultry, and dairy [27]. These dietary impacts can lead to 

changes in important enzyme levels and metabolism of environmental toxicants [28]. Long-term high 

sugar, high fat diets have been directly associated with decreased levels of AChE activity [29], with 

low protein diets more generally associated with lower enzyme production levels [30,31]. Decreased 



Int. J. Environ. Res. Public Health 2012, 9 1976 

 

 

AChE activity due to diet could add to the percent inhibition occurring due to OP exposure. Low 

enzyme production could lead to decreased CPF-oxon production, but also decreases in the PON1 

enzymes needed to detoxify the CPF-oxon metabolite. Thus, the available evidence supported diet as 

having a direct impact on both metabolism and AChE inhibition, with obesity additionally influencing 

the PBPK/PD model structure and outputs.  

2.4. Simulation Approach 

As a result of our review of stressors for urban low-income children, enzymatic impacts from 

concurrent pyrethroid exposure and physiological changes from dietary factors were included, with the 

resulting framework illustrated in Figure 1. The effects of pyrethroid exposure were incorporated through 

the metabolism compartment, with modifications in the Vmax (maximum velocity of reaction) parameter 

values for the CYP and PON1 metabolizing enzymes. Dietary factor impacts were incorporated in 

several ways. First, elevated body mass index was incorporated through overall body weight and tissue 

volume modifications, in order to evaluate whether body weight, and in particular fat volume, 

influenced our findings. Dietary stressor impacts were also incorporated through the compartments of 

metabolism and the pharmacodynamic outcome. A low-protein diet reduces the formation rate of 

enzyme protein, which proportionally reduces Vmax, increasing sensitivity to OP exposure. Lower protein 

could also reduce metabolic formation of toxic OP metabolites. The pharmacodynamic outcome was 

incorporated through decreased AChE levels in the body due to a high fat/high sugar diet. 

In all cases, data did not allow for precise estimation of the effect of the chemical or non-chemical 

stressor, but we developed approximations to capture the upper bound potential impacts of these 

stressors. Distributions of data for these stressors would be optimal to include in order to fully consider 

variability due to these stressors. However, incorporation of bounding estimates in the absence of 

available distributional data allows for an initial characterization of the likely importance of these 

stressors from a health relevant standpoint and demonstration of proof of concept of our theoretical 

framework. For alterations in the metabolism compartment, we assumed a theoretical value of 50% 

reduction in Vmax values as a result of co-exposure to pyrethroids and decreased overall enzyme levels 

with a low-protein diet. Although exact effects of diet on metabolism have not been reported, studies 

have consistently shown that diet has a negative impact on overall enzyme levels [32–34]. Furthermore, 

a 50% reduction in Vmax is plausible given ranges of Vmax values that capture polymorphic enzymes 

and interindividual variability. Foxenberg et al. reported Vmax values that spanned between 2–12 fold 

depending on the enzyme group, with CYP enzymes having a 4-fold Vmax range for the 2-year-old age 

group (e.g., from half the standard reported value to 2× the reported value) [35]. 

Effects of body mass index were simulated by incorporating a range of plausible values, determined 

from the Center for Disease Control and Prevention’s clinical growth charts [36]. We focused on 

females age 1–2 (12–24 months) and considered children of median weight at 18 months (10.9 kg) as the 

comparison group. A lower bound weight was taken from the 5th percentile at 12.5 months (8.13 kg) and 

an upper bound weight was taken from the 95th percentile at 23.5 months (14.5 kg). In all cases, we 

considered a median height of 79.8 cm to allow for a range of body mass index values. This method 

created body mass index values well below the 5th and well above the 95th percentile, to examine  

the range of impact for this framework exercise. A long-term high fat/high sugar diet caused between  
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20–40% decreases in AChE activity for females in animal studies [29]. This potential decrease could 

reduce the amount of AChE available to break down acetylcholine, in combination with the reduction 

occurring through OP exposure. In order to quantify how much of an impact the diet stressor could 

have on AChE inhibition, we assumed the maximum reported decrease of 40% in AChE binding sites 

during the simulations. 

With these parameter modifications in place, we ran a series of sensitivity analyses across selected 

CPF input exposure values from previous exposure modeling work. This study simulated dermal and 

ingestion exposures for young children from dust concentration measurements in their urban low-income 

residences [37,38] (median, 95th percentile, and maximum). We combine these estimates for 2-year-

old children with varying combinations of stressors (i.e., across weight values, with the pyrethroid 

chemical stressor, with the low protein, high fat and sugar diet stressor, and with both stressors). CPF 

doses were simulated for 21 days of exposure, in order for AChE inhibition to reach steady state.  

We used the models to estimate the theoretical CPF-oxon area-under-the-curve (AUC) in the brain 

tissues at day 21, along with the maximum value percent AChE inhibition at steady state associated 

with CPF-oxon concentrations. Maximum value percent inhibition at day 21 is presented here to 

represent the upper bound value that could occur in each sensitivity analysis. In each case, we compare 

children with additional chemical and non-chemical stressors with the child within their exposure 

range with normal parameters as a baseline. We determined which factor or combination of factors 

most significantly influence percent AChE inhibition in the brain.  

3. Results 

First considering a child at median exposure, the CPF-oxon brain AUC values and corresponding 

maximum percent AChE inhibition in the brain varied significantly across stressor simulations, with 

percent AChE inhibition varying from 14% less to 5 times more than seen for the baseline child  

(Table 1). The highest percent inhibition values corresponded with children with the 95th percentile 

weight and both the pyrethroid and diet stressors (Table 1). While the combination of stressors yielded 

the greatest effect, all stressors individually contributed to increases in percent AChE inhibition.  

For example, the increased body mass index contributed to a roughly proportionate increase in percent 

AChE inhibition. The reduced Vmax approximately doubled AChE inhibition given normal AChE 

binding sites, but displayed a less than proportionate increase given decreased binding sites. The AChE 

binding site decreases from diet contributed an approximate factor of 2–4 increase in inhibition across 

other parameter values. At higher levels of exposure, the patterns are similar, though with some 

modest differences in the individual and joint contributions of factors (Table 1). As expected, percent 

AChE inhibition increased with exposure level across simulations. In each case, only the child with 

low body weight and normal levels of Vmax and AChE binding sites demonstrated lower percent AChE 

inhibition than the baseline child, with approximate 20% reductions. Additionally, in each case, the 

child with high body weight and both the pyrethroid and diet stressors exhibited inhibition 

approximately 2.5 times higher than the level for the baseline child (a lower ratio than seen for the 

children at median exposure). Each of the stressors made a significant contribution, though at the 

higher exposure levels, decreased binding sites had a lower relative influence than at the lower 

exposure levels, suggesting that enzyme saturation may occur at the higher exposure levels. At the 
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highest exposure level and combination of stressors, the percent AChE inhibition reached a maximum 

value of 0.148%, substantially greater than for the child at median exposure without additional 

stressors. 

Table 1. Percent AChE inhibition changes in the brain after 21 day CPF exposure with 

inclusion of a chemical and non-chemical stressor. 

Exposure  
(μg/kg/day) 

Weight Vmax 
AChE 
binding 
sites 

AUC  
CPF-oxon 
brain 
(μg/kg/day) 

% AChE 
inhibition 
brain 
(Maximum) 

Ratio - % inhibition 
in simulated  

child/ % inhibition 
in comparison child 

Median  
(0.075 derm, 0.003 ing) 

median 
(10.9 kg) 

normal * normal 0.056 0.00028 Median child 

 5% (8.13 kg) normal normal 0.060 0.00024 0.86 
 95% (14.5 kg) normal normal 0.050 0.00036 1.29 
 median  ↓ 50% normal 0.111 0.00057 2.04 
 5% ↓ 50% normal 0.119 0.00048 1.71 
 95% ↓ 50% normal 0.100 0.00069 2.46 
 median  normal ↓ 40% 0.056 0.00100 3.57 
 5% normal ↓ 40% 0.060 0.00090 3.21 
 95% normal ↓ 40% 0.050 0.0011 3.93 
 median ↓ 50% ↓ 40% 0.111 0.0013 4.64 
 5% ↓ 50% ↓ 40% 0.119 0.0012 4.29 
 95% ↓ 50% ↓ 40% 0.100 0.0014 5.00 
95th percentile  
(0.876 derm, 0.417 ing) 

median normal normal 0.631 0.0034 95th % child 

 5% normal normal 0.618 0.0027 0.79 
 95% normal normal 0.615 0.0041 1.21 
 median ↓ 50% normal 1.26 0.0068 2.00 
 5% ↓ 50% normal 1.23 0.0055 1.62 
 95% ↓ 50% normal 1.23 0.0081 2.38 
 median  normal ↓ 40% 0.631 0.0046 1.35 
 5% normal ↓ 40% 0.618 0.0038 1.12 
 95% normal ↓ 40% 0.615 0.0055 1.62 
 median ↓ 50% ↓ 40% 1.26 0.0074 2.18 
 5% ↓ 50% ↓ 40% 1.23 0.0062 1.82 
 95% ↓ 50% ↓ 40% 1.23 0.0088 2.59 
Maximum  
(15.9 derm, 0.820 ing) 

median normal normal 10.8 0.0615 Max child 

 5% normal normal 9.69 0.0501 0.81 
 95% normal normal 9.62 0.0738 1.20 
 median ↓ 50% normal 21.5 0.1230 2.00 
 5% ↓ 50% normal 19.3 0.1000 1.63 
 95% ↓ 50% normal 19.2 0.1470 2.39 
 median  normal ↓ 40% 10.8 0.0720 1.17 
 5% normal ↓ 40% 9.69 0.0580 0.94 
 95% normal ↓ 40% 9.62 0.0880 1.43 
 median ↓ 50% ↓ 40% 21.5 0.1230 2.00 
 5% ↓ 50% ↓ 40% 19.3 0.1000 1.63 
  95% ↓ 50% ↓ 40% 19.2 0.1480 2.41 

* Normal values still scaled by weight, then modified; derm = dermal, ing = ingestion. 
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4. Discussion and Conclusions 

In this study, we have developed and applied a framework (shown in Figure 1) for using PBPK/PD 

modeling to quantitatively evaluate the impacts of chemical and non-chemical stressors on an 

individual chemical exposure and corresponding potential health impact. Within our simulations, 

focused on CPF exposures, doses and percent AChE inhibition varied considerably (up to a factor of 

five) across stressor factor combinations. Even given the limited information available to estimate 

effects within a PBPK/PD framework, our approach allowed for characterization of relative impacts of 

multiple stressors on OP doses and factors that contribute most to increased risk of AChE inhibition 

amongst this simulated population.  

We concluded in this example that high body mass index and physiological impacts from 

pyrethroid and diet stressors would impact the amount of AChE inhibition associated with CPF 

exposures. This combination of stressors is likely to be present for young children living in an urban 

low-income environment. While variability in exposure inputs would tend to dominate the effects of 

these stressors [37,38], omission of these and other stressors may underestimate the effects of 

pesticides in low-income communities. Some non-linearities were seen at the higher exposure levels 

with the inclusion of the diet stressor, which decreases available AChE levels. In comparison to the 

linear relationship seen with increased percent inhibition as stressors were added to the analyses at the 

median exposure levels, the relationship at the higher exposure levels with the inclusion of diet was 

non-linear, suggesting that enzyme saturation may occur at these exposure levels. Our study suggests 

the importance of a systematic methodology to consider the effects of numerous chemical and non-

chemical stressors within PBPK/PD modeling, as an approach for enhancing cumulative risk 

assessment and providing unbiased health risk estimates.  

There are some clear limitations in our analysis, even given the fact that we presented an intentionally 

stylized example. First, even with the combination of stressors at the highest level of exposure, the 

percent AChE inhibition would seem to indicate limited risk, which would reduce the importance of 

incorporating various stressors. Studies in the literature indicate that >20% inhibition is generally 

considered as a level of concern, as compared with our maximum level of 0.148%, although the 

threshold value may be lower for developing children [9]. In other words, the variability in this  

risk-relevant metric would not likely correspond with detectable variability in risk. However, our 

exposure inputs only included non-dietary routes of exposure, and inclusion of additional routes of 

exposure as well as additional pesticides and non-chemical stressors may lead to more significant 

percent AChE inhibition estimates. More generally, our goal was not to comprehensively determine 

exposures and corresponding health risks, but to suggest a methodology by which non-chemical 

stressors could be introduced into the cumulative risk paradigm, and our methods could be applied in 

many other contexts.  

In addition, the proposed framework may not be applicable in the near term for many compounds, 

given limitations in the number of currently available PBPK/PD models, especially given the desire for 

models with the pharmacodynamic component that allows for evaluation of a health relevant outcome. 

However, this proof of concept application coupled with growing interest in cumulative risk assessment 

may stimulate the development of novel PBPK/PD models with cumulative risk applications in mind, 

or the consideration of how various chemical and non-chemical stressors may influence metabolic 



Int. J. Environ. Res. Public Health 2012, 9 1980 

 

 

processes or pharmacodynamic outcomes in existing models. This is supported by a recent article by 

Tan et al., which considered approaches for evaluating interactions between multiple chemical stressors 

with PBPK/PD modeling and highlighted the overall utility of computational modeling for  

cumulative risk assessment [39]. Efforts are also ongoing presently to develop a family PBPK model 

for the pyrethroid pesticides, building upon deltamethrin models developed and refined by  

Mirfazaelian et al. [40] and Godin et al. [41], respectfully, which could potentially allow for 

evaluation of chemical and non-chemical stressor impacts on this widely used pesticide group.  

As mentioned previously, OPs almost irreversibly inhibit the major metabolizing enzymes for 

pyrethroids, carboxylesterases, leading to increased toxicity from the parent compound that could 

extend to human health effects [42]. If OPs were incorporated as a chemical stressor for pyrethroids, 

the impact of OPs on pyrethroid toxicity could be evaluated using this framework, providing great 

insight into the magnitude of health impact changes occurring as a result of their combined exposures.  

An additional limitation stems from the fact that we were limited in available data regarding 

stressors, both for stressors included in this study and those not included, since we could only capture 

stressors with documented impacts on metabolism or that have been previously shown to directly 

impact the pharmacodynamic outcome. Other stressors, including but not limited to psychosocial 

stress, likely impact these physiological systems and outcomes in a manner that may lead to a relevant 

health impact; however, data did not exist at the time of our investigation to adequately understand or 

quantify these impacts in a PBPK/PD modeling framework. Data were also limited regarding the 

stressors that were incorporated. Additional data are necessary in order to utilize representative data 

distributions to capture the full range of variability that may occur due to these stressors.  

An intentionally stylized approach with bounding calculations for stressor data was applied in this 

study, with the aim that the theoretical framework concept derived here could be further validated and 

enhanced as more data becomes available. Propagating uncertainty and variability throughout the 

analysis would allow for refinement of the potential health impact of these stressors and evaluation of 

the sources and magnitude of uncertainty and variability. We recommend additional studies and data 

collection oriented around the effects of these non-chemical stressors on specific PBPK/PD model 

parameters. Future studies should evaluate stressor data variability and uncertainty and report these 

values. More generally, while our inclusion of stressors is clearly not comprehensive, the stressors 

addressed within our application allow us to understand the potential magnitude of impact that a 

stressor of this kind may have on a specific chemical exposure.  

In spite of these limitations, our work offers a new methodological framework within which 

chemical and non-chemical stressors can be jointly considered in the emerging area of cumulative risk 

assessment. The theoretical framework developed here, with OPs as an illustrative example, can be 

utilized for any chemical that may be impacted by stressors through metabolism or mechanism of 

action. This structure can be utilized to evaluate the impacts of multiple chemical and non-chemical 

stressors simultaneously on an individual chemical. This work could also be extrapolated to include 

multiple primary compounds within the same chemical family, or with the same mode of action (e.g., 

multiple OPs). The framework provided herein includes both a systematic approach to evaluate 

potential stressors for inclusion in the assessment as well as quantitative methods to assess the impact 

of included stressors on a health relevant outcome, which can help determine which stressors may be 

important to include from a health-relevant standpoint. 
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