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Abstract: Enigma protein, encoded by the PDLIM7 gene, is overexpressed in thyroid cancer in a
stage-dependent manner, suggesting a potential involvement in the initiation and progression of
thyroid cancer. The Enigma interacts with several cellular pathways, including PI3K/AKT, MDM2,
and BMP-1. The Enigma is regulated by microRNAs. Specifically, we showed that the Enigma protein
upregulation corresponds to the downregulation of Let-7 family genes. There is limited research on
the interactions and regulation of the Enigma with other proteins/genes in thyroid cancer tissues,
indicating a gap in current knowledge. Our aim is to establish the Enigma as a biomarker. We
also aim to study the interacting partners of the Enigma signaling pathways and their probable
miRNA regulation in thyroid cancer progression. Using Western blotting, densitometric analysis,
immunoprecipitation (IP), and reverse IP, we detected the protein expression and protein–protein
interactions in the corresponding papillary thyroid carcinomas (PTCs). Utilizing real-time qPCR
assay and Pearson’s correlation test, we highlighted the correlation between PDLIM7 and Let-
7g gene expression in the same tissues. The results showed the differential upregulations of the
Enigma protein in different stages of PTCs compared to benign tissues along with AKT, VDR, BMP-1,
and MDM2 proteins. Loss of DBP was observed in a subset of PTCs. Strong interactions of the
Enigma with PI3K/AKT and MDM2 were noted, along with a weaker BMP-1 interaction. Pearson’s
correlation coefficient analysis between PDLIM7 and let-7g gene expression was significant (p < 0.05);
however, there was a weak inverse correlation (r = −0.27). The study suggests the potential utility
of the PDLIM7-qPCR assay as a biomarker for thyroid cancer. The Enigma’s interactions with key
signaling pathways may provide valuable insights into the development of thyroid cancer. The study
contributes to understanding the molecular mechanisms involving the Enigma protein in thyroid
cancer and highlights its potential as a biomarker.
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1. Introduction

Thyroid cancer is known to demonstrate calcification which, in turn, suggests that the
processes that promote calcification in nonmalignant tissue may have a role in oncogenesis
in thyroid cancer. A key osteogenic protein in normal bone formation, the Enigma, may
have a role as either an oncogenic or tumor suppressor gene depending on the cancer type.
The Enigma has been colocalized with bone morphogenetic protein 1 (BMP-1), which is
known to promote calcification and carcinogenesis in thyroid cancer [1]. Our previous
study demonstrated that the Enigma is strongly expressed in thyroid cancer tissues, and
a higher expression is associated with tumor size and lymph node involvement [1]. The
Enigma is overexpressed in cancer tissues in a stage-dependent manner but is not expressed
in benign or normal tissues [1]. The results of our studies suggest that the Enigma may
play a key role in the development of thyroid cancer also could be a novel biomarker for
detecting thyroid malignancies.

The Enigma functions as a scaffold protein through interconnection with the cytoskele-
ton network and acts as an adaptor protein through the stabilization of cell membrane
and signaling machinery [2,3]. The Enigma promotes heart and skeletal muscle organi-
zation during organ development and is involved in bone formation by enhancing bone
morphogenetic factor-mediated osteogenesis [4]. The Enigma can increase cellular pro-
liferation [5], suggesting it could play a role in thyroid cancer oncogenesis. The Enigma
(also named PDLIM7 and LMP-4) is an intracellular non-secreted protein, composed of a
PDZ and three LIM domains [2–4], in which the PDZ domain binds actin-binding proteins,
such as β-tropomyosin, and is involved in bone development in addition to a variety of
cell signaling. The LIM domain binds to tyrosine kinases [2], such as those involved in
mitogenic signaling [5], including protein kinase C [6].

The direct and indirect pathways of the Enigma were shown in different cancers,
including thyroid cancer. Studies have shown that the Enigma interacts with membranous
Vitamin D Receptors (VDR) [7], Murine Double Minute 2 (MDM2) [8,9], phosphoinosi-
tide 3-kinase/protein kinase B (PI3K/AKT) [10,11], and bone morphogenetic protein-1
(BMP-1) [1]. The interaction of the Enigma and VDR is important as we have found that
advanced thyroid cancer has low expression levels of vitamin D binding protein (DBP) in
advanced thyroid cancer tissues with a stage-dependent higher expression of the Enigma
protein in the corresponding thyroid cancer tissues [12]. We have shown a loss of DBP
and overexpression of the Enigma in the corresponding tissues [12]. There is evidence
that VDR polymorphisms may be associated with the risk and aggressive forms of thyroid
cancer [13]. We also showed a differential expression of VDR (unpublished data) in thyroid
cancer tissues; therefore, our lab is also focusing on VDR-Enigma interactions. We speculate
that the loss of DBP enhances the vitamin D-independent function of VDR and enables the
interactions of the membranous VDR to other proteins, including the Enigma.

The Enigma directly binds MDM2 as found in a study using human hepatoma and
colon carcinoma cell lines demonstrated that the Enigma directly interacts with MDM2
to form a ternary complex with the p53 tumor suppressor [9]. As MDM2 is a negative
regulator of p53, the upregulation of MDM2 occurs in many tumors by inactivating the
apoptotic and cell cycle arrest functions of p53 [9]. The Enigma interacts with PI3K/AKT
as it was shown in thyroid cancer that Enigma promoted the survival of thyroid carcinoma
cells through aberrant activation of PI3K/AKT signaling [11]. Suppression of the Enigma
reduces cell viability, increases the percentage of dead cells, and inactivates PI3K/AKT
signaling in thyroid carcinoma cells [11]. The Enigma may also have an interaction with
BMP-1 as BMP-1 is highly expressed in thyroid cancer ossification [4]. We observed a strong
colocalization signal of the Enigma and BMP-1 [1] and hypothesized that the Enigma may
recruit BMP-1 in malignant calcification in thyroid cancer [1].
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Little is known regarding the regulation of the Enigma expression. Mapping these
unknown regulatory pathways is the key to understanding the role of the Enigma in thyroid
cancer. Recent studies have identified the link between microRNA (miRNA) expression and
cancer, where significant changes in miRNA expression have been detected in malignant
cells compared to benign cells [14]. miRNAs are involved in regulation of gene expression
by targeting messenger RNA (mRNA) at the post-transcriptional level [15], and, in this way,
miRNAs regulate mRNAs in cancer signaling pathways [16,17]. Improperly functioning
miRNAs can alter the expression of tumor suppressor genes or oncogenes and are associated
with various cancers. In normal tissues, tumor suppressor microRNAs (miRNAs) play a
crucial role in preventing tumor development by suppressing the expression of oncogenes.
However, during the progression of cancer, the downregulation of these miRNAs is a
contributing factor that promotes cancer development. The miRNAs can regulate the
oncogenes and tumor suppressor genes; therefore, they are called “oncomirs”. In cancer,
oncomirs are upregulated/downregulated. They promote many cancer development via
upregulating oncogenes and downregulating tumor suppressor genes, including thyroid
cancer [18–20]. Identifying specific upregulated/downregulated miRNAs and their target
genes could provide a target for future therapies.

The relationship between miRNA and PDLIM7 expression is being explored. It has
been shown that impairment of miRNA-directed decay of transcription factors, such as
serum response factor (SRF), increases the expression of PDLIM7 in cancer. Direct targeting
of PDLIM7 mRNA by let-7 has been previously predicted [17,21,22]. In our previous study,
we observed differential expression of miRNAs, including the upregulation of miR-4633-5p
and downregulation of the let-7 family genes, particularly let-7g, in thyroid cancer patients
from two ethnic groups, European Americans and Filipino Americans [19]. Our current
objective is to investigate the correlation between PDLIM7 and let-7 gene expression using
a limited amount of cancer tissue samples.

In this study, we assessed the expression levels of VDR, MDM2, PI3K/AKT, DBP,
and BMP-1 through Western blotting and co-immunoprecipitation assays. We also inves-
tigated whether an inverse relationship exists between PDLIM7 and let-7g using qPCR.
By determining these interactions and pathways, we aim to develop a comprehensive
understanding of the Enigma’s potential as a biomarker in thyroid cancer.

2. Materials and Methods
2.1. Tumor Sample Selection

We have obtained a total of 87 deidentified and discarded formalin-fixed paraffin-
embedded (FFPE) and fresh frozen tissues from thyroid cancer patients from men and
women. We only selected papillary thyroid cancer (PTC) tissues to keep the uniformity.
Out of 87 samples, we have eighty-four PTCs and three benign tissues as control.

2.2. miRNA and Total RNA Isolation from FFPE

To extract miRNA and total RNA from formalin-fixed paraffin-embedded (FFPE)
samples as described before [1,19]. An AllPrep DNA/RNA FFPE Kit (QIAGEN, Valencia,
CA, USA) was performed after pathological evaluation of the tumor area. The tumor tissues
were processed according to the instructions of the kit (QIAGEN). We purified miRNA and
total RNA with high quantity and quality. The quality and quantity were verified by using
Nanodrop (NanoDrop Technologies, Waltham, MA, USA). We only used RNA with OD
260/280 < 1.8.

2.3. RNA and Protein Isolation from Fresh Samples

For extraction of RNA and protein from frozen fresh tissue samples in papillary thyroid
cancer (PTC), we used an AllPrep® DNA/RNA/Protein Mini Kit (QIAGEN, Valencia, CA,
USA). We excluded other histological subtypes to maintain the uniformity. We extracted
the protein for later use in Western blotting, and the RNA for RT-qPCR analysis. Each
extraction process uses 0.03 g of malignant fresh thyroid tissue lysed with Buffer RLT and
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Beta-Mercaptoethanol, ensuring the separation of DNA, RNA, and protein. The lysate
is inserted into the AllPrep DNA spin column where the genomic DNA binds to the
membrane, while the RNA and protein are eluted into the flow-through. Here, 100%
ethanol is combined with the DNA spin column flow-through, which is then inserted into
the RNeasy spin column where total RNA binds to the membrane and the protein is eluted
into the flow-through. Buffer APP is combined with the RNeasy spin column flow-through
to create a precipitation of protein which is turned into pellets by centrifugation. To analyze
the RNA extracted from the fresh frozen thyroid tissue samples, the quality and quantity of
RNA was recorded using Nanodrop (NanoDrop Technologies, Waltham, MA, USA) [19].
RNA samples were excluded from further analysis if OD 260/280 < 1.8.

2.4. Western Blot Analysis and Quantitative Analysis by Densitometric Assay

Protein expression of DBP (mouse, 1:1000 dilution; Proteintech, Rosemont, IL, USA),
Enigma/PDLIM7 (rabbit, 1:1000 dilution; Proteintech, Rosemont, IL, USA), MDM2 (rabbit,
1:1000 dilution; Proteintech, Rosemont, IL, USA), VDR (mouse, 1:1000 dilution; Proteintech,
Rosemont, IL, USA), PI3K/AKT (rabbit, 1:1000 dilution; Proteintech, Rosemont, IL, USA),
BMP-1 (mouse, 1:500 dilution; Invitrogen, Carlsbad, CA, USA), and GAPDH (rabbit, 1:1000
dilution; Cell Signaling Technologies, Danvers, MA, USA) were analyzed by Western blot
analysis. Protein pellets from fresh thyroid tissue with added 5% SDS were sonicated
using the Q55 Sonicator (QSonica Sonicators, Newtown, CT, USA) at 30–40% amplitude.
Then, the sonicated protein underwent high-speed centrifugation. Protein concentration
and purity was assessed by Nanodrop (NanoDrop Technologies, Waltham, MA, USA).
Protein was separated by Novex WedgeWell 10%, Tris-Glycine, 1.0 mm, mini protein gels
(Invitrogen, Carlsbad, CA, USA). Protein was then electroblotted onto 0.45 µm PVDF
Transfer Membranes (Thermo Scientific, Waltham, MA, USA) using the eBlot™ L1 Fast
Wet Transfer System (GenScript, Piscataway, NJ, USA), or transferred onto iBlot2 NC Mini
Stacks using the iBlot2 Gel Transfer Device (both from Invitrogen, Carlsbad, CA, USA).
After blocking for 1 h in Intercept® (TBS) Blocking Buffer (LI-COR, Lincoln, NE, USA),
each diluted primary antibody was incubated at 4 ◦C overnight. Immunodetection was
performed using IRDye® 800CW Goat anti-Rabbit IgG (1:5000), IRDye® 680RD Goat anti-
Rabbit IgG (1:5000), and IRDye® 800CW Goat anti-Mouse IgG (1:5000) secondary antibodies
(all from LI-COR, Lincoln, NE, USA). Imaging was performed using the Odyssey CLx
Infrared Imaging System Model 9140 (LI-COR, Lincoln, NE, USA). The size of proteins on
Western blots was identified by PageRuler™ Prestained Protein Ladder (Thermo Scientific,
Waltham, MA, USA). Densitometric analysis was done using software provided by LICOR
image studio to quantify the expression level using GAPDH as an internal control.

2.5. Immunoprecipitation and Reverse Immunoprecipitation

To perform immunoprecipitation, our bait was Enigma/PDLIM7 (rabbit, 1:1000 di-
lution; Proteintech, Rosemont, IL, USA), and to perform reverse immunoprecipitation,
our bait was VDR (rat, Invitrogen, Carlsbad, CA, USA). In either case, when performing
immunoprecipitation or reverse immunoprecipitation, protein–protein interaction was
assessed between our bait and any of the following not already used as our bait: VDR (rat,
Invitrogen, Carlsbad, CA, USA), Enigma/PDLIM7 (rabbit, 1:1000 dilution; Proteintech,
Rosemont, IL, USA), DBP (mouse, 1:1000 dilution; Thermo Scientific, Waltham, MA, USA),
MDM2 (rabbit, 1:1000 dilution; Proteintech, Rosemont, IL, USA), PI3K/AKT (rabbit, 1:1000
dilution; Proteintech, Rosemont, IL, USA), p38 MAPK (rabbit, 1:625 dilution; Invitrogen,
Carlsbad, CA, USA), and BMP-1 (rabbit, 1:500 dilution; Invitrogen, Carlsbad, CA, USA).
We precleared the lysates before beginning immunoprecipitation or reverse immunoprecip-
itation. Protein pellets from fresh thyroid tissue were sonicated in 300 µL RIPA Lysis Buffer
(Immunoprecipitation Kit, Abcam, Boston, MA, USA) using the Q55 Sonicator (QSonica
Sonicators, Newtown, CT, USA) at 30–40% amplitude. The sonicated protein underwent
overnight incubation at 4 ◦C and then high-speed centrifugation. The supernatant was
collected, and, for immunoprecipitation, normal rabbit serum (Thermo Scientific, Waltham,
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MA, USA) was added, or for reverse immunoprecipitation, normal mouse serum (Invit-
rogen, Carlsbad, CA, USA) was added to each sample and then they incubated on ice
for 1 h. Next, 50 µL of Pierce Protein A/G Magnetic Beads (Thermo Scientific, Waltham,
MA, USA) were added to each sample and they rotated for 30 min at 4 ◦C. After another
high-speed centrifugation, the supernatant was collected and 5 µL Enigma/PDLIM7 (rab-
bit, Proteintech, Rosemont, IL, USA) was added when performing immunoprecipitation
or 5 µL VDR (rat, Invitrogen, Carlsbad, CA, USA) was added when performing reverse
immunoprecipitation. Samples incubated for 4 h at 4 ◦C. Then, 100 µL Pierce Protein
A/G Magnetic Beads (Thermo Scientific, Waltham, MA, USA) were added and samples
incubated at 4 ◦C overnight. The next day, after high-speed centrifugation, the beads were
washed three times in 1× wash buffer made from 10×Wash Buffer (Immunoprecipitation
Kit, Abcam, Boston, MA, USA) and TBS 1× (KD Medical, Columbia, MD, USA). Then, a
1× loading buffer solution was added to the beads made from Loading Buffer Dye (4×)
(Lincoln, NE, USA), ddH20, and 2-Mercaptoethanol (BME) (Sigma, Burlington, MA, USA).
The supernatant and bead tubes were heated at 95 ◦C for 10 min and loaded into two
Novex WedgeWell 10%, Tris-Glycine, 1.0 mm, mini protein gels (Invitrogen, Carlsbad,
CA, USA). The two gels were transferred onto iBlot2 NC Mini Stacks using the iBlot2 Gel
Transfer Device (both from Invitrogen, Carlsbad, CA, USA). Running two gels at the same
time and under the same conditions allowed for antibodies of similar molecular weights
to be probed for on separate gel membranes. After blocking for 1 h in Intercept® (TBS)
Blocking Buffer (LI-COR, Lincoln, NE, USA), each diluted primary antibody was incubated
at 4 ◦C overnight. Immunodetection was performed using IRDye® 800CW Goat anti-Rabbit
IgG (1:5000), IRDye® 680RD Goat anti-Rabbit IgG (1:5000), and IRDye® 800CW Goat anti-
Mouse IgG (1:5000) secondary antibodies (all from LI-COR, Lincoln, NE, USA). Imaging
was performed using the Odyssey CLx Infrared Imaging System Model 9140 (LI-COR,
Lincoln, NE, USA). The size of proteins on Western blots was identified by PageRuler™
Prestained Protein Ladder (Thermo Scientific, Waltham, MA, USA).

2.6. RT-qPCR (Real-Time Polymerase Chain Reaction)

In preparation for RT-qPCR, adapters were ligated sequentially to the 3′ and 5′ ends
of RNA, then cDNA was synthesized [18]. Primers used include PDLIM7 (forward 5′-
CAG AGC CGC ACC TCC ATT G -3′ and reverse 5′- TGG TGA CAC ACG GGA GTC
T -3′, Integrated DNA Technologies, Coralville, IA, USA) and GAPDH (forward 5′-GTC
TCC TCT GAC TTC AAC AGC G-3′ and reverse 5′-ACC ACC CTG TTG CTG TAG CCA
A-3′, Integrated DNA Technologies, Coralville, IA, USA). Then, RT-qPCR allowed for
amplification using the following conditions: 95 ◦C 15 min; 13 cycles of (95 ◦C 15 s, 60 ◦C
30 s, and 72 ◦C 15 s); 72 ◦C 2 min [19]. The ∆∆ Ct method, also known as the 2–∆∆Ct method,
is a simple formula used in order to calculate qPCR. Ct stands for the cycle threshold (Ct)
of the sample. This is given after the qPCR reaction by the machine. It is the cycle number
where the fluorescence is generated by the PCR. The symbol ∆ refers to delta. Delta is a
mathematical term used to describe the difference between two numbers. So, it is useful to
use when summarizing long formulas. U6 was used for miR normalization. The results
were analyzed using the ∆∆ cycles to threshold (∆∆Ct).

∆∆Ct = ∆Ct (gene of interest) − ∆Ct (control).

2.7. Statistical Analysis

All statistical analysis was performed using SAS software 9.4 version and included the
whole sample of 84 observations. The statistical methods were employed to understand
association and provide valuable insights into the strength and direction of relationships,
aiding in the comprehensive understanding of inter-variable associations within our dataset.
To determine the relationships between the variables ∆∆ct_PDLIM7 and tumor staging,
Pearson and Spearman rank correlation coefficients were applied. Univariate analysis
was carried out to analyze each of the gene expressions. This analysis provided us with
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means, standard deviation (SD), student’s t statistics, quartiles, and histograms for each of
the gene expressions. Following this t-test was performed to confirm difference in means
and standard deviations with 95% confidence intervals between PDLIM7 and let-7 gene
expression. The Pearson correlation coefficient was used to measure the strength of a linear
association between PDLIM7 and let-7 gene expressions.

3. Results
3.1. Differential Expressions of Enigma and Its Signaling Pathways in Thyroid Cancer Tissues

We observed distinct protein bands and conducted densitometric analysis to confirm
the presence of proteins and quantify their relative expression levels (Figure 1A). PTNM
classification as provided: P (pathological); T (tumor): T1, ≤10 mm; T2, 10–40 mm; T3,
>40 mm; T4, extrathyroidal. N (node): N0, node negative; N1, node positive. M (metastasis):
M0, no distant metastasis; M1, distant metastasis. pT1aN0-pT1bN0 (Stage I), pT1b pN1a
(Stage II), pT1a(m) N1a Mx (Stage III), pT3N1bM1~ (stage IV).
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Figure 1. (A) Western blotting data of representative protein tissue samples from patients probed with
Enigma (55 kDa), BMP-1 (80–100 kDa), PI3K/AKT (56 kDa), MDM2 (75–85 kDa), DBP (52–58 kDa),
and GAPDH (37 kDa) antibodies in 41 cancer tissue samples. Pt#, patient number; Mol wt, molecular
weight. (B) Densitometric analysis of PDLIM7 protein expression in different staging. B9, benign
(n = 3), PT1a (n = 9); PT1b (n = 11); PT2 (n = 6); PT3 (n = 9); PT4 (n = 3). Data was shown as
Mean +/− Stdev. pT1aN0-pT1bN0 (Stage I), pT1b pN1a (Stage II), pT1a(m) N1a Mx (Stage III),
pT3N1bM1~ (stage IV) [1,23]. Stage I (n = 20); Stage II (n = 6); Stage III (n = 9); Stage IV (n = 3).
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In this study, we analyzed 41 patient samples, utilizing two separate membranes to
accommodate four primary antibodies on each membrane. The results demonstrated the
expression levels of Enigma, DBP, BMP-1, MDM2, PI3K/AKT, and VDR, with GAPDH
serving as a control reference (Figure 1A and Supplementary Figure S1A). Initially, the study
included 50 samples. However, four patients were excluded due to insufficient protein
concentrations, preventing their processing on a gel. Additionally, two patients were
excluded because GAPDH was absent in their samples post-gel electrophoresis, despite
having adequate protein concentrations. Consequently, the total number of patients for
analysis was reduced to 41. Densitometric analysis of the Enigma revealed quantitative
values among the 44 patients and ratio was determined GAPDH value as control. Results
showed as follows: 2-fold in PT1a (n = 9), 3-fold in PT1b (n = 11), 8-fold in PT2 (n = 6) and
PT3 (n = 9), and finally 7-fold in PT4 (n = 3) above the control (benign) (Figure 1B). PT1a
and PT1b showed no difference; however, although PT2 showed a 2–1.5 fold higher than
PT1-1b, no difference was observed among PT2-PT4. The density analysis of PI3K/AKT,
BMP-1, DBP, VDR, and MDM2 are shown in Supplementary Figure S1B–F.

3.2. Interacting Partners of Enigma in Thyroid Cancer

To assess potential interacting partners, we performed immunoprecipitation with
the Enigma antibody (monoclonal PDLIM7 antibody) as a bait and Western blotting with
several other known oncogenic proteins. Among the various known interacting partners
examined, our results indicated that the Enigma interacted with MDM2 and PI3K/AKT,
but not BMP-1 (Figure 2).
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3.3. Quantitative Analysis of PDLIM7 and Let-7g Gene in the Same Thyroid Cancer
Patient Samples

We were also able to perform RT-qPCR on a total of 87 tissue samples with the primers
U6 Control, PDLIM7, and let-7g genes in triplicates. D-D CT values showed PDLIM7
expression levels (n = 87) compared with U6 control as shown in Figure 4A. Scatter plot of
D-D CT value of PDLIM7 (n = 84) to staging was shown in Figure 4B. There is a positive
correlation. PT1 = 37; PT2 = 15; PT3 = 22; PT4 = 9).
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Figure 4. (A) D-D CT value of PDLIM7 expression (Y-axis) gene was plotted in 87 samples. (B) Scatter
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PT3 = 22; PT4 = 9). PTNM classification was shown in result section [1,23]. (C) ∆-∆ CT values of
let-7g expression (Y-axis) gene were plotted in 87 samples. (D) Scatter plot of correlation between
both gene expressions.

TCGA data analysis using UALCAN (http://ualcan.path.uab.edu/analysis.html, ac-
cessed on 27 November 2023) analysis showed a significant enhanced expression of PDLIM7
gene when compared to control (Supplementary Figure S2A). A stage-dependent enhanced
expression of PDLIM7 gene was observed (Supplementary Figure S2B) with higher expres-
sion correlated with poor survival compared to low expression with better survival rate
(Supplementary Figure S2C).

The Pearson correlation coefficient (r = 0.179) revealed a weak positive linear relation-
ship, indicating a tendency for the variables to increase together, although the strength

http://ualcan.path.uab.edu/analysis.html
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of this linear association was modest. Concurrently, the Spearman rank correlation coef-
ficient (ρ = 0.145) showed a weak positive monotonic relationship, emphasizing that the
variables tend to move together in a consistent direction without requiring a strictly linear
pattern (Table 1). These findings suggest a subtle and non-linear association between the
D-DCT_PDLIM7 and staging variables, underscoring the importance of considering both
linear and non-linear aspects when exploring their relationship.

Table 1. Output from Pearson and Spearman correlation and its explanation between variables ∆-∆
CT_PDLIM7 and tumor staging.

Pearson Correlation Coefficients, N = 87
Prob > |r| under HO: Rho = 0

DDCT_PDLIM7 Staging
DDCT_PDLIMZ

1.00000
0.17866

DDCT_PDLIM7 0.0978
Staging 0.17866

1.00000
Staging 0.0978

Spearman Correlation Coefficients, N = 87
Prob > |r| under HO: Rho = 0

DDCT_PDLIM7 Staging
DDCT_PDLIM7

1.00000
0.14464

DDCT_PDLIM7 0.1813
Staging 0.14464

1.00000
Staging 0.1813

We were also able to perform RT-qPCR on a total of eighty-four tissue samples and
three benign tissues with the primers U6 Control and let-7g in triplicates. The D-D CT
values showed let-7g expression levels compared to the U6 control (Figure 4C).

Univariate analysis for let-7 gene expression produced means of 12.6 and SD±3.6 with
student’s t-test of 32.9 whereas for PDLIM7 gene expression means were 11.5 and SD ±3.2
with student’s t-test statistics as 33.7, thus providing significant insight into their statistical
characteristics. Individual t-tests from univariate analysis on let-7 gene and PDLIM7
gene were done to assess whether each group’s mean was different and to examine their
distribution individually. Histograms for both gene expressions were right skewed as
seen in Supplementary Figure S3A–C and these visualizations revealed patterns, that the
gene expressions data follow a right skewness or kurtosis characteristics. Identifying and
handling outliers within each gene expression variable is essential, therefore univariate
analysis helped identify those outliers. The t-test value of 1.96 suggests that this difference
is statistically significant, and with 95%CI between (4.58, 6.18) suggesting that the true
population parameter falls within the range, further suggesting a statistically significant
difference in both gene expressions. Therefore, conducting a univariate analysis and
t-test on these gene expression values for 87 subjects was done to investigate for both
gene expressions having possibility of being associated with thyroid cancer progression.
Pearson’s correlation coefficients for 87 tissue samples was −0.217, which suggests that
there is a very weak, negative linear association between the two gene expressions but still
follows a linear pattern (Figure 4D).

The student’s t-test results are noteworthy as they indicate a mean difference of 1.10
between D-D let-7g and PDLM7 (Table 2). It also indicates that while one gene expression
increases the other decreases and vice versa. However, further analysis can be done to
understand the nature of the relationship and any potential underlying factors.

Pearson’s correlation analysis was operated to uncover the correlation pair between
differentially expressed cancer-associated PDLIM7 and let-7g gene, whose correlation
coefficient was −0.217, and p < 0.05 (Figure 4D).
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Table 2. t-test Results showing difference in means between DDCT_let-7g and DDCT_PDLIM7.

N t-Value Mean & SD 95% CI

87 1.96 1.10 ± 5.26 (4.58, 6.18)

4. Discussion

Our comprehensive evaluation of the Enigma, including its associated pathways and
interactions, adds depth to the understanding of this protein’s role in thyroid cancer. The ex-
ploration of the Enigma’s associated pathways and interactions with proteins such as VDR,
MDM2, PI3K/AKT, and BMP-1 is consistent with previous studies. The hypothesis linking
reduced DBP levels to increased Enigma expression is intriguing. The DBP density analysis,
showing varying expression levels, provides further insight into potential mechanisms
underlying the Enigma expression regulation. We observed a trend of a stage-dependent
higher expression of PDLIM7 gene by qPCR assay from a small tissue sample. The limiting
factor of our study was a lack of tissue samples in different staging of PTCs. We also see a
significant but not a strong correlation between PDLIM7 and miR-let-7g gene in thyroid
cancer tissues.

To gain an understanding of the Enigma as a potential thyroid cancer biomarker, we
conducted a thorough evaluation of its associated pathways and interactions. The exist-
ing literature highlights the Enigma’s interactions with various proteins, including VDR,
MDM2, PI3K/AKT, and BMP-1. Within our study, quantitative analysis of the Enigma’s ex-
pression distribution aligned with our previous immunohistochemical analysis [1], we have
also shown an association between low DBP levels and increased Enigma expression [13].

The assessment of VDR density and its distribution of expression levels, from low to
high, adds another layer to the proposed mechanism involving the Enigma and VDR.

Elevated MDM2 expression is a recognized phenomenon in various tumors, con-
tributing to the suppression of p53’s apoptotic and cell cycle arrest functions. A study
demonstrated a direct interaction between the Enigma and MDM2, forming a complex
involving p53. Interestingly, the Enigma co-expresses with MDM2 but not p53 in certain
liver and stomach tumors [9]. Our prediction aligned with an increase in MDM2 expression.
The density analysis of MDM2 revealed a distribution of expression levels from low to high.

The Enigma’s role in promoting the survival of thyroid carcinoma cells by activating
the PI3K/AKT signaling pathway has been documented [11]. In the context of cancer, the
PI3K/AKT pathway is crucial for cell survival under stress conditions [10]. Our initial
expectations aligned with an increase in PI3K/AKT expression. However, density analysis
of PI3K/AKT revealed a differential expression level, indicates variability in its activation
across thyroid cancer samples.

BMP-1, belonging to the BMP family, is known for its role in converting precursor
proteins into active forms, participating in functions like cell adhesion and the regulation
of mineralization [1]. BMP-1 expression has been observed in thyroid cancer-related
ossification [4]. Our hypothesis was that the Enigma could interact with BMP-1 in the
context of malignant calcification in thyroid cancer [1]. Previous research identified a strong
colocalization signal between the Enigma and BMP-1 [1]. The colocalization without a
demonstrated interaction was also found in our study. Our findings suggest expression of
the Enigma and BMP-1 may promote different pathways within thyroid cancer tissue. These
unexpected findings open avenues for further research to elucidate the factors influencing
the expression of these proteins and their interplay in thyroid carcinoma.

The observation of variable expression levels of the PDLIM7 gene in thyroid cancer
tissues suggests heterogeneity within the cancer samples. Understanding this variability
is crucial for deciphering the role of PDLIM7 in thyroid cancer progression. Our current
finding of the Enigma’s quantitative expression distribution is consistent with our previous
immunohistochemical analysis and TCGA data reinforces the reliability of our findings
and adds consistency to our results.
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Differential expressions of miRNAs were reported in thyroid cancer [18–22]. microR-
NAs, particularly the let-7 family, and their potential role in thyroid cancer development
reveals the complexity of molecular regulation in cancer. These miRNAs play a crucial
role in inhibiting the translation of several oncogenes, such as Myc, K-Ras, and HMGA2.
We observed a very weak, negative linear association between let-7g and PDLIM7 gene
expressions, as suggested by Pearson’s correlation. However, the statistical significance
indicates a potential relationship between the dysregulation of let-7g and the expression of
PDLIM7 in thyroid cancer. Exploration of molecular and cellular mechanisms may discover
the additional interaction between let-7g and PDLIM7 in thyroid cancer.

We have switched a diagnostic approach using a quantitative qPCR assay instead
of an immunohistochemical study of the Enigma protein expression to detect the differ-
ential expression of the PDLIM7 gene. qPCR has advantages, particularly in terms of
time efficiency and potential applicability in presurgical evaluation of thyroid nodules.
qPCR is known for its quantitative accuracy and sensitivity in measuring gene expression
levels. Understanding PDLIM7 gene expression levels could provide insights into the
differentiation between early and advanced stages of thyroid cancer. The use of qPCR
has advantages for its time efficiency compared to immunohistochemistry. This can be
particularly valuable in clinical settings where quick and reliable diagnostic information is
essential for decision-making. Rapid qPCR of a small tissue specimen from a fine needle
aspiration could have significant clinical utility.

In conclusion, a rapid PDLIM7-qPCR of a small tissue specimen from a fine needle
aspiration would have significant clinical utility. Our research has provided additional
valuable insights into the potential correlation between PDLIM7 and let-7g genes in thyroid
cancer, as well as a detailed exploration of the Enigma and its associated pathways. The
integration of various analytical techniques enhances the depth and reliability of our study,
laying the groundwork for further investigations and potential clinical implications in
thyroid cancer diagnosis and treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/curroncol30120761/s1, Figure S1A. Western blotting of repre-
sentative samples of 9 patients probed with Enigma (55 kDa); Figure S1B. Densitometric analysis of
Western blot images using LICOR Image Studio 5.5. The DBP/GAPDH ratio was calculated from
the raw data in 44 patients; Figure S1C. Densitometric analysis of Western blot images using LICOR
image software. The VDR/GAPDH ratio was calculated from the raw data in 44 patients: Figure S1D
Densitometric analysis of Western blot images using LICOR image software. The BMP-1/GAPDH
ratio was calculated from the raw data in 44 patients; Figure S1E. Densitometric analysis of Western
blot images using LICOR image software. The PI3K/AKT/GAPDH ratio was calculated from the raw
data in 44 patients; Figure S1F. Densitometric analysis of Western blot images using LICOR image
software. The MDM2/GAPDH ratio was calculated from the raw data in 44 patients. Figure S2A.
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