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Abstract: In breast cancer volumetric-modulated arc therapy (VMAT) planning, the rotation of the
gantry around the target implies a greater dose spreading to the whole heart, compared to tangential-
field standard treatment. A consecutive cohort of 121 breast cancer patients treated with the VMAT
technique was investigated. The correlation of breast volume, heart volume and lung volume with
mean heart dose (mHD) and mean and maximum LAD dose (mLAD dose, MLAD dose) was tested,
and a subsequent a linear regression analysis was carried out. VMAT treatment plans from 56 left
breast cancer and 65 right breast cancer patients were analyzed. For right-sided patients, breast
volume was significantly correlated with mHD, mLAD and MLAD dose, while for left-sided patients,
breast volume was significantly correlated with mHD and mLAD, while heart volume and lung
volume were correlated with mHD, mLAD and MLAD dose. Breast volume was the only predictor
of increased heart and LAD dose (p ≤ 0.001) for right-sided patients. In left-sided patients, heart and
lung were also predictors of increased mHD (p = 0.005, p ≤ 0.001) and mean LAD dose (p = 0.009,
p ≤ 0.001). In this study, we observed an increase in heart and LAD doses in larger-breasted patients
treated with VMAT planning. In right-sided patients, breast volume was shown to be the only
predictor of increased heart dose and LAD dose.

Keywords: breast cancer; VMAT; heart dose

1. Introduction

Radiotherapy (RT) is an established part of the multidisciplinary treatment of breast
cancer. After breast-conserving surgery, adjuvant RT reduces the risk of loco-regional
recurrence and is widely used as the standard of care [1]. Several fractionation schemes and
treatment modalities have been applied and investigated. However, adjuvant treatments
may have some detrimental late effects on nearby healthy organs.

In particular, there are data regarding patients with left-side breast cancer treated
with older techniques, where radiotherapy increases the risk of heart disease [2,3]. A
meta-analysis recorded a link between cardiac deaths following breast radiotherapy and
the volume of the heart receiving 5 Gy [4].
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Several predictors of heart exposure during RT for breast cancer have been identified,
including clinical, anatomical and planning factors [5–10]. Among these, larger PTV,
requiring a longer distance between the medial and lateral entry points and a larger portion
of the heart in the radiation field, was found to worsen heart dosimetry [9]. However, most
studies included only patients treated with three-dimensional conformal RT (3D-CRT).

Since the introduction of volumetric-modulated arc therapy (VMAT) after the publica-
tion of the seminal work of Otto [11] and the subsequent implementation of optimization
algorithms in treatment planning systems, VMAT has been applied to almost all type
of cancers. When this technique is used for breast cancer postoperative treatment, the
rotation of the gantry around the target implies a greater dose spreading to the whole heart
compared to tangential-field treatment [12]. This can be even greater in cases of treatment
of large-breasted patients. For this reason, we wanted to evaluate how breast volume affects
heart dose in supine free-breathing VMAT radiotherapy planning for breast cancer patients.

2. Materials and Methods
2.1. Patient Selection

We retrospectively investigated a consecutive cohort of 56 left breast cancer and
65 right breast cancer patients treated with the VMAT technique. All patients were con-
secutively treated at the University Campus Bio-Medico of Rome, Italy, from June 2022 to
December 2022. Patients enrolled signed a consent form for data collection according to the
study design requirements and Fondazione Policlinico Universitario Campus Bio-Medico
ethical committee.

2.2. Simulation and Target Definition

All patients were positioned supine on a C–Qual M™ Breastboard (angle 10–12 de-
grees) with both arms lifted up above the head. The planning CT was performed on a
16-slice Computed Tomography (CT) scanner (Somatom Sensation CT-scanner, Siemens
Medical Systems, Erlangen, Germany) with a slice thickness of 3 mm. Clinical target
volume (CTV), planning target volume (PTV) and organs at risk (OARs) were delineated
according to ESTRO guidelines for breast cancer [13]. For heart contouring, the atlas by
Feng et al. was used [14]. The breast CTV included the breast volume, after a reduction of
5 mm from the surface edge, not taking into account the major pectoral muscle, the lung
and the ribs. The breast PTV was defined with a 5 mm margin around the CTV.

2.3. Treatment Planning

For all patients, we employed the VMAT technique. The dose calculation was per-
formed using the Montecarlo (MC) Algorithm provided by the Monaco 5.51.10 Treatment
Planning System (Elekta A.B., Stockholm, Sweden). A grid calculation size of 3 mm was
used with 1% statistical MC variance. The plan design consisted of two small tangential
arcs (each partial arc, geometrically resembling the 3D-CRT tangential beams, consisted
of four arcs spanning 40–60 degrees amplitude each: the first in the clockwise direction
follow by another in the anti-clockwise direction, the third again covering 40–60 degrees
amplitude in the clockwise direction and the last coming back to the start point) with 6 MV
photons, aiming to conform the prescribed dose to the breast target, reducing cardiac and
lung doses. Since breast cancer extends towards the patient’s surface, the target volume
could move outside the treatment field. In order to take into account this issue, an Auto
Flash margin (value from 1.5 cm up to 2.5 cm) was used, leading the multileaf collimator
(MLC) leaves opening outside of the body contour. The prescribed dose was 40.05 Gy
(2.67 Gy/d). The optimization objectives were as follows: 95% of prescription dose to 95%
of the PTV volume; 105% of prescription dose to less than 5% of PTV volume. For the
OARs, the following constraints were used: heart mean dose < 5 Gy (optimal < 3.5 Gy), left
descending artery (LAD) Dmax < 20 Gy (optimal < 15 Gy), LAD Dmean < 8 Gy, volume of
lung receiving 5 Gy- V5 < 60%, contralateral breast mean dose < 3 Gy. Treatments were
delivered with two energy-matched ELEKTA VERSAHD Linac devices (Elekta, Crawley,
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UK). Patient positioning was performed with the AlignRT Advance (Vision RT, Ltd., Lon-
don, UK) SGRT system, which provides a real-time motion monitoring of the surface. The
real-time surface was compared with the CT planning surface that was set as reference. An
additional position verification was performed with a daily CBTC in order to make sure
the internal OARs’ location was correct. All patients were treated with free breathing.

2.4. Statistical Analysis

The treatment plans were evaluated using the ProKnow data analysis platform (Elekta).
The dose–volume parameters for each OAR and anatomic volumes such as breast volume,
heart volume and lung volume were recorded for each patient. Comparisons by groups
according to breast volume (cut-off = mean breast volume, 892 cc) was performed using
the paired t-test. The correlation of breast volume, heart volume and lung volume with
mHD, mean dose and maximum dose of LAD (mLAD, MLAD, respectively) was tested
using Pearson’s correlation coefficient “r”. The variance inflation factor (VIF) was used
to judge whether there was collinearity among variables. The volumes that significantly
correlated with mHD, mLAD and MLAD dose were examined using a linear regression
model. A linear regression model was created using the variable with a significant value
of the correlation coefficient. Linear regression requires that residuals conform to normal
analysis and are independent of each other, so residuals of each regression model were
calculated, and histograms were used to explore whether the residuals conformed to normal
distribution. The Durbin–Watson test was used to test whether the residuals in the linear
regression model were independent of each other. Variables with a p < 0.01 in the univariate
regression model were evaluated in the multivariate regression model. Statistical analysis
was performed using IBM SPSS (Statistical Package for the Social Sciences) v.26 (APA, MLA,
Chicago, IL, USA).

3. Results
3.1. Patients’ Characteristics

In this study, 121 patients affected by breast cancer receiving adjuvant whole-breast
RT were taken into account. The mean age of the whole patient population was 65.2 years
(SD 11.12 years). Of these patients, 56 patients were treated for left breast cancer, and
65 patients were treated for right breast cancer. The mean breast volume for the whole
population was 892.00 cc (SD 389.77), 892.64 cc (SD 435.56) in left-sided patients and
864.09 cc (SD = 348.45) in right-sided patients, respectively. Dosimetric parameters (mean
value, SD) for right-sided and left-sided breast cancer patients are summarized in Table 1.

Table 1. Dosimetric parameters (mean value, SD) for right-sided and left-sided breast cancer patients.

Variables Left-Sided Patients Right-Sided Patients

N◦ Patients
56 65

Minimum Maximum Mean SD Minimum Maximum Mean SD

Breast Volume (cc) 233.48 2189.57 892.64 435.56 256.79 1852.58 864.09 348.45

Heart Volume (cc) 436.78 1029.84 643.77 118.20 419.53 1359.37 637.85 150.53

Ipsilateral Lung
Volume (cc) 668.87 3076.97 1203.13 363.65 828.87 2291.82 1502.13 336.13

mHD 0.96 5.08 2.55 0.10 0.80 2.52 1.37 0.37

MLAD 3.78 20.15 14.29 4.03 0.97 4.53 1.59 0.62

mLAD 1.81 11.17 5.77 2.24 0.72 2.43 1.24 0.35

Abbreviations: mHD = mean heart dose; mLAD = mean LAD dose; MLAD = maximum LAD dose.

mHD was 1.4 Gy (SD 0.40) for right-sided patients and 2.5 Gy (SD 1.0) for left-sided
patients. In right-sided patients, mHD (p = 0.03), mLAD (p = 0.015) and MLAD (p = 0.07)
were significantly higher in patients with larger breast volume (cut-off value = 892 cc).
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Their values increased by 25%, 18% and 13%, respectively. In left-sided patients, mHD
was increased by 30% (p = 0.01) in patients with a larger breast volume (see Figure 1). No
significant differences were observed in mLAD and MLAD.
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Figure 1. Dosimetric parameters (mean dose heart, max dose LAD, mean Dose LAD) for right-sided
and left-sided (cut-off = mean breast volume, 892 cc).

Breast volume, heart volume and lung volume did not exceed the maximum accep-
tance VIF level and therefore were included in the following statistical analysis.

3.2. Correlation Analysis

The results of correlation analysis with mHD, mLAD and MLAD dose are shown in
Table 2. For right-sided patients, breast volume was significantly correlated with mHD,
mLAD and MLAD dose, while lung volume was significantly inversely correlated to mHD
only. For left-sided patients, breast volume was significantly correlated to mHD and mLAD,
while heart volume and lung volume were correlated (lung inversely) with mHD, mLAD
and MLAD dose.

Table 2. Correlation analysis between CT volumes (breast, lung, heart) and heart dosimetry in right-
and left-sided breast patients.

Side Volume mHD (r, p) mLAD (r, p) MLAD (r, p)

Right

Breast 0.531, <0.001 * 0.443, <0.001 * 0.323, <0.001 *

Heart 0.243, 0.051 0.156, 0.215 0.125, 0.323

Ipsilateral Lung −0.280, 0.024 * −0.125, 0.320 −0.130, 0.301

Left

Breast 0.392, 0.003 * 0.327, 0.014 * 0.180, 0.183

Heart 0.378, 0.004 * 0.345, 0.090 0.332, 0.012 *

Ipsilateral Lung −0.524, <0.001 * −0.597, <0.001 * −0.639, <0.001 *
Abbreviations: r: Pearson’s correlation coefficient; p: p value, * statistically significant, LAD = left descending
artery; mHD = mean heart dose; mLAD = mean LAD dose; MLAD = maximum LAD dose.
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3.3. Regression Analysis

The results for regression analysis are summarized in Table 3.

Table 3. Linear regression coefficients for prediction of mHD, mean LAD dose and maximum LAD
dose (univariate and multivariate).

Univariate Multivariate

Side RIGHT

mHD R2 F p R2 F p

Breast Volume 0.282 24.790 <0.001 *

Lung Volume 0.085 5.359 0.024

mLAD

Breast Volume 0.196 15.395 <0.001 *

MLAD

Breast Volume 0.104 7.331 0.009 *

Side LEFT

mHD R2 F p R2 F p

Breast Volume 0.154 9.800 0.003 *

0.483 16.165

0.349

Heart Volume 0.143 9.024 0.004 * 0.005

Lung Volume 0.274 20.429 <0.001 * <0.001

mLAD

Breast Volume 0.107 6.462 0.014

Heart Volume 0.119 7.301 0.009 *
0.434 20.350

0.009

Lung Volume 0.356 29.893 <0.001 * <0.001

MLAD

Heart Volume 0.110 6.706 0.012

Lung Volume 0.408 37.213 <0.001 *

Abbreviations: mHD = mean heart dose; LAD = left descending artery; mLAD = mean LAD dose;
MLAD = maximum LAD dose. * statistically significant.

3.3.1. Right-Sided Patients

Larger breast volumes were associated with increased mHD, mLAD and MLAD.
Lung volume did not show a strong relationship with the heart dose variable (p = 0.024)
and therefore a multivariate analysis was not performed. The following formulas specify
the univariate linear regression fitting model for mHD (a, see Figure 2), mLAD (b) and
MLAD (c):

(a) mHD (Gy) =0.881 + (0.531 × breast volume)
(b) mLAD (Gy) = 0.860 + (0.443 × breast volume)
(c) MLAD (Gy) =1.100 + (0.323 × breast volume)

The mean (SD) of absolute residuals was 0.0 (0.2) Gy for (a), 0.0 (0.3) Gy for (b) and
0.0 (0.5) Gy for (c). The value of the Durbin–Watson test was 2.0 for (a), 1.92 for (b) and
2.06 for (c), showing the independence of residuals.
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3.3.2. Left-Sided Patients

The results for regression analysis are summarized in Table 3. Breast volume was only
shown to be highly related to mHD in univariate analysis, not in multivariate analysis.
Heart volume and lung volume were shown to be significantly related to mHD and mLAD
dose in both univariate and multivariate analysis. Lung volume was only the best predictor
of increased MLAD dose. The following specify the multiple linear regression fitting model
of mHD (a) and mLAD dose (b):

(a) mHD (Gy) = 1.705 + (0.208 × breast volume) + (0.312 × heart volume) − (0.411 × lung volume)
(b) mLAD dose (Gy) = 6.528 + (0.281 × heart volume) − (0.565 × lung volume)

The mean (SD) of absolute residuals was 0.0 (0.7) Gy for (a) and 0.0 (1.6) Gy for (b).
The value of the Durbin–Watson test was 2.0 for (a) and 2.1 for (b), showing independence
of residuals.

The following equation specifies the linear regression fitting model of MLAD dose:

(a) MLAD dose (Gy) = 22.812 − (0.639 × lung volume)

The mean (SD) of absolute residuals was 0.0 (3.0) Gy. The value of the Durbin–Watson
test was 2.2, showing the independence of residuals.

4. Discussion

In this study, we analyzed heart radiation exposure using VMAT radiotherapy plan-
ning with regard to breast volume in a cohort of 121 breast cancer patients treated with
whole-breast RT only (WBRT). In all patients, predefined mandatory heart constraints were
respected in both left- and right-sided patients. However, recent guidelines recommend
more stringent heart constraints [15] for whole-breast radiotherapy. Considering these
latter constraints, we would have exceeded the recommended dose in 9% of right-sided
and 45% of left-sided patients.

In the whole patient population, larger-breasted patients showed increased mHD
by 25% and 30% in right and left patients, respectively. However, the contribution of
breast volume in left-sided patients to heart and LAD doses was shown to be less relevant
compared to the lung and heart volume. On the contrary, in right-sided patients, breast
volume seems to be the main predictor of increased heart and LAD doses.
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Several studies have investigated anatomical and clinical predictors of heart exposure
in 3D breast radiotherapy and the relative benefit from DIBH in left breast cancer patients.
Among anatomical factors, smaller lung volumes [5,6], as well as the cardiac contact
distance measured on different planes and larger PTV [7–9], were considered predictors of
increased heart exposure. Among clinical factors, higher BMI and vital capacity measured
by spirometry were predictive of higher heart dose [10].

The introduction of intensity-modulated radiotherapy (IMRT) compared with the
use of 3D-CRT was associated with greater mHD [16]. However, few studies investigated
factors influencing heart exposure in patients treated with intensity-modulated techniques.
Kang et al. evaluated cardiac junction and pulmonary junction (anatomic variable derived
from 3D plans) to predict the benefit from the use of VMAT in patients with left-sided
breast cancer [17].

Different heart-sparing techniques have been investigated [18]. Among them, several
studies and consistent literature data support the use of the deep inspiration breath hold
(DIBH) technique, which can reduce radiation-induced cardiac toxicity by increasing the
distance between the breast and the heart [19–22].

Despite the widespread usage of DIBH for left-breast RT, few studies have investigated
its role in right-breast cancer [23–25]. Some studies suggested that DIBH for right-sided
breast cancer should be adopted to reduce ipsilateral lung and liver dose in loco-regional
radiation therapy [26,27]. A significant benefit was detected in reducing the maximum
dose to the heart and the right coronary artery in cases of regional nodal irradiation [23,24].
Interestingly, in a study evaluating the dosimetric benefit of DIBH for locoregional irra-
diation of R-BC with VMAT, Loap et al. concluded that adding DIBH to VMAT is not
justified for all patient candidates for right-breast and regional nodal irradiation. Therefore,
specific patient subpopulations who could benefit from additional DIBH combination with
locoregional VMAT needed to be identified [25].

Also, prone radiotherapy has been investigated in both left- and right-sided patients
in terms of dosimetric benefit over supine radiotherapy [28–30]. Median higher heart
doses were observed in prone radiotherapy both in left-sided patients when compared to
DIBH supine radiotherapy (mean dose 3.4 vs. 1.9 Gy) and in right-sided patients when
compared with supine radiotherapy (mean dose 1.9 vs. 1.3 Gy) [29,30]. However, the
overall dosimetric benefit, taking into account not only heart dose but also lung, PTV and
extra-target dose favored prone positioning in 61% of left-sided patients and in 81.5% of
right-sided patients, and in both cases, breast volume predicted the benefit from prone
positioning [29,30].

This study has some limitations. First, it was retrospective and therefore is subject to
selection biases. Second, there is a lack of comparison with alternative techniques, such as
DIBH or alternative positioning (prone radiotherapy), to verify if these techniques would
obviate the higher heart dose in larger-breasted patients. This would be of great interest
and should be investigated in future analyses.

5. Conclusions

In conclusion, in this study, we observed an increase in heart and LAD doses in larger-
breasted patients undergoing breast-only radiotherapy. In right-sided patients, breast
volume was shown to be the only predictor of increased heart dose and LAD dose. Even
if the absolute increase in doses was limited, given the low doses of heart dosimetry in
these patients, the role of breast volume is certain and should also be further evaluated in
patients undergoing regional nodal irradiation when VMAT planning is used. This is of
particular relevance as patients are routinely treated with free breathing.
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