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Abstract: Comprehensive land-use planning (CLUP) at the county level in China must 

include land-use zoning. This is specifically stipulated by the China Land Management Law 

and aims to achieve strict control on the usages of land. The land-use zoning problem is 

treated as a multi-objective optimization problem (MOOP) in this article, which is different 

from the traditional treatment. A particle swarm optimization (PSO) based model is applied 

to the problem and is developed to maximize the attribute differences between land-use 

zones, the spatial compactness, the degree of spatial harmony and the ecological benefits of 

the land-use zones. This is subject to some constraints such as: the quantity limitations for 

varying land-use zones, regulations assigning land units to a certain land-use zone, and the 

stipulation of a minimum parcel area in a land-use zoning map. In addition, a crossover and 

mutation operator from a genetic algorithm is adopted to avoid the prematurity of PSO. The 

results obtained for Yicheng, a county in central China, using different objective weighting 

schemes, are compared and suggest that: (1) the fundamental demand for attribute difference 

between land-use zones leads to a mass of fragmentary land-use zones; (2) the spatial pattern 

of land-use zones is remarkably optimized when a weight is given to the sub-objectives of 
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spatial compactness and the degree of spatial harmony, simultaneously, with a reduction of 

attribute difference between land-use zones; (3) when a weight is given to the sub-objective 

of ecological benefits of the land-use zones, the ecological benefits get a slight increase also 

at the expense of a reduction in attribute difference between land-use zones; (4) the pursuit 

of spatial harmony or spatial compactness may have a negative effect on each other; (5) an 

increase in the ecological benefits may improve the spatial compactness and spatial harmony 

of the land-use zones; (6) adjusting the weights assigned to each sub-objective can generate a 

corresponding optimal solution, with a different quantity structure and spatial pattern  

to satisfy the preference of the different decision makers; (7) the model proposed in this 

paper is capable of handling the land-use zoning problem, and the crossover and mutation 

operator can improve the performance of the model, but, nevertheless, leads to increased 

time consumption. 

Keywords: land-use zoning; multi-objective optimization; particle swarm optimization; 

crossover and mutation; Yicheng 

 

1. Introduction 

Land-use zoning and regulation, which originated in the late 19th century and was ubiquitous in most 

major US cities from the 1920s, is an effective measure for optimizing the allocation of land resources [1,2] 

and mitigating the negative externalities caused by mixed land use, and has been implemented in many 

countries and regions [3–5]. As the most important method of land-use regulation undertaken by local 

governments, zoning divides an administrative division into geographically contiguous ‘zones’, where 

each zone has its ordinance which prescribes what may and what may not be done [6]. The structure and 

goals of land-use regulation vary with the economic development, social institution and traditional 

culture of the different countries. China, since the adoption of economic reform and the open-door policy 

in 1978, has experienced rapid urbanization and industrialization, with the resulting undesirable 

phenomena of urban sprawl and expansion, loss of farmland, damage to the ecological environment, etc. 

Therefore, the main purpose of the zoning policy of China is to restrict the urban encroachment on rural 

lands, slow the agricultural conversion process and provide protection for the preservation of farmland 

and forest land [7]. Xinji County of Hebei Province, as a pilot county, adopted the nation’s first 

comprehensive zoning ordinance in 1987, but there was no specific legal provision for zoning until 1998 

when Article 20 of the China Land Management Law introduced a regulation bringing in CLUP at the 

county level, which defines the land-use zones and the dominant land use of each zone. It can be seen, 

however, that the actual implementation of zoning policy occurred later in China, and the methods and 

laws for zoning and land-use regulation, in line with China’s actual land-use conditions, are still in the 

process of being explored. So, the focus of this paper is to construct a rational model serving land-use 

zoning in China, in view of the fact that zoning is the centerpiece of local planning and land-use 

regulations [8]. 

Standards for CLUP at the county level note clearly that, in general, a county can be divided into eight 

different zones comprising basic farmland preservation areas (BFPA), general agricultural land areas 
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(GALA), forestry land areas (FLA), animal agricultural land areas (AGLA), construction land for towns 

and villages (CLTV), independent industrial and mining land areas (IIMLA), tourism land areas (TLA), 

and natural and humanistic landscape preservation areas (NHLPA). Each land-use patch should be 

assigned to a certain zone, based on the actual land-use vector map [9,10]. A county can improve the 

land-use multi-efficiency and achieve the optimal allocation and sustainable utilization of land resources 

by strictly controlling the usages of land in each zone [11]. Traditional methods such as clustering 

analysis [12], the aggregative indicator method [13], and principal component analysis [14] are used for 

land-use zoning. All these methods are conducted based on the natural and socio-economic attributes of 

the land-use patches. However, land-use zoning is not only a spatial cluster problem, but also a 

multi-objective optimization problem, with the best contiguity between units belonging to the same zone 

and the highest economic returns, social effects and ecological benefits of land use [15]. Therefore, the 

aforementioned methods have obvious drawbacks in coping with land-use zoning with a MOOP. 

Furthermore, up to now, there's few research on solving land-use zoning problems with multi-objective 

optimization techniques. 

Nevertheless, many multi-objective optimization models have been presented for solving the 

optimization of land-use structure and land-use allocation, which are also the significant components of 

land-use planning as land-use zoning in China. For example, Brookes [16] used a genetic algorithm (GA) 

to find the best configuration for patches subject to multiple criteria; Aerts [17] adopted linear integer 

programming (LIP) for multi-site land-use allocation, to minimize development costs and maximize 

compactness; Liu et al. [18] analyzed the application of a GA in the optimization of land-use structure, 

considering the economic benefits, ecological ‘green’ equivalent, and soil erosion; Santé et al. [19] 

applied simulated annealing (SA) in rural land-use allocation, to reconcile multiple conflicting interests 

such as land suitability and compactness; Sadeghi et al. [20] optimized land resource allocation by using 

linear programming, to minimize soil erosion and maximize economic returns; Gao et al. [21] generated 

an optimized land-use structure which is able to reduce soil erosion, enhance the utilization of water 

resources and raise agricultural productivity, based on a multi-objective programming (MOP) model and 

the geographic information system (GIS) technique; Eldrandaly [22] indicated that integrating GIS and 

gene expression programming (GEP) is a promising and efficient approach for solving multi-site 

land-use allocation (MLUA) problems; and Zhang et al. [23] applied a multi-agent system (MAS) to 

regional land-use optimization allocation under a multi-objective constraint. Multiple objectives defined 

in a spatial context leads to a complex spatial optimization problem and often exhibits substantial 

computational complexity, which makes exact optimization methods such as LIP infeasible when there 

are a large number of land units [17,24]; however, optimization techniques that incorporate heuristics 

have been found to be more effective in solving spatial optimization problems such as SA, GA [25]. 

Therefore, why not build a multi-objective optimization model for land-use zoning according to 

previous studies? The particle swarm optimization (PSO) method put forward for the first time by 

Kennedy and Eberhart [26], is a relatively recent heuristic search method whose mechanics are inspired 

by the swarming or collaborative behavior of biological populations, which is known as swarm 

intelligence [26]. As an evolutionary algorithm, it is based on a population of candidate solutions (swarm 

of particles), which have improved capability for solving complex problems, high convergence speed 

and good generality for different global optimization problems [27]. The most important advantages of 
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PSO, compared to other optimization strategies, are that PSO is easy to implement and there are few 

parameters to adjust [28]. It therefore has wide applications in solving the MOPs in many fields [29–32]. 

Yicheng, a county-level city in Hubei Province, with rapid economic growth and a sensitive ecological 

environment, was chosen as the study area in this study. PSO was applied to the land-use zoning of 

Yicheng, employing an objective function that took into account the differences between zones, the 

spatial compactness of zones, the degree of spatial harmony of land-use zones, as well as the ecological 

benefits of land-use. The model obtained the Pareto-optimal solutions, with trade-off between the 

conflicting objectives, and was subject to the three typical constraints of containing a minimum parcel 

area in the land-use zoning map, limiting the area of land-use zones, and the general rules of dividing 

land units into various land-use zones. Additionally, considering the shortcomings of premature 

convergence and possibility of sinking into local optima of a basic PSO algorithm, a constriction factor 

and crossover and mutation operator were used in this model [33,34]. The algorithm, with several different 

sets of weights applied to these four objectives, was run, and the corresponding results were compared. 

The remainder of the paper is organized as follows: Section 2 gives an introduction to the study area 

and relevant data. The application of PSO in a land-use zoning problem is described in Section 3. 

Thereafter, in Section 4, the solutions with different sets of weights are compared, and the improvements 

are discussed. Finally, the main conclusions are given in Section 5.  

2. Data 

2.1. Study Area 

The study area (31°26′–31°54′N, 111°57′–112°57′E) is located in Hubei Province, central China, 

with an area of 2,114.75 km2 (Figure 1). The area, whose average elevation is between 50 and 150 m, 

accounts for 76.8% of the total county area, and a dense river network and many ponds cover the whole 

area. The average annual rainfall in this area, which has a typical subtropical monsoon climate, is 

between 800 and 1,000 mm. For this area, the population was 5.15 × 105 and the average annual growth 

rate of total gross domestic product (GDP) in the 11th five-year period was more than 10%. The study 

area has abundant mineral resources, including silica, limestone, and the biggest deposits of bauxite in 

Hubei Province. Extensive industrial development of the area has led to a great threat to the local 

ecological environment. 

In accordance with the CLUP (2006–2020) for Yicheng, the land-use zone of CLTV should continue 

to be divided into two zones comprising the construction land for towns (CLT) and construction land for 

villages (CLV). In addition, because there is little grassland for animal agriculture in this study area, the 

zone of LLA is excluded. In the end, the scenario of land-use zoning for Yicheng makes sure that eight 

land-use zones, including BFPA, GALA, FLA, CLV, CLT, IIMLA, TLA and NHLPA, are obtained. 
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Figure 1. Location of the study area. 

 

2.2. Data Collection and Processing 

The natural and social characteristics of each land-use patch should be considered when the work of 

land-use zoning is conducted, so we chose some indices that can reflect these characteristics and list 

them in Table 1. 

Table 1. Land-use zoning indices. 

Target Criteria Indices 

Land-use zoning 

soil quality 
surface soil type, soil organic matter content, pH value,  

soil depth, soil erosion intensity, soil profile construction 
topographic elevation, slope  

infrastructure  
for farmland  

irrigation guarantee rate,  
drainage conditions, rural road density 

land location 
distance from rural settlements,  

distance to center of towns, distance from roads 
land-use status land-use type 

Land-use type can be quantized as an integer number such as 1, 2…n. 

The soil quality data such as pH value, soil depth, soil erosion intensity, etc., were obtained from the 

soil quality survey map (1:50,000). Slope and elevation were derived from a digital elevation model 

(DEM of 30 m resolution, provided by the International Scientific & Technical Data Mirror Site, 

Computer Network Information Center, Chinese Academy of Sciences). Some vector traffic maps 

(1:10,000) were used to provide the spatial information such as centers of towns, railways, highways, 

roads, and administrative boundaries (provided by local bureau of land and resources). The type of each 

land-use patch, the percentage area of each land-use type and the distribution of rural settlements were 

obtained from the actual vector land-use map (1:10,000, provided by the local Bureau of Land and 

Resources). The actual land-use map contains 47,851 patches, with each patch considered to be a land 

Yicheng 
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unit which should be assigned to a certain land-use zone. Several fields were added to the actual land-use 

map to store the values of the aforementioned indices, after being standardized by Equation (1): 

   min max min'ii
x x x x x    (1) 

where xi’ is the value of variable i before standardization, xi is the value after standardization, xmin is the 

minimum value of the variable, and xmax is the maximum. 

All the spatial data were processed and computed by the spatial analysis tool in ArcGIS 9.3.  

To ensure consistency of the data, all the images and maps were geometrically rectified with each other 

and subsequently referenced to the Gauss-Kruger projection Xian_1980_3_ Degree_GK_Zone_37 

Projected Coordinate System. Figure 2 represents the main spatial data after GIS processing. 

Figure 2. Main spatial data for the land-use zoning model: (a) Actual land-use map;  

(b) Distance from highways and railways; (c) Distance to center of towns; (d) Elevation;  

(e) Slope. 
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Land-use planning based on ecological evaluation is of great significance to sustainable  

development [35]. The ecological benefits of land use can be evaluated by the ecosystem services value 

(ESV) [36], where different land-use types and zones have different ESVs. Xie et al. [37] established the 

ESV unit areas of Chinese terrestrial ecosystems, based on the partial global ESV evaluation results 

obtained by Costanza et al. [38]. This paper defines the level of ecological benefit and the corresponding 

coefficient of different land-use zones (see Table 2) in accordance with the foregoing results, integrated 

with the responses to ecological questionnaires from specialists of different departments in Yicheng City. 

Table 2. The ecological benefit level and coefficients of different land-use zones. 

Land-use zone NHLPA FLA GALA TLA BFPA CLV CLT IIMLA

Level 1 2 3 4 5 6 7 8 
Coefficient 1 0.9 0.6 0.5 0.4 0.3 0.1 0 

3. Methodology 

3.1. Objective Function 

Optimized land-use zones can effectively improve the land-use multi-efficiency, achieve optimal 

allocation and guarantee sustainable utilization of land resources; therefore, each land-use patch should 

be assigned to a certain zone, not only considering the natural and social characteristics of each land-use 

patch but also the global spatial compactness, spatial harmony of the land-use zones and the ecological 

benefits of land use. Hence, optimal land-use zones should reach the following objectives: 

(1) The attribute difference between land-use zones maxfAD 

Land-use zoning needs to divide n patches xd(d = 1,2,…,m, m is the number of attributes) into C 

land-use zones Gj (j = 1,2,…c). The difference between all the land-use zones is greatest when the sum of 

the distances from each land-use patch to the center of the corresponding land-use zone is smallest.  

So, the problem can be formulated as: 

2

1 1

1
n c

kj k jAD
k j

f u x v
 

   (2) 

where n is the number of land-use patches and c is the number of land-use zones when patch xk belongs to 

zone Gj, then ukj is equal to 1, or otherwise equal to 0. vj is the center of zone Gj that can be calculated by 

formula  1 2 ...i i i i
j N jv x x x N    , i

jv  is the value of attribute i for the center of zone Gj, 
i
Nx  is the 

value of attribute i for patch xN that belongs to zone Gj, Nj is the total number of patches that belongs to 

zone Gj, and 
2

k jx v is the Euclidean distance between patch xk and vj that is given by formula 

 2

1

m
d d
k j

d

x x


 . 

(2) The spatial compactness of land-use zones maxfSC 

To meet the needs of land-use control, besides the optimization of the quantity and quality of land 

use, the optimization of the spatial pattern is also an important component of land-use zoning. Reducing 

the fragmentary zones benefits the spatial control. The problem can be formulated as Equation (3): 
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1 1

n c

SC kj kj
k j

f u b
 

  (3) 

If land-use patch xk is assigned to spatial cluster Gj, bkj is the number of adjacent patches that also 

belong to Gj. fSC achieves a maximum value when land-use patches with the same attributes are adjacent 

to each other, and fSC achieves a minimum value when each patch has no adjacent patches that belong to 

the same zone, a small area with several patches in Yicheng is chosen to describe this vividly (Figure 3). 

Figure 3. The spatial pattern of land-use zoning: the spatial compactness of b is obviously 

better than a; b′ represents the spatial clusters. 

 

(3) The degree of spatial harmony of land-use zones maxfHD 

While in the process of partitioning the n patches into C land-use zones and D spatial clusters  

(Figure 3b), the state and influence of the neighborhood of each zone (spatial cluster) should be 

considered. The proper adjacent distribution of two land-use zones will promote the convenience degree 

of social production activities of human. Therefore, the problem can be expressed as in Equation (4): 

1 1

d d

HD ij ij
i j

f v hp
 

  (4) 

where d is the number of spatial clusters, vij is equal to 1 when cluster i and cluster j are adjacent to each 

other, otherwise vij is equal to 0. hpij represents the spatial harmony index between cluster i and cluster j, 

which belong to two different zones, respectively. The spatial harmony index between different land-use 

zones is obtained according to a combination of expert experience and the Delphi method, the results are 

listed in Table 3. 

The ecological benefits of land-use zones maxfEB: Different land-use patterns provide a different 

ESV. Objective fEB aims to improve the global ESV, based on the optimal land-use zones from an 

ecological point of view. So, the problem can be expressed as follows: 

1 1

n c

EB kj j k
k j

f u ep a
 

   (5) 

where epk represents the ecological benefit coefficient (refer to Table 2) when patch xk is allotted to zone 

j. fEB achieves a maximum value when all the land-use patches are assigned to the zone of FLA, and fEB 

achieves a minimum value when all the patches are assigned to the zone of CLTV or IIMLA. 
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Table 3. The spatial harmony index between different land-use zones. 

Land-use zone BFPA GALA FLA CLV CLT IIMLA TLA NHLPA

BFPA 1 0.8 0.6 0.5 0.1 0.1 0.3 0.4 
GALA  1 0.8 0.5 0.2 0.1 0.3 0.4 
FLA   1 0.3 0.3 0.3 0.8 0.8 
CLV    1 0.8 0.6 0.4 0.2 
CLT     1 0.3 0.2 0.1 

IIMLA      1 0.1 0.1 
TLA       1 0.6 

NHLPA        1 

Since these four objective functions (Equations (2–5)) represent conflicting land use demands, the 

scenario of land-use zoning with the optimal spatial pattern does not promise to give the maximum 

ecological benefits; therefore, there does not exist a single ideal solution which simultaneously satisfies 

the decision makers across all criteria. So, a compromise solution is sought based on a linear weighting 

method, which is a simple and practical way to convert the multi-objective problem into a 

single-objective one by using the following expression: 

1 2 3 4( ) ( ) ( ) ( )norm AD norm SC norm HD norm EBF w g f w g f w g f w g f     (6) 

where w1, w2, w3 and w4 are the weights of four objective functions, respectively, and subject to the 

condition w1 + w2 + w3 + w4 = 1. gnorm normalizes the values of the objectives within the range [0, 1] to 

eliminate the impact of different dimensions by: 

   min max min( )normg f f f f f    (7) 

3.2. Constraint Condition 

3.2.1. The stipulation of a minimum parcel area in a land-use zoning map 

The standards for CLUP at the county level make clear a regulation about the minimum parcel area 

(MPA) of different land-use zone types in the land-use zoning map (see Table 4). The parcels (also 

spatial clusters) with a conflict with the regulation should be merged into an adjacent parcel which has a 

maximal area. 

Table 4. The MPA in a land-use zoning map with 1:10,000 scale. 

Land-use zone BFPA GALA FLA CLV CLT IIMLA TLA NHLPA

Area in map (mm2) 20 20 100 20 20 20 20 100 
Actual area (hm2) 0.2 0.2 1 0.2 0.2 0.2 0.2 1 

3.2.2. The limitation of area of various land-use zones  

In the process of land-use zoning, the quantity of land-use zones should meet the demands of the 

land-use plan, as well as the optimization of the spatial pattern. In accordance with the CLUP (2006–2020) 

for Yicheng, which states that the area of basic farmland should be not less than 62,462.14 hm2 by 2020, 

and the amount of total construction land should not exceed 18,785.70 hm2, the forest coverage rate will 
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simultaneously have to reach 26.36% (55,563.16 hm2), so the area of BFPA, FLA, CLV, CLT and 

IIMLA should satisfy the inequality as follows: 

62462.14 0

55563.16 0

18785.7 0

BFPA

FLA

CLV CLT IIMLA

Area

Area

Area Area Area

 
  
    

 

3.2.3. The general regulations of land-use zoning 

(1) Land-use zoning is conducted excluding the water areas. Therefore, the 527 land-use patches for 

the water areas will not participate in the land-use zoning and will be given a value of NONE in the 

attribute of land-use zone. The total area of water areas in the study area is 12,998.06 hm2 (see Figure 4). 

Figure 4. Water and nature reserve areas in Yicheng. 

 

(2) Nature reserve areas with important ecological value, special cultural relics, historical sites and 

ecological forest must be assigned to NHLPA as a priority, and the attribute values of 112 land-use 

patches for the above types remain to the very end of the process of land-use zoning, with an area of 

10,111.58 hm2 (see Figure 4). 

(3) There is little likelihood of built-up areas being converted into other land-use types, based on the 

general laws of land-use change [39,40], so the land-use patches for urban areas and towns, and industry 

and mining should be only assigned to CLT and IIMLA, respectively. The same applies for tourism land, 

which can only be assigned to TLA. 

(4) Cheng et al. [41] defined the general dominant land use, allowable land use, and prohibited land 

use in various land-use zones. This paper also provides the relevant regulations for the eight land-use 

zones of Yicheng, in line with the local conditions (see Table 5). The probability interval of a land-use 

patch of a certain type being assigned to a zone is determined based on the information from Table 5, and 

is listed in Table 6. The zone label of each land-use patch should be decided referring to the table of 

probability intervals, for the initialization of different scenarios of land-use zoning, as follows: 

 ,kj i jif p PI a b then x G   (8) 
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where p is a random number and 0 ≤ p ≤ 1, PIkj[a,b] is the probability interval of land-use type k being 

allocated to land-use zone type j. 

Table 5. The dominant land use, allowable land use, and prohibited land use of the various 

land-use zones. 

Land-use zone BFPA GALA FLA CLV CLT IIMLA TLA 

Cropland △ □ □ ― ― ― ― 
Garden □ △ □ ― ― ― □ 

Grassland □ □ □ □ □ □ □ 
Forest land □ □ △ □ □ □ □ 
Traffic land □ □ □ □ □ □ □ 

Rural settlements ― □ □ △ ― ― □ 
Tourism and special land ― ― ― ― ― ― △ 

Badlands ― ― ― □ □ □ □ 

△ dominant land use, □ allowable land use，― prohibited land use. 

Table 6. The probability intervals of certain land-use types being allocated to certain 

land-use zone types. 

Land-use 
zone 

BFPA GALA FLA CLV CLT IIMLA TLA 

Cropland [0, 0.8] [0.8, 0.9] [0.9, 1] ― ― ― ― 
Garden [0.7, 0.85] [0, 0.7] [0.85, 0.95] ― ― ― [0.95, 1] 

Grassland [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.2, 0.4] [0, 0.2] [0.9, 1] [0.4, 0.6] 
Forest land [0.7, 0.75] [0.75, 0.8] [0, 0.7] [0.8, 0.85] [0.85, 0.9] [0.9, 0.95] [0.95, 1] 
Traffic land [0.6, 0.7] [0.4, 0.6] [0.7, 0.8] [0, 0.2] [0.2, 0.4] [0.8, 0.9] [0.9, 1] 

Rural 
settlements 

― [0.7, 0.8] [0.8, 0.9] [0, 0.7] ― ― [0.9, 1] 

Badlands ― ― ― [0, 0.25] [0.25, 0.5] [0.5, 0.75] [0.75, 1] 

3.3. The Particle Swarm Optimization Model 

As an important branch of swarm intelligence, the PSO algorithm maintains a population of particles, 

where each particle represents a potential solution to an optimization problem. The set of particles, also 

known as a swarm, is flown through the D-dimensional search space of the problem. The position of each 

particle is changed, based on the experiences of the particle itself and those of its neighbors [42]. The 

particle in the model of land-use zoning, based on the multi-objective particle swarm optimization with 

constriction factor, and crossover and mutation operator (MOPSO-CCM), is seen as a potential scenario 

of land-use zoning. The velocity and position of the particle are updated under the guidance and 

restriction of the aforementioned objective functions and constraints. To implement the application of 

MOPSO-CCM in land-use zoning, it is necessary to define the coding scheme for the particle, design the 

crossover and mutation operator, and set up the updating mechanism for the particle’s position and 

velocity, according to the particular land-use zoning problem. 
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(1) Coding scheme of the particle (Figure 5) 

The eight land-use zones are encoded with a hybrid code system consisting of both decimal code and 

binary code (see Table 7). Decimal code is defined for the updating of the particle’s position, and binary 

code is proposed for the crossover and mutation of the particle. The encoded information is stored in a 

relational table in the database, which is convenient for the operation of encoding and decoding. 

Figure 5. The coding scheme for a particle. 

 

Table 7. The coding of the land-use zones. 

Land-use zone BFPA GALA FLA CLV CLT IIMLA TLA NHLPA 

Decimal code 0 1 2 3 4 5 6 7 
Binary code 000 001 010 011 100 101 110 111 

The land-use patches are encoded with a serial integer and unique numbers in ascending order. The 

code of each land-use patch and corresponding land-use type are stored in a hash table named as 

Hash-UseType. 

When the initialization of a population of random particles starts, each land-use patch obtains the type 

of land-use zone, based on the stochastic technique (ST) integrated with assigning the probability 

interval (API, refer to Table 6). The relevant information is stored in a hash table named as 

Hash-ZoneType. 

The particle can be represented by the structure named as S_particle, which consists of a hash table 

(Hash-LandZoneType), the current fitness (fitness), the best fitness achieved by itself (pbest) and the 

best fitness obtained by any particle in the population (gbest). The array of S_particles is used to 

represent the swarm of particles. 

(2) Designing the crossover and mutation operator (Figure 6) 

In the process of crossover or mutation, the particle will be seen as a chromosome, and a land-use 

patch will be seen as a gene. 
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Figure 6. The crossover and mutation operator. 

 

A single-point crossover operator is adopted to reproduce offspring. The selection of parents for 

performing crossover is done at a specified probability and is displayed in the mating pool. The number 

and FID code of genes preparing for crossover are determined randomly. For the purpose of the 

crossover operation, the crossover point i (i∈{1,2,3}) is also chosen randomly, then the corresponding 

binary bits before and after the crossover point of the parents are interchanged, leading to two new 

individuals.  

The mutation operator is designed as follows. A chromosome is chosen for mutation at a preset 

probability. Some genes and the corresponding position i (i {1∈ ,2,3}) for mutation then need to be 

chosen randomly. Thanks to the gene structure of the binary code, if the value at the mutation position is 1, 

then reset it to 0, otherwise to 1. 

When crossover or mutation is proceeding, the constraint of API should be considered. For example, 

cropland is prohibited in the land-use zone of TLA, so if the transition of the gene offends against the 

constraint of API, the operation of crossover or mutation should be repeated until the transition is 

acceptable or reaches a preset try-number. 

(3) Updating mechanism of the particle’s position and velocity 

A new position for the particle is computed by the following formula in the basic PSO with inertial 

weight [43]. 

       
   

1 1 2 21

1 1

id id id id gd id

id id id

v t v t c r p x c r p x

v t x v t

     

   
 (9) 

where xid and vid are the position and velocity of a particle, r1 and r2 are two distinct random values in  

[0, 1], c1 and c2 are acceleration constants, pid and pgd are the best previous position of the particle itself 

(pbest) and of all the particles of the swarm (gbest), respectively.  

Eberhart and Shi [44] found that constriction factor k introduced by Clerc [45], combined with 

constraints on Vmax (equal to xmax), significantly improved the PSO performance. The formula used to 

compute the velocity is then modified as:  

        1 1 2 2

2
1 2

1

2 2 4 , 4

id id id id gd idv t k v t c r p x c r p x

k c c c c c c and c

     

      
 (10)

The land-use zoning problem can be regarded as an integer programming problem, which is described 

as follows: 

 max , nf x x S Z   
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where Zn is the n-dimensional integer space, and S is an integer set. In this paper, S can be represented as 
{x|0≤ x≤ 7 and x∈Zn}. 

When PSO is used to solve the land-use zoning problem, the new position of the particle may be 

changed to a real number, even though the previous location and velocity are both integers, because the 

parameters of k, r1, r2, c1 and c2 are all real numbers. To make sure the particles are flown through the 

integer number space of the problem, vid (t + 1), including the three parts of kvid (t), kc1r1 (pid-xid), and 

kc2r2(pgd-xid), must be an integer number in the evolutionary process. kvid (t) can be changed into an 

integer number by function int(). kc1r1 (pid-xid) is defined as μ1, when pid > xid, and μ1 is a random number 

within [0, kc1 (pid-xid)], otherwise within [-kc1(pid-xid),0], so we can also define μ1 as a random number 

within [a1, b1] for simplification. On the assumption that there are n integer numbers in [a1, b1], any 

integer number can be chosen to set to μ1, with an equivalent probability equal to 1/n. kc2r2(pgd-xid) is 

defined as μ2 with the same processing method. So, the formula to compute the velocity of the particle 

can be modified again as: 

     1 21 intid idv t kv t       (11) 

As with the crossover and mutation, it may also offend against the constraint of API when the position 

of the particle is updating. Simultaneously, xid(t + 1) of the particle may be outside the range of S. So, the 

attribute of the land-use patch will be randomly decided, subject to the API when the phenomenon 

mentioned above occurred. 

Figure 7 presents a flow diagram of the MOPSO-CCM model, which is based on the objective 

functions, constraint condition, encoding and decoding scheme, and updating mechanism for the swarm. 

Figure 7. The crossover and mutation operator. 

 

The performance of the model depends on several critical parameters [46], including the population 

size N, acceleration constants c1 and c2, constriction factor k and maximum velocity Vmax. Carlisle and 

Doziert [47] put forward a classical combination of parameters, with N = 30, c1 = 2.8, c2 = 1.3 and  

k = 0.7299. Additionally, we set Vmax = 7, and the maximum number of iterations Maxtimes = 200. 
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4. Results and Discussion 

4.1. Comparison of the Different Scenarios 

The MOPSO-CCM model adopted the crossover and mutation operator by setting the probability of 

mutation and crossover to 0.3 and 0.01, respectively, and the try-number to 3, and afforded several 

scenarios of land-use zoning by using different sets of weights applied to the four sub-objectives. The 

weights wn given to the various objectives were obtained according to the sub-objective weighting 

schemes in the study of Santé et al. [19], and are listed in Table 8. 

Table 8. Objective weighting schemes used in the MOPSO-CCM optimization. 

Scenario w1 w2 w3 w4 

A 1 0 0 0 
B 0.75 0.25 0 0 
C 0.5 0.5 0 0 
D 0.25 0.75 0 0 
E 0.75 0 0.25 0 
F 0.5 0 0.5 0 
G 0.25 0 0.75 0 
H 0.5 0 0 0.5 
I 0.5 0.25 0.25 0 
J 0.5 0.25 0 0.25 
K 0.5 0 0.25 0.25 
L 0.25 0.25 0.25 0.25 
M 0.15 0.55 0.15 0.15 
N 0.15 0.15 0.55 0.15 
O 0.15 0.15 0.15 0.55 

Table 9. The value of the four sub-objectives in the various weighted scenarios. 

scenario fAD fSC fHD fEB 

A(1/0/0/0) 0.0000524 189,563 13,632.8 104,486.6 
B(0.75/0.25/0/0) 0.0000348 470,961 13,163.5 102,293.1 
C(0.5/0.5/0/0) 0.0000335 487,165 12,836.3 101,294.5 

D(0.25/0.75/0/0) 0.0000331 518,263 12,195.7 109,729.2 
E(0.75/0/0.25/0) 0.0000448 178,954 18,875.9 101,195.4 

F(0.5/0/0.5/0) 0.0000365 185,642 21,394.5 118,918.8 
G(0.25/0/0.75/0) 0.0000342 169,637 23,163.2 110,073.9 
H(0.5/0/0/0.5) 0.0000348 280,523 15,521.6 126,753.4 

I(0.5/0.25/0.25/0) 0.0000339 365,651 17,915.5 115,095.3 
J(0.5/0.25/0/0.25) 0.0000326 459,232 14,835.1 122,956.8 
K(0.5/0/0.25/0.25) 0.0000345 238,632 19,933.7 123,346.1 

L(0.25/0.25/0.25/0.25) 0.0000341 396,535 16,969.3 122,586.7 
M(0.15/0.55/0.15/0.15) 0.0000329 445,689 16,289.6 121,366.5 
N(0.15/0.15/0.55/0.15) 0.0000331 361,542 18,953.8 121,626.7 
O(0.15/0.15/0.15/0.55) 0.0000325 402,549 17,386.4 124,054.2 
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The values of the four sub-objectives were obtained by MOPSO-CCM from the varied weighting 

scheme scenarios listed in Table 8 (see Table 9). The results in Table 9 show that whenever the objective 

of spatial compactness was included in the MOPSO-CCM objective function, along with the sub-objective 

of difference between land-use zones, the solution obtained displayed a significant expected increase 

ranging from 90.72% to 173.4% in fSC and a reduction ranging from 33.59% to 37.98% in fAD, with 

comparison Scenarios B–D, I–J and L–O with Scenario A. The same can be seen for the degree of spatial 

harmony and ecological benefit sub-objectives, with respect to Scenario A, Scenarios E–G, I and K–O 

increase fHD by 19.49% to 69.91%, in exchange for a reduction in fAD of 14.5% to 37.98%, and Scenarios 

H and J–O get a slight increase in fEB of 16.16% to 21.31%, at the expense of a reduction in fAD of  

33.59% to 37.98%. 

When the objective function of the MOPSO-CCM model only included the sub-objective of spatial 

compactness (Scenarios B–D), the value of fAD increased significantly by a factor of 2.5 as w2 increased. 

The fundamental demand for attribute difference between land-use zones leads to a mass of fragmentary 

land-use zones; however, the sub-objective of spatial compactness can reduce the fragmentation by 

merging isolated land-use zones into a large contiguous land-use zone. For example, isolated CLV or 

GALA in a BFPA encourages merging into the BFPA. The garden land or rural settlements in BFPA will 

tend to be converted into farmland of high quality by consolidation of these lands in the future.  

Also, small BFPA or GALA showing up in a FLA encourages merging into the FLA, so the farmland 

with a slope greater than 25°, and a part of the farmland between 15° and 25°, should be transformed 

gradually into forest or grassland in the future. A typical small region is chosen from the villages of 

Qianfeng and Xinji to show how the sub-objective of spatial compactness optimizes the spatial pattern of 

land-use zones (see Figure 8). 

Figure 8. The effects of w2 on optimizing the spatial pattern in different weighted scenarios: 

(a) A; (b) B; (c) C; (d) D. 

 

a b 

c d 
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When only the sub-objective of the degree of spatial harmony degree was included, fHD had a gradual 

increase by a factor of more than 1.35 as w3 increased, which can be seen from Scenarios E–G. The 

improvement of spatial harmony requires that the spatial pattern of BFPA is adjacent to GALA, NHLPA 

is contiguous to FLA, but IIMLA should be distant from BFPA, etc. A small area chosen from the village 

of Quanshui is presented in Figure 9 to show how the suitable neighbors are allocated to a certain 

land-use zone as w3 increases. 

Figure 9. The effects of w3 in improving the spatial harmony in different weighted scenarios: 

(a) A; (b) E; (c) F; (d) G. 

 

When w1 is fixed as 0.5, the remainder of the weight is assigned equally to w2 and w3 (Scenario I), 

with a distinct decrease in fSC compared with the remainder of the weight being all assigned to w2 

(Scenario C). When it is equally assigned to w2 and w4 (Scenario I), in spite of fSC, it still had a slight 

reduction compared to Scenario C, but it was obviously greater than Scenario I. This may suggest that 

the pursuit of spatial harmony will bring about more fragmented land-use zones, which means worse 

spatial compactness, which can also be seen from the comparison between Scenarios E–G and 

graphically in Figure 9. An increase in the ecological benefits can also improve the spatial compactness. 

From Scenarios A–D, we can see that fHD reduced as fSC increased, which proved that the spatial 

compactness also has a negative effect on spatial harmony. Another comparison of Scenario A with 

Scenarios H and J shows that fHD increased by a factor of about 1.1 as fEB increased, which suggests that 

the increase in ecological benefits will boost the degree of spatial harmony of the land-use zones. 

From the comparison of Scenario L with Scenarios M–O, it can be seen that assigning more weight to 

a certain sub-objective, and the same weight to other sub-objectives, had the expected effect of 

increasing the value of the corresponding sub-objective, indicating that the fitness values are positively 

correlated with the weights. That is to say, a decision maker for land-use planning can obtain the Pareto 

solution to satisfy their subjective preference by giving a higher weight to the corresponding sub-objective. 

Figure 10 presents the area of each land-use zone determined in the aforementioned four scenarios. 
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Figure 10. The area comparison of land-use zones between Scenarios L, M, N and O (hm2). 

 
It can be seen from Figure 10 that: (1) NHLPA in each scenario have the same area, because of the 

priority of being fixed, based on the general regulations for land-use zoning. The areas of BFPA and 

FLA are greater than 62,462.14 hm2 and 55,563.16 hm2, respectively, in each scenario, and the sum of 

the areas of CLV, CLT and IIMLA is less than 18,785.7 hm2, which indicated the efficiency of the 

constraint of area limitation of the various land-use zones; (2) Scenario M got the largest area of BFPA, 

CLT and IIMLA and the smallest area of FLA, CLV and TLA amongst the three scenarios. With the 

drive for spatial compactness, the large spatial clusters annexed the small clusters surrounding them to 

generate an optimal spatial pattern, simultaneously resulting in either a larger land-use zone or a smaller 

one; (3) Scenario N had the largest land-use zone of CLV and the second largest area of BFPA and 

GALA. This is because the spatial harmony between these land-use zones is higher than with the others; 

(4) The largest FLA was obtained in Scenario O because the forests can provide the greatest ESV. 

Meanwhile, Scenario O got the smallest BFPA and GALA. This suggests that the enforcement of the 

policy of ‘grain for green’ can improve the ESV of the land-use system; (5) Scenario L, assigning the 

same weight to each objective function, provided a compromise solution with a moderate value for each 

objective function (see Table 9) and area for each land-use zone. 

The global spatial distribution of the eight land-use zones in the four Scenarios of L, M, N, O are 

similar to each other, with only some microscopic differences. The reason for these disparities has been 

described above, with a vivid depiction in Figures 8 and 9. As far as Scenario L is concerned, the 

quantity structure and spatial pattern of the land-use zones are presented in Figure 11. 

The BFPA is distributed mainly in the towns of Xiaohe, Zhengji, Kongwan, Wangji and Nanying, 

and accounts for 36.25% of the total area, excluding the water areas. A total of 85.62% of the fifth level 

and 63.25% of the fourth level of agricultural land in the study area are assigned to BFPA. (The quality 

of agricultural land in Yicheng is classified into five levels: first level—the worst quality, second level, 

third level, fourth level, and fifth level-the highest quality.) This zone is marked off to hold its ability to 

continue feeding a growing population and meet the food security goals. High-quality land with high 

productivity in this zone should be prohibited from converting to non-agricultural uses. The conversion 

BFPA 
GALA FLA CLV 

CLT IIMLA TLA NHLPA 
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of good-quality land with moderate productivity to non-agricultural uses is permitted by law under some 

circumstances, usually after a planned period of 5–10 years [48]. GALA is observed mainly in the towns 

of Wangji, Nanying, Banqiao and Liushui, and is contiguous with BFPA. This zone primarily contains 

the land for gardens, aquaculture, etc., with high ecological value, and the rural roads, infrastructural 

facilities, water conservancy facilities, protective forest, etc., serve the farmland. In this region, the land 

consolidation project is encouraged to make the ‘dynamic balance of farmland’ policy materialize. FLA 

is concentrated to the east and southwest of Yicheng and mainly consists of fast-growing and high-yield 

broad-leaf forests. In view of the functions of forests, such as soil and water conservation, and ecological 

protection, the conversion of forest land is severely restricted, except for approval by the competent 

forestry authorities. The spatial clusters of CLV are evenly dispersed across the maps, the surroundings 

of which are mostly of BFPA and GALA, which annex some isolated rural settlements. At the same 

time, some farmland patches surrounding rural settlements are merged into them. CLT is marked off, 

based on actual land use for urban areas and towns, including some agricultural land, which can be used 

as the preparatory land for the future expansion of the city. Small villages, ‘hollow-village’ and 

‘villages-in-the-city’ [49] within CLV and CLT should be amalgamated so as to upgrade the scale and 

organization of villages and towns. The IIMLA only covers around 0.34% of the territory of the city, and 

mainly comprises some land for the mining and chemical industries. The land that was destroyed in the 

process of industrial production and construction should be reclaimed for new use, especially cultivated 

land, if the land is suitable for agriculture. TLA is located in the vicinity of the region’s water areas, and 

NHLPA is distributed in the west, southeast and northeast corner of the city. In these regions, a small 

amount of agricultural land is permitted to improve the biodiversity and maintain the ecological balance, 

and the land for enterprises with industrial pollution is strictly prohibited. 

Figure 11. The spatial distribution and area proportions (%) of the eight land-use zones  

in Scenario L. 
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4.2. Analysis of the Effect of Improvements for the Model 

The focal point of this subsection is to analyze the effect of the adoption of the crossover and mutation 

operator on acquiring the optimal solutions. A comparative analysis of the optimal fitness values, 

convergence speed and run time is made to evaluate the performance of the MOPSO-CCM model  

and the basic particle swarm optimization with only a constriction factor (MOPSO-BC), in Scenarios I, 

J, K and L. 

It is observed in Table 10 that the optimal solution obtained by the MOPSO-CCM model exhibits the 

expected higher fitness value for each sub-objective in each scenario, with fAD increasing by 15.6% to 

17.48%, fSC increasing by 14.61% to 16.89%, fHD increasing by 9.6% to 14.18%, and fEB increasing by 

1.26% to 2.38%. Figure 12 clearly illustrates that the weighted sum fitness obtained by MOPSO-CCM in 

each generation is much higher than that of MOPSO-BC. At the same time, the convergence speed of 

MOPSO-CCM, with a sudden rise in its curve, is distinctly higher than that of MOPSO-BC, even if the 

initial normalized fitness value of MOPSO-CCM is lower than MOPSO-BC in Scenario K. The sudden rises 

in the curves of MOPSO-CCM in the later period of evolution show that the crossover and mutation operator 

helps the model to escape the local optimum and achieve a better solution. In summary, the convergence and 

exploration ability of the MOPSO-CCM model outperforms MOPSO-BC, which proves the validity of 

improvement for the PSO algorithm with land-use zoning. It is necessary, however, to note that 

MOPSO-CCM requires some computational cost to perform the operation of crossover and mutation on 

particles, based on a preset probability, so it is more time consuming than the MOPSO-BC model. 

A discussion of the stability of the improved PSO model is conducted next. We ran the 

MOPSO-CCM and MOPSO-BC model 100 times, respectively, with weighted Scenario L, and 

calculated the mean value and standard deviation of the four sub-objectives in each optimal solution (see 

Table 11). Although the mean value of MOPSO-CCM is obviously higher than MOPSO-BC, what 

further proves the improved exploration ability of MOPSO-CCM is that the standard deviation of 

MOPSO-BC is lower than MOPSO-CCM, which indicates that MOPSO-CCM is not as stable as 

MOPSO-BC. The optimal fitness values of each sub-objective are plotted in the curves. The curves of 

MOPSO-CCM in Figure 13 show a greater fluctuation than MOPSO-BC. The statistics table and graph 

reveal that the adoption of the crossover and mutation operator remarkably increases the probability of 

acquisition of an optimal solution by improving the diversity of the particle swarm, but also brings about 

some disturbance to the exploitation and exploration ability of the model. 

Table 10. The results obtained by MOPSO-CCM and MOPSO-BC with the four weighted scenarios. 

Scenario Model 
Fitness value 

Convergence 
Run 

time (h) fAD fSC fHD fEB 

I 
MOPSO-CCM 0.0000339 365,651 17,915.5 ---- 116 1.81 
MOPSO-BC 0.0000291 314,934 16,179.6 ---- 133 1.23 

J 
MOPSO-CCM 0.0000326 459,232 ---- 130,963.3 113 1.78 
MOPSO-BC 0.0000269 392,891 ---- 127,918.2 129 1.26 

K 
MOPSO-CCM 0.0000345 ---- 19,933.7 129,862.4 109 1.77 
MOPSO-BC 0.0000294 ---- 18,188.2 127,015.3 125 1.24 

L 
MOPSO-CCM 0.0000341 396,535 16,969.3 122,586.7 122 1.91 
MOPSO-BC 0.0000295 345,983 14,862.4 121,063.4 145 1.27 
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Figure 12. Optimization curves obtained by MOPSO-CCM and the MOPSO-BC model, 

respectively, with the four weighted scenarios: (a): I; (b): J; (c): K; (d): L.  
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Table 11. The mean values and standard deviation of each sub-objective when the 

MOPSO-CCM and MOPSO- BC models are run 100 times. 

Model 
Mean value Standard deviation 

fAD fSC fHD fEB fAD fSC fHD fEB 

MOPSO-CCM 3.32E–05 409,341.2 17,852.36 121,834.6 3.05E–06 16,403.62 1,319.66 444 
MOPSO-BC 2.92E–05 351,540.9 13,969.33 121,185.7 1.21E–06 5,619.41 281.29 116.56 

Figure 13. The fitness curves of the four sub-objectives obtained by MOPSO-CCM and 

MOPSO-BC with weighted scenario L: (a): fAD; (b): fSC; (c): fHD; (d): fEB. 
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Figure 13. Cont. 

 

5. Conclusions 

The traditional approaches to the land-use zoning problem in China just take into consideration the 

characteristic attributes of the land units. In this article, the land-use zoning problem is treated as a MOP. 

Four objective functions were formulated, respectively, for attribute differences between land-use zones, 

spatial compactness, spatial harmony and the ecological benefits of land-use zones. A PSO-based model 

equipped with a crossover and mutation operator was constructed. The feasibility of the proposed 

approach in solving the land-use zoning problem was checked using a case study in Yicheng, China. The 

results obtained indicated that the integration of GIS and MOPSO-CCM is a promising and efficient 

approach for solving the land-use zoning problem. The inclusion of spatial compactness and spatial 

harmony in the objective functions allows the achievement of solutions with an optimal spatial pattern, 

and the inclusion of ecological benefits leads to a greater quantity of land-use zones with a high ESV. It 

is worth pointing out that the objective function can be extended in line with local conditions, such as the 

economic benefits for a county with a backward economy, spatial contiguity, etc. In this paper, a 

conventional weighted aggregation method is used for the MOPSO-CCM model to search for the 

Pareto-dominant solutions, the weakness of which is that an optimal solution can be obtained with only 

one run of the model. The next stage is to apply a dynamic weighted aggregation (DWA) technique to 

the MOPSO-CCM model to generate a series of Pareto-optimal solutions. 

The incorporation of a crossover and mutation operator proved to be effective in improving  

the convergence and exploration ability, at the price of a relatively small increase in runtime and, 

simultaneously, a poorer stability than MOPSO-BC. As we know, the performance of PSO depends  

on a few different parameters [50]. Therefore, a further study will focus on choosing a group of  

parameters that will enable the MOPSO-CCM model to achieve a better performance with the land-use  

zoning problem. 
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