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Abstract: The augmentation of adipocytes in the adipose tissues brings disordered pathophysio-
logical conditions, including type 2 diabetes, hyperlipidemia, hypertension, cardiovascular disease,
and cancer. The phenolic antioxidant 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA) prevents
oxidative stress as radical scavenging in cells. However, the role of the disorder as a pharmacologic
factor has been poorly understood. This study elucidates the regulatory effects of DHMBA on adi-
pogenesis in mouse 3T3-L1 adipocytes in vitro. The 3T3-L1 preadipocytes were cultured in DMEM
containing 10% calf fetal serum in the presence of DHMBA. Culturing with DHMBA repressed the
growth of 3T3-L1 preadipocytes cultured in a medium without differentiation factors. Interestingly,
when 3T3-L1 preadipocytes were cultured in a medium including differentiation factors containing
insulin, DHMBA did not affect the number of cells with the differentiation process of adipogenesis.
Culturing with DHMBA (1, 10, or 100 µM) inhibited lipid accumulation in adipocytes and repressed
adipogenesis in 3T3-L1 cells. The potent inhibitory effects of DHMBA on adipogenesis were seen
at the later stage of culture. Adipogenesis was inhibited by the presence of wortmannin, PD98059,
or Bay 11-7082, which are inhibitors of pathways related to insulin signaling pathway. Notably, the
suppressive effects of DHMBA on adipogenesis were expressed by the presence of these inhibitors.
DHMBA treatment declined the levels of PPARy and C/EBPα related to preadipocyte differentiation
and PI3 kinase 100α, Akt, MAPK, phosphor-MAPK, and mTOR implicated in the insulin signaling
pathway, leading to adipogenesis promotion. Thus, DHMBA may inhibit adipogenesis via regulating
diverse signaling pathways, providing a new strategy for the therapy of obesity.

Keywords: 3,5-dihydroxy-4-methoxybenzyl alcohol; adipogenesis; 3T3-L1 preadipocytes; insulin
signaling

1. Introduction

Generally, obesity is caused by excess energy with the intake of high-calorie foods,
leading to the accumulation of triglycerides via fatty acids in adipocytes. The augmentation
of adipocytes in the adipose tissues brings the disordered elevation in the levels of hormones
and cytokines secreted from its tissue, which leads to pathological conditions such as
type 2 diabetes, hyperlipidemia, hypertension, cardiovascular disease, and cancer [1,2].
Nowadays, obesity is recognized as a risk factor for several diseases. Thus, adipose tissue
may play a crucial role in maintaining pathophysiologic homeostasis.

Adipose tissue is composed of adipocytes, which are formed by the differentiation
of preadipocytes from bone marrow mesenchymal stem cells [3,4]. Adipogenesis is an
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important process in adipocyte formation and lipid accumulation. The major transcription
factors regulating this process are CCAAT/enhancer-binding protein alpha (C/EBPα),
peroxisome proliferation-activated receptor gamma (PPARγ), sterol response element-
binding protein-1c (SREBP-1c), and fatty-acid-binding protein (FABP4) [5,6]. C/EBPα and
PPARγ are essential for the differentiation of precursor cells into mature adipocytes [7].
PPARγ participates in promoting adipogenesis in cells lacking C/EBP expression. SREBP
is a supplementary regulator of adipogenesis and plays a crucial role in regulating lipid
metabolism [5–7]. These transcription factors regulate the synthesis of fatty acids and
triglycerides during adipogenesis [7]. Moreover, the mitogen-activated protein kinase
(MAPK) and protein kinase B (AKT), which are linked to insulin signaling pathways, are
known to activate adipogenesis in adipocytes [8].

The novel phenolic antioxidant 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA)
was originally found in the Pacific oyster Crassostrea gigas [9,10]. DHMBA has dual prop-
erties to prevent oxidative stress as radical scavenging in several cells [9–14]. Interest-
ingly, DHMBA is an outstanding peroxyl radical scavenger, being about 15 times and
four orders of magnitude better than Trolox for that purpose in lipid and aqueous media,
respectively [15]. This compound reacts faster with HOO(•) than other known antioxidants
such as resveratrol and ascorbic acid [15]. DHMBA may play an important nutritional
factor in the regulation of cell function as an antioxidant [9–15].

More recently, we have demonstrated that DHMBA represses the growth of metastatic
prostate cancer cells via targeting diverse signaling pathways, providing a new strategy for
prostate cancer therapy with DHMBA [16]. Moreover, elucidating the pharmacologic effects
of DHMBA may be significant in the preventing and treating of various diseases. Therefore,
this study has been undertaken to elucidate whether DHMBA regulates adipogenesis
in 3T3-L1 preadipocytes in vitro. Here, we demonstrate that the culture with DHMBA
blocks the growth of 3T3-L1 preadipocytes in vitro, leading to diminishing cell numbers.
Mechanistically, culturing with DHMBA was found to repress adipogenesis in the process of
the differentiation from 3T3-L1 preadipocytes to adipocytes via regulating diverse signaling
processes linked to insulin signaling. Our study may offer a useful therapeutic tool for the
adipogenesis implicated in obesity.

2. Materials and Methods
2.1. Reagents

Dulbecco’s modification of Eagle’s medium (DMEM) with 4.5 g/L glucose, L-glutamine
and sodium pyruvate and antibiotics (penicillin and streptomycin; P/S) (100 µg/mL peni-
cillin and 100 µg/mL streptomycin; 1% P/S). was obtained from Corning (Mediatech, Inc.,
Manassas, VA, USA). Fetal bovine serum (FBS) was from Thermo Scientific HyClone (Logan,
UT, USA). Bovine calf serum (BCS), dexamethasone, 3-isobutyl-1-methylxanthine (IBMX),
wortmannin, Bay 11-7082, and all other reagents were purchased from the Sigma-Aldrich
(St. Louis, MO, USA) unless otherwise specified.

2.2. 3,5-Dihydroxy-4-methoxybenzyl Alcohol

3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA), a novel amphipathic phenolic
compound, was initially isolated from the Pacific oyster (Crassostrea gigas) with a characteri-
zation of antioxidant [9,10]. We used the synthesized DHMBA in the present study [12–14].
DHMBA was obtained from Watanabe Oyster Laboratory, Inc. (Hachioji, Tokyo, Japan).
The structure of DHMBA is shown in Figure 1. The purity of synthesized DHMBA was
100% [12–14]. DHMBA was dissolved in 100% ethanol and stored at −20 ◦C until use.
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Figure 1. The chemical structure of 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA). The molec-
ular formula of DHMBA is C8H10O4 and its molecular weight is 170.164. 

2.3. 3T3-L1 Preadipocytes 
The 3T3-L1 mouse embryo fibroblasts (preadipocytes) were obtained from American 

Type Culture Collection (Rockville, MD, USA). The cells were maintained in DMEM con-
taining 10% BCS and 1% P/S at 37 °C under 95% 5% CO2 [17]. The culture medium was 
replaced every alternate day until 70–80% confluence was reached, and cells were subcul-
tured every 3 days. 

2.4. Assay of Cell Growth and Death 
Firstly, to determine the effects of DHMBA on cell proliferation, 3T3-L1 preadipo-

cytes (1 × 105/mL per well) were cultured using 24-well plates in DMEM containing 10% 
BCS and 1% P/S in the presence of either vehicle (1% ethanol as a final concentration) or 
DHMBA (0.1, 1, 10,100, or 1000 µM) for 3 days on reaching subconfluence in a water-
saturated atmosphere containing 5% CO2 and 95% air at 37 °C [16,18] (Figure 2A). 

In the next experiments to assay cell death, 3T3-L1 preadipocytes (1 × 105/mL per well 
in 24-well plates) were cultured using 24-well plates in DMEM containing 10% BCS and 
1% P/S for 3 days. Cells on reaching subconfluence were cultured for an additional 48 h 
in the presence of either vehicle (PBS or 1% ethanol as a final concentration) or DHMBA 
(0.1, 1, 10, 100, or 1000 µM) [16,19] (Figure 2B). 

Moreover, to determine the effects of DHMBA on the growth of cells, 3T3-L1 pread-
ipocytes (1 × 105/mL per well) were cultured using 24-well plates in DMEM containing 
10% BCS and 1% P/S in the presence of either vehicle (1% ethanol as a final concentration) 
or DHMBA (0.1, 1, 10,100, or 1000 µM) for 1, 2, 3, 4, or 5 days (Figure 2C). In this experi-
ment, we chose 10 µM DHMBA, which did not have any effects on cell death. 

Figure 1. The chemical structure of 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA). The molecular
formula of DHMBA is C8H10O4 and its molecular weight is 170.164.

2.3. 3T3-L1 Preadipocytes

The 3T3-L1 mouse embryo fibroblasts (preadipocytes) were obtained from American
Type Culture Collection (Rockville, MD, USA). The cells were maintained in DMEM
containing 10% BCS and 1% P/S at 37 ◦C under 95% 5% CO2 [17]. The culture medium
was replaced every alternate day until 70–80% confluence was reached, and cells were
subcultured every 3 days.

2.4. Assay of Cell Growth and Death

Firstly, to determine the effects of DHMBA on cell proliferation, 3T3-L1 preadipocytes
(1 × 105/mL per well) were cultured using 24-well plates in DMEM containing 10% BCS
and 1% P/S in the presence of either vehicle (1% ethanol as a final concentration) or DHMBA
(0.1, 1, 10, 100, or 1000 µM) for 3 days on reaching subconfluence in a water-saturated
atmosphere containing 5% CO2 and 95% air at 37 ◦C [16,18] (Figure 2A).

In the next experiments to assay cell death, 3T3-L1 preadipocytes (1 × 105/mL per
well in 24-well plates) were cultured using 24-well plates in DMEM containing 10% BCS
and 1% P/S for 3 days. Cells on reaching subconfluence were cultured for an additional
48 h in the presence of either vehicle (PBS or 1% ethanol as a final concentration) or DHMBA
(0.1, 1, 10, 100, or 1000 µM) [16,19] (Figure 2B).

Moreover, to determine the effects of DHMBA on the growth of cells, 3T3-L1
preadipocytes (1 × 105/mL per well) were cultured using 24-well plates in DMEM con-
taining 10% BCS and 1% P/S in the presence of either vehicle (1% ethanol as a final
concentration) or DHMBA (0.1, 1, 10,100, or 1000 µM) for 1, 2, 3, 4, or 5 days (Figure 2C). In
this experiment, we chose 10 µM DHMBA, which did not have any effects on cell death.

After culturing, the cells were detached from each well by adding a sterile solution
(0.1 mL per well) of 0.05% trypsin plus EDTA in Ca2+/Mg2+-free PBS (Thermo Fisher
Scientific, Waltham, MA, USA) with incubation for 2 min at 37 ◦C, and then 0.9 mL of
DMEM containing 10% FBS was added to each well [16,18,19]. To determine the number of
living cells, the medium containing the suspended cells (0.1 mL) was mixed with 0.1 mL
of 0.5% trypan blue staining solution, which can look like living cells but not dead cells.
Viable cells were counted under a microscope (Olympus MTV-3) with a Hemocytometer
(Sigma-Aldrich, St. Louis, MO, USA) by using a cell counter (Line Seiki H-102P, Tokyo,
Japan). For each dish, we took the average of two counts. Cell numbers were shown as
numbers per well.
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Figure 2. Effects of the marine factor 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA) on the pro-
liferation, death, or growth of 3T3-L1 mouse embryo fibroblasts cells (preadipocytes) in vitro. (A) 
To determine the effects of DHMBA on the cell proliferation, cells (1 × 105 cells/mL per well in 24-
well plates) were cultured in DMEM containing 10% bovine calf serum (BCS) and 1% P/S for 3 days 
on reaching subconfluence in the presence of either vehicle (1% ethanol as a final concentration) or 
DHMBA (0.1, 1, 10, 100, or 1000 µM). (B) To determine the effects of DHMBA on cell death, cells (1 
× 105 cells/mL per well in 24-well plates) were cultured for 3 days on reaching subconfluence, and 
then they were additionally cultured in the presence of either vehicle (1% ethanol as a final concen-
tration) or DHMBA (0.1, 1, 10, 100, or 1000 µM). (C) To determine the effects of DHMBA on cell 
growth, cells (1 × 105 cells/mL per well in 24-well plates) were cultured for 1, 2, 3, 4, or 5 days in the 
presence of DHMBA (10 µM). After the culture, the number of cells attached to the dish was counted. 
Data are presented as the mean ± SD of the value obtained from 8 wells in a total of 2 replicate plates 
by using different cell preparations. * p < 0.001 versus the control group without DHMBA (grey bar). 
One-way ANOVA, Tukey–Kramer post-test. 
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For each dish, we took the average of two counts. Cell numbers were shown as numbers 
per well. 

2.5. Differentiation of 3T3-L1 Preadipocytes and Assay of Lipid Droplets 
To elucidate the effects of DHMBA on the differentiation of 3T3-L1 preadipocytes, 

3T3-L1 preadipocytes (5 × 104 cells/mL per well in 24-well plates) were cultured in DMEM 
containing 10% bovine calf serum (BCS) and 1% P/S for 3 days on reaching subconfluence. 
After reaching subconfluence (day 0; early stage of differentiation), the cells were addi-
tionally cultured for 2 days in a differentiation medium of DMEM containing 10% FBS, 
1% P/S, 0.5 mM IBMX, 1 µM dexamethasone, and insulin (10 µg/mL) [17,20,21]. On day 2 
(later stage of differentiation), moreover, to promote adipogenesis, the fresh differentia-
tion medium was replaced with DMEM containing 10% FBS and insulin (10 µg/mL), and 

Figure 2. Effects of the marine factor 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA) on the
proliferation, death, or growth of 3T3-L1 mouse embryo fibroblasts cells (preadipocytes) in vitro.
(A) To determine the effects of DHMBA on the cell proliferation, cells (1 × 105 cells/mL per well
in 24-well plates) were cultured in DMEM containing 10% bovine calf serum (BCS) and 1% P/S for
3 days on reaching subconfluence in the presence of either vehicle (1% ethanol as a final concentration)
or DHMBA (0.1, 1, 10, 100, or 1000 µM). (B) To determine the effects of DHMBA on cell death, cells
(1 × 105 cells/mL per well in 24-well plates) were cultured for 3 days on reaching subconfluence,
and then they were additionally cultured in the presence of either vehicle (1% ethanol as a final
concentration) or DHMBA (0.1, 1, 10, 100, or 1000 µM). (C) To determine the effects of DHMBA on cell
growth, cells (1 × 105 cells/mL per well in 24-well plates) were cultured for 1, 2, 3, 4, or 5 days in the
presence of DHMBA (10 µM). After the culture, the number of cells attached to the dish was counted.
Data are presented as the mean ± SD of the value obtained from 8 wells in a total of 2 replicate plates
by using different cell preparations. * p < 0.001 versus the control group without DHMBA (grey bar).
One-way ANOVA, Tukey–Kramer post-test.

2.5. Differentiation of 3T3-L1 Preadipocytes and Assay of Lipid Droplets

To elucidate the effects of DHMBA on the differentiation of 3T3-L1 preadipocytes,
3T3-L1 preadipocytes (5 × 104 cells/mL per well in 24-well plates) were cultured in DMEM
containing 10% bovine calf serum (BCS) and 1% P/S for 3 days on reaching subconflu-
ence. After reaching subconfluence (day 0; early stage of differentiation), the cells were
additionally cultured for 2 days in a differentiation medium of DMEM containing 10%
FBS, 1% P/S, 0.5 mM IBMX, 1 µM dexamethasone, and insulin (10 µg/mL) [17,20,21].
On day 2 (later stage of differentiation), moreover, to promote adipogenesis, the fresh differ-
entiation medium was replaced with DMEM containing 10% FBS and insulin (10 µg/mL),
and then the cells were further cultured for 2 days. Firstly, to determine the effects of
DHMBA on the number of cells on day 0 or 2, the differentiation medium included either
vehicle (1% ethanol as a final concentration) or DHMBA (1 or 10 µM). After the culture of
days 0–2 or days 2–4, the number of attached cells was counted as described in the previous
section (Figure 3).
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Figure 3. Effects of the marine factor 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA) on the
number of 3T3-L1 mouse preadipocytes in the process of cell differentiation in vitro. (A) Process of
the culture of cells is shown. (B) Cells (1 × 105 cells/mL per well in 24-well plates) were cultured
in DMEM containing 10% BCS and 1% P/S without DHMBA for 3 days on reaching subconfluence,
and then they were additionally cultured for 2 days (an early stage of differentiation) in the above
medium containing 0.5 mM IBMX, 1 µM dexamethasone, and insulin (10 µg/mL) with either vehicle
(1% ethanol as a final concentration) or DHMBA (1 or 10 µM). (C) After further culture for 2 days
(a later stage of differentiation), the cells were additionally cultured in a medium replaced with
insulin (10 µg/mL) without IBMX and dexamethasone in the presence of DHMBA (1 or 10 µM). After
the culture, the number of cells attached to the dish was counted. (B) shows the number of cells with
early differentiation, (C) shows the number of cells with later differentiation. Data are presented as
the mean ± SD of the value obtained from 8 wells in a total of 2 replicate plates by using different
cell preparations. Not significant versus the control group without DHMBA (grey bar). One-way
ANOVA, Tukey–Kramer post-test.

In further experiments to elucidate the effects of DHMBA on the lipid content in
3T3-L1 adipocytes from day 0 to 4, the differentiation medium included either vehicle (1%
ethanol as a final concentration) or DHMBA (0.1, 1, 10, or 100 µM) (Figure 4). To determine
lipid content (triglyceride) after cell culture, the cells in 24-well plates were gently washed
twice with PBS and fixed with 4% formaldehyde in PBS for 30 min. Subsequently, the fixed
cells were washed three times with PBS and stained for 60 min with Oil Red O solution
(1.5% Oil Red O in 100% isopropanol) at room temperature [17]. After staining, the staining
solution was removed and washed with PBS. Images of the stained lipid (triglyceride)
droplets were observed and photographed under a microscope (40×) (Olympus IX71;
Olympus Corporation, Tokyo, Japan). Furthermore, to quantify lipid contents, the Oil Red
stain was extracted with the addition of isopropanol of 100% purity (300 µL) in each well
by shaking for 30 min. The absorbance of each well was measured at 510 nm by using a
spectrophotometer (µQuant, Bio-Tek Instruments).
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well in 24-well plates) were cultured in DMEM containing 10% BCS and 1% P/S for 3 days on
reaching subconfluence. After subconfluence (day 0), the cells were additionally cultured for 2 days
in a differentiation medium with DMEM containing 10% fetal bovine serum (FBS), 1% P/S, 0.5 mM
IBMX, 1 µM dexamethasone, and insulin (10 µg/mL). On day 2, to promote adipogenesis, the fresh
differentiation medium was replaced with DMEM containing 10% FBS and insulin (10 µg/mL), and
then the cells were further cultured for 2 days. To determine the effects of DHMBA on adipogenesis
of 3T3-L1 cells on days 0 and 2, the differentiation medium included either vehicle (1% ethanol
as a final concentration) or DHMBA (0.1, 1, 10, or 100 µM). After cell culture, the cells in 24-well
plates were gently washed twice with PBS and fixed with 4% formaldehyde in PBS for 30 min.
Subsequently, the fixed cells were washed three times with PBS and stained for 60 min with Oil Red
O solution (1.5% Oil Red O in isopropanol). (A) After staining, images of the stained lipid droplets
were observed and photographed under a microscope. (B) To quantify lipid (triglyceride) contents,
the Oil Red stain was extracted with isopropanol. The absorbance of each well was measured at
510 nm by using a spectrophotometer (µQuant, Bio-Tek Instruments). Data are presented as the
mean ± SD of the value obtained from 8 wells in a total of 2 replicate plates by using different cell
preparations. * p < 0.001 versus the control group without DHMBA (grey bar). One-way ANOVA,
Tukey–Kramer post-test.

2.6. Assay of Adipogenesis in 3T3-L1 Adipocytes

To investigate the effects of DHMBA on adipogenesis (Figure 5), 3T3-L1 preadipocytes
(104 cells/0.2 mL per well in 96-well plates) were cultured in DMEM containing 10%
BCS and 1% P/S for 3 days on reaching subconfluence [17,20,21]. After subconfluence
(day 0), the cells were additionally cultured for 2 days (on day 2) in a differentiation
medium with DMEM containing 10% FBS, 1% P/S, 0.5 mM IBMX, and 1 µM dexam-
ethasone with either vehicle (1% ethanol as a final concentration) or DHMBA (0.1, 1,
10, or 100 µM). On day 2, the medium was replaced with DMEM containing 10% FBS
and insulin (10 µg/mL) without DHMBA, and then the cells were further cultured for
2 days.

In separate experiments (Figure 5) on day 0, the cells were cultured in the differ-
entiation medium without DHMBA. On day 2, the medium was replaced with DMEM
containing 10% FBS and insulin (10 µg/mL) including either vehicle (1% ethanol as a final
concentration) or DHMBA (0.1, 1, 10, or 100 µM), and then the cells were further cultured
for 2 days.
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cultured for 2 days. (B) After subconfluence (day 0), the cells were additionally cultured for 2 days in a
differentiation medium with DMEM containing 10% fetal bovine serum (FBS), 1% P/S, 0.5 mM IBMX,
1 µM dexamethasone, and insulin (10 µg/mL) without DHMBA. On day 2, the fresh differentiation
medium was replaced with DMEM containing 10% FBS, and insulin (10 µg/mL) with DHMBA (0.1,
1, 10, or 100 µM), and then the cells were further cultured for 2 days. (C) After cell culture, lipid
content in the cells was determined using commercially available AdipoRed assay reagent according
to the manufacturer’s instructions (Lonza, Walkersville, MD, USA). Fluorescence was measured
with excitation at 485 and emission at 570 nm in a 96-well plate reader. Data are presented as the
mean ± SD of the value obtained from 8 wells in a total of 2 replicate plates by using different cell
preparations. * p < 0.001 versus the control group without DHMBA (grey bar). One-way ANOVA,
Tukey–Kramer post-test.

In another experiment (Figure 6), to determine the involvement of intracellular sig-
naling factors on day 2, the medium was replaced with DMEM containing 10% FBS and
insulin (10 µg/mL) with either vehicle (1% ethanol) or DHMBA (1 or 10 µM) with or
without various signaling factors, including genistein (1 or 10 µM), wortmannin (10 or
100 nM), PD98059 (1 or 10 µM), or Bay 11-7082 (1 or 10 nM), and then the cells were
further cultured for 2 days. After cell culture, the lipid (triglyceride) content in the cells
was determined using commercially available AdipoRed assay reagent according to the
manufacturer’s instructions (Lonza, Walkersville, MD, USA) [20–22]. Fluorescence was
measured with excitation at 485 and emission at 570 nm in a 96-well plate reader (µQuant,
Bio-Tek Instruments).
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Figure 6. Effects of the marine factor 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA) on adipo-
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2.7. Western Blotting

The 3T3-L1 preadipocytes (1 × 106 cells/10 mL of 100 mm dishes) were cultured for
3 days in DMEM containing 10% BCS and 1% P/S on reaching subconfluence. After subcon-
fluence (day 0), the cells were additionally cultured for 2 days in a differentiation medium
with DMEM containing 10% FBS, 1% P/S, 0.5 mM IBMX, and 1 µM dexamethasone. On
day 2, the medium was replaced with DMEM containing 10% FBS and insulin (10 µg/mL)
with or without DHMBA (10 µM), and then the cells were further cultured for 2 days. After
culture, the dishes were washed three times with cold PBS (10 mL) to exclude floating and
dead cells and the attached cells were removed from the dish by scraping in cell lysis buffer
(Cell Signaling Technology, Danvers, MA, USA) supplemented with protease and protein
phosphatase inhibitors (Roche Diagnostics, Indianapolis, IN, USA) [16]. The cell lysates
were then centrifuged at 17,000× g at 4 ◦C for 10 min. The concentration of protein in the
supernatant was determined using the Bio-Rad Protein Assay Dye (Bio-Rad Laboratories,
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Inc., Hercules, CA, USA) with bovine serum albumin as a standard. The supernatant was
stored at −80 ◦C until use.

As shown in our previous papers [16], the samples of forty micrograms of supernatant
protein per lane were separated by SDS polyacrylamide gel electrophoresis (12% SDS-PAGE)
and then transferred to PVDF membranes. Transferred membranes were immunoblotted
using specific antibodies against various proteins obtained from Cell Signaling Technology
(Danvers, MA, USA), including PPARy (C26H12) (cat. no. 2435, rabbit), C/EBPα (cat.
no. 2295, rabbit), phosphoinositide 3-kinase p110α (PI3K; cat. no. 4255), Akt (cat. no. 9272,
rabbit), mitogen-activated protein kinase (MAPK; cat. no. 4695, rabbit), phosphorylated-
MAPK (cat. no. 4370, rabbit), mechanistic target of rapamycin (mTOR, cat. no. 4517,
mouse), NF-κB p65 (cat. no. 3034, rabbit), and β-actin (cat. no. 3700, rabbit). Target
proteins were incubated with one of the primary antibodies (1:1000) as described above,
overnight at 4 ◦C. After incubation, the membranes were additionally incubated for 60 min
at room temperature in horseradish peroxidase-conjugated secondary antibodies (Santa
Cruz Biotechnology, Inc., mouse sc-2005 or rabbit sc-2305; diluted 1:1000) for 60 min at
room temperature, and protein bands were detected using a Chemiluminescence substrate
(cat. no. 34577, Thermo Scientific, Rockford, IL, USA) on X-ray film. A total of 3 or
4 films from 4 independent experiments on separate membranes were scanned on an
Epson Perfection 1660 Photo scanner, and the bands were quantified using Image J2
software (National Institutes of Health, Bethesda, MD, USA). For immunoblotting with
additional antibodies, we used the restore Western blot stripping buffer (cat. no. 21059;
Thermo Scientific, Rockford, IL, USA) to remove the attached Chemiluminescence substrate
(Thermo Scientific) by incubation at a room temperature for 30 min.

2.8. Statistical Analysis

Statistical significance was determined using GraphPad InStat version 3 for Windows
XP (GraphPad Software Inc., La Jolla, CA, USA). Data are presented as the mean ± standard
deviation (SD). Multiple comparisons were performed by one-way analysis of variance
(ANOVA) with Tukey–Kramer multiple comparisons post-test for parametric data, as
indicated. A p-value of <0.05 was considered statistically significant.

3. Results
3.1. Effects of DHMBA on the Proliferation, Death or Growth of 3T3-L1 Preadipocytes

First, we investigated whether DHMBA affects the proliferation of 3T3-L1 preadipocytes
(Figure 2A). Cells (105 cells/mL per well in 24-well plates) were cultured for 3 days on
reaching subconfluence in the presence of either vehicle (1% ethanol as a final concentration)
or DHMBA (0.1, 1. 10, 100, or 1000 µM). Cell proliferation was repressed at a concentration
in the range of 1–1000 µM DHMBA (Figure 2A). Next, to determine the effects of DHMBA
on the death of 3T3-L1 preadipocyte, the cells were cultured in DMEM containing 10%
FBS and 1% PS for 3 days on reaching subconfluence, and then the cells were additionally
cultured for 2 days in DMEM containing 10% FBS and 1% P/S with or without DHMBA
(0.1, 1, 10, 100, or 1000 µM) (Figure 2B). The number of cells was reduced by the presence
of DHMBA (1000 µM), indicating that cell death is caused by a higher concentration
of DHMBA. Moreover, we investigated whether DHMBA affects the growth of 3T3-L1
preadipocytes (Figure 2C). Cells (105 cells/mL per well in 24-well plates) were cultured for
1, 2, 3, 4, and 5 days in the presence of either vehicle (1% ethanol as a final concentration)
or DHMBA (10 µM), which did not cause any effects on cell death. The growth of cells was
repressed by culturing with DHMBA for 3–5 days. Thus, DHMBA was found to repress
the growth of 3T3-L1 preadipocytes in vitro (Figure 2C).

3.2. Effects of DHMBA on Cell Growth with Differentiation Process of 3T3-L1 Preadipocytes

Next, we determined the effects of DHMBA on cell growth in the differentiation
process of 3T3-L1 preadipocytes (Figure 3). We used DHMBA with 1 or 10 µM, which is a
lower concentration without cytotoxicity. Cells reaching subconfluence (day 0) were further
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cultured for 2 days in a differentiation medium with DMEM containing 10% FBS, 1% P/S,
0.5 mM IBMX, 1 µM dexamethasone, and insulin (10 µg/mL) with or without DHMBA
(1 or 10 µM) (Figure 3A). The number of cells was not altered by the presence of DHMBA
(Figure 3B). Moreover, on day 2 in promoting adipogenesis, the fresh differentiation
medium was replaced with DMEM containing 10% FBS, and insulin (10 µg/mL) with
or without DHMBA (1 or 10 µM), and then the cells were further cultured for 2 days. Cell
number was not altered by the presence of DHMBA (Figure 3C). These results indicate
that the culture with DHMBA did not influence the number of cells in the process of
differentiation of adipogenesis.

3.3. DHMBA Inhibits Lipid Accumulation in 3T3-L1 Adipocytes

To elucidate the effects of DHMBA on the lipid accumulation of 3T3-L1 adipocytes,
cells were cultured on days 0 and 2 in the differentiation medium including either vehicle
(1% ethanol as a final concentration) or DHMBA (0.1, 1, 10, or 100 µM). Photography with
Oil Red O staining showed that culturing with DHMBA caused the decreased accumulation
of lipids in 3T3-L1 adipocytes (Figure 4A) and the diminished lipid content in the cells
(Figure 4B). These results suggest that culturing with DHMBA blocks the accumulation of
lipids in adipocytes.

3.4. DHMBA Represses Adipogenesis in 3T3-L1 Adipocytes

We investigated whether adipogenesis in 3T3-L1 adipocytes is altered by culturing
with DHMBA (Figure 5). Cells were cultured in DMEM containing 10% BCS and 1% P/S
for 3 days on reaching subconfluence, and then the cells were cultured in the presence of
DHMBA (0.1, 1, 10, or 100 µM) for 4 days (from day 0 to 4) (Figure 5A). Culturing with
DHMBA (1, 10, or 100 µM) blocked the adipogenesis of 3T3L1 adipocytes (Figure 5A). Such
repression was also seen in the culture of days 0–2 or 2–4 in the presence of DHMBA (1, 10,
or 100 µM) (Figure 5B, C). Notably, the inhibition of adipogenesis in 3T3-L1 adipocytes cul-
tured with DHMBA was greatly seen at the later stage (days 2–4) (Figure 5C). These results
suggest that culturing of DHMBA potently inhibits the process of promoting adipogenesis
linked to insulin signaling in 3T3-L1 adipocytes.

3.5. Effects of DHMBA on Adipogenesis in 3T3-L1 Adipocytes Cultured with the Inhibitor of
Intracellular Signaling Pathway

To understand the underlying mechanism by which DHMBA suppresses adipoge-
nesis in 3T3-L1 adipocytes, we investigated the involvement of intracellular signaling
factors (Figure 6). On day 2, the medium was replaced with DMEM containing DHMBA
(1 or 10 µM) with or without various signaling factors, including genistein (1 or 10 µM),
wortmannin (10 or 100 nM), PD98059 (1 or 10 µM), or Bay 11-7082 (1 or 10 nM), and then
the cells were further cultured for 2 days. Adipogenesis was not altered by the presence of
genistein (Figure 6A). In the presence of genistein, DHMBA (1 or 10 µM) inhibited adipo-
genesis (Figure 6A). Notably, adipogenesis was inhibited by culturing with wortmannin
(10 or 100 nM) (Figure 6B), PD98059 (1 or 10 µM) (Figure 6C), or Bay 11-7082 (1 or 10 nM)
(Figure 6D), which are related to signaling of insulin and NF-κB. These inhibitions were
further potentiated by the presence of DHMBA (1 or 10 µM), suggesting that DHMBA
suppresses adipogenesis by inhibiting diverse pathways including insulin signaling.

3.6. Effects of DHMBA on the Levels of Proteins Related to Signaling Process of Adipogenesis

Furthermore, to understand the underlying mechanism, we elucidated whether cultur-
ing with DHMBA regulates the levels of key proteins, which are implicated in adipogenesis
(Figure 7A,B). The treatment with DHMBA (10 µM) declined the levels of PPARy and
C/EBPα, a transcription factor, which are related to the differentiation of preadipocytes.
Moreover, DHMBA treatment caused a reduction in the levels of PI3 kinase 100α, Akt,
MAPK, phosphor-MAPK, and mTOR, which are implicated in the insulin signaling path-
way in enhancing adipogenesis. In addition, DHMBA treatment diminished NF-κB p65,
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which are transcription factors. Thus, culturing with DHMBA was demonstrated to dimin-
ish the levels of various protein molecules connected to adipogenesis.
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1 µM dexamethasone. On day 2, the medium was replaced with DMEM containing 10% FBS and 
insulin (10 µg/mL) with or without DHMBA (10 µM), and then the cells were further cultured for 2 
days. After culture, the cell lysate was prepared. Samples of 40 micrograms of supernatant protein 
per lane were used for Western blot analysis. (A) Representative data are presented. (B) The band 
was presented as a fold of control. Data are presented as the mean ± SD obtained from a total of 4 
dishes per data set using different cell preparations. * p < 0.01 versus control. One-way ANOVA, 
Tukey–Kramer post-test. 
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DHMBA has potential anti-oxidative stress as radical scavenging in cells [9–14]. Further-
more, we elucidated the effects of DHMBA on adipogenesis. This study found that cul-
turing with DHMBA repressed the growth of 3T3-L1 preadipocytes and inhibited adipo-
genesis with differentiation of preadipocytes independent of its repressing effects on cell 
growth in vitro. This study supports the view that DHMBA has an anti-adipogenesis ef-
fect. 

The treatment with DHMBA inhibited adipogenesis related to insulin signaling in 
3T3-L1 adipocyte. DHMBA expressed a potent inhibitory effect on adipogenesis at the late 
stage of the differentiation of 3T3-L1 preadipocyte as compared with that of the early stage 
in the process of differentiation. Culture at the early stage was in medium containing dif-
ferentiation factors with IBMX, dexamethasone, and insulin, while culture at the late stage 
included insulin only. Notably, DHMBA greatly inhibited adipogenesis at the late stage. 
Insulin has a potent stimulatory effect on adipogenesis and lipid accumulation in mature 
adipocytes [24]. Thus, DHMBA may regulate the process by which adipogenesis is po-
tently enhanced by insulin. 
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elucidate the underlying mechanistic characterization by which DHMBA treatment sup-
presses adipogenesis in adipocytes, we used various inhibitors linked to signaling 

Figure 7. Effects of the marine factor 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA) on the levels
of various proteins linked to signaling of adipogenesis in adipocytes. The 3T3-L1 preadipocytes
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1% P/S on reaching subconfluence. After subconfluence (day 0), the cells were additionally cultured
for 2 days in a differentiation medium with DMEM containing 10% FBS, 1% P/S, 0.5 mM IBMX, and
1 µM dexamethasone. On day 2, the medium was replaced with DMEM containing 10% FBS and
insulin (10 µg/mL) with or without DHMBA (10 µM), and then the cells were further cultured for
2 days. After culture, the cell lysate was prepared. Samples of 40 micrograms of supernatant protein
per lane were used for Western blot analysis. (A) Representative data are presented. (B) The band
was presented as a fold of control. Data are presented as the mean ± SD obtained from a total of
4 dishes per data set using different cell preparations. * p < 0.01 versus control. One-way ANOVA,
Tukey–Kramer post-test.

4. Discussion

Adipose tissue plays a crucial role in maintaining pathophysiologic homeostasis,
including type 2 diabetes, hyperlipidemia, hypertension, cardiovascular disease, and
cancer [1,2,23]. Adipose tissue is composed of adipocytes, which are formed by the differ-
entiation of preadipocytes from bone marrow mesenchymal stem cells [3,4]. It is evidenced
that DHMBA has potential anti-oxidative stress as radical scavenging in cells [9–14]. Fur-
thermore, we elucidated the effects of DHMBA on adipogenesis. This study found that
culturing with DHMBA repressed the growth of 3T3-L1 preadipocytes and inhibited adipo-
genesis with differentiation of preadipocytes independent of its repressing effects on cell
growth in vitro. This study supports the view that DHMBA has an anti-adipogenesis effect.

The treatment with DHMBA inhibited adipogenesis related to insulin signaling in
3T3-L1 adipocyte. DHMBA expressed a potent inhibitory effect on adipogenesis at the
late stage of the differentiation of 3T3-L1 preadipocyte as compared with that of the early
stage in the process of differentiation. Culture at the early stage was in medium containing
differentiation factors with IBMX, dexamethasone, and insulin, while culture at the late
stage included insulin only. Notably, DHMBA greatly inhibited adipogenesis at the late
stage. Insulin has a potent stimulatory effect on adipogenesis and lipid accumulation in
mature adipocytes [24]. Thus, DHMBA may regulate the process by which adipogenesis is
potently enhanced by insulin.

There may be complexity in the mechanism of signaling pathways in obesity [25].
To elucidate the underlying mechanistic characterization by which DHMBA treatment
suppresses adipogenesis in adipocytes, we used various inhibitors linked to signaling
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pathway of insulin, including genistein, an inhibitor of tyrosine kinase [26], wortmannin,
an inhibitor of PI3K/Akt signaling pathway [27], PD98059, an inhibitor of ERK/MAP
kinase-related to signaling pathway [28], and Bay 11-7089, an inhibitor of NF-κB [29].
Culturing with DHMBA caused a decrease in adipogenesis in the presence of genistein,
wortmannin, PD98059, or Bay 11-7089. These results suggest that DHMBA potently inhibits
adipogenesis in 3T3-L1 adipocyte via repressing diverse signaling processes linked to
insulin signaling.

DHMBA treatment was found to diminish the levels of PPARy and C/EBAα, which
are transcription factors related to the differentiation process of preadipocytes [5,6]. These
results may support the view that DHMBA inhibits the process of differentiation from
preadipocytes to adipocytes. Moreover, culturing with DHMBA decreased the levels of
PI3K, Akt, MAPK, phosphor-MAPK, and mTOR, leading to promotion of adipogenesis
related to insulin signaling. Activation of mTOR pathway promotes differentiation of
3T3-L1 preadipocytes [30]. These results suggest that DHMBA regulates the process of
adipogenesis, which is enhanced by insulin, and that regulates mTOR activity implicated
in the latter adipogenesis. Moreover, DHMBA diminished the levels of NF-κB p65 in
adipocytes. Adipogenesis was depressed by the presence of Bay 11-7089, an inhibitor of
NF-κB signaling [29]. DHMBA treatment inhibited adipogenesis in the presence of Bay
11-7089. DHMBA may also suppress adipogenesis which regulates the pathway of NF-κB
signaling [31]. As summarized in Figure 8, DHMBA may express anti-adipogenic effects
by regulating diverse signaling pathways in adipocytes.
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ing [31]. As summarized in Figure 8, DHMBA may express anti-adipogenic effects by reg-
ulating diverse signaling pathways in adipocytes. 
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its adipogenesis in 3T3 L1 adipocytes. DHMBA treatment diminished the levels of PPARy and 
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Figure 8. A possible mechanism by which 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA) inhibits
adipogenesis in 3T3 L1 adipocytes. DHMBA treatment diminished the levels of PPARy and C/EBPα,
which are transcription factors related to the differentiation process of preadipocytes. Moreover,
DHMBA decreased the levels of PI3K, Akt, MAPK, phosphor-MAPK, and mTOR in enhancing the
promotion of adipogenesis related to insulin signaling. DHMBA may also suppress adipogenesis
which regulates the pathway of NF-κB signaling, Thus, DHMBA may express anti-adipogenic effects
by regulating diverse signaling pathways in adipocytes.

In conclusion, we found that the treatment with DHMBA expressed a suppressive
effect on adipogenesis related to insulin signaling in mouse 3T3-L1 adipocytes in vitro. The
effects of DHMBA may be mediated via diverse pathways implicated in insulin signaling.
Supplementation of DHMBA may play a role in the prevention and therapy of obesity by
inhibiting adipogenesis in adipocytes.
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