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Abstract: Background: We investigated the feasibility of a deep learning algorithm (DLA) based
on apparent diffusion coefficient (ADC) maps for the segmentation and discrimination of clinically
significant cancer (CSC, Gleason score ≥ 7) from non-CSC in patients with prostate cancer (PCa).
Methods: Data from a total of 149 consecutive patients who had undergone 3T-MRI and been
pathologically diagnosed with PCa were initially collected. The labelled data (148 images for GS6,
580 images for GS7) were applied for tumor segmentation using a convolutional neural network
(CNN). For classification, 93 images for GS6 and 372 images for GS7 were used. For external
validation, 22 consecutive patients from five different institutions (25 images for GS6, 70 images
for GS7) representing different MR machines were recruited. Results: Regarding segmentation and
classification, U-Net and DenseNet were used, respectively. The tumor Dice scores for internal and
external validation were 0.822 and 0.7776, respectively. As for classification, the accuracies of internal
and external validation were 73 and 75%, respectively. For external validation, diagnostic predictive
values for CSC (sensitivity, specificity, positive predictive value and negative predictive value) were
84, 48, 82 and 52%, respectively. Conclusions: Tumor segmentation and discrimination of CSC from
non-CSC is feasible using a DLA developed based on ADC maps (b2000) alone.

Keywords: magnetic resonance imaging (MRI); diffusion-weighted imaging (DWI); prostate cancer;
Gleason score; deep learning

1. Introduction

Prostate cancer (PCa) is the second most frequently diagnosed cancer in men world-
wide and the fifth most common cause of death [1]. Gleason score (GS) is a classification
system based on the structure of PCa and is closely related to tumor aggressiveness. GS7
(particularly 3 + 4, International society of urological pathology (ISUP) grade 2) and above
are classified as clinically significant cancers (CSCs) and GS6 (ISUP grade 1) as non-CSC [2].

PCa can be treated individually, depending on the degree of aggressiveness, risk of
recurrence, and staging. Non-CSC is associated with relatively lower progression and
mortality, suggesting a relatively good prognosis; thus, active surveillance and observation
can be followed. However, as CSC is associated with a relatively high probability of adverse
outcomes, active treatment, such as radical prostatectomy and/or radiation therapy, is
required in general [3]. To date, the National Comprehensive Cancer Network (NCCN)
guideline lists active surveillance for patients with favorable intermediate-risk prostate
cancer (1 IR factor + Grade 1 or 2 + <50% positive biopsy cores) [4]. Another guideline
promotes active surveillance for selected patients with low-volume GS 3 + 4 prostate
cancer [5]. Therefore, efforts have been made to determine treatment policies based on risk
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stratification. However, due to the sampling errors inherent in systemic biopsy [6,7] as
well as the possibility of complication associated with invasive approaches [8], interest in
evaluating tumor aggressiveness using non-invasive imaging modalities such as magnetic
resonance imaging (MRI) has increased.

There have been several promising studies on the usefulness of deep learning al-
gorithms (DLAs), as based on mono-parametric or bi-parametric (bp) MRI for tumor
detection of PCa [9–15]. DLA studies based on bp-MRI or mono-parametric MRI for seg-
mentation and classification between CSC and non-CSC are less frequently found in the
literature [2,3,9]. One of these studies undertook to distinguish CSC from non-CSC with
deep-transfer-learning-based models using combined T2-weighted imaging (T2WI) and
diffusion-weighted imaging (DWI) and a corresponding apparent diffusion coefficient
(ADC) map, and the study revealed a similar diagnostic performance to that of prostate
imaging reporting and data system (PIRADS) v.2.0 [3]. Both of those studies [2,3], however,
employed sophisticated methods to combine the T2WI and DWI and used a low b value
of 800 s/mm2. PIRADS score, moreover, has inherent limitations, such as a moderate
inter-observer agreement and a probability scale by itself [16].

For PIRADS v.2.1, acquisition of high-b-value DWI (≥1400 s/mm2) is recommended.
Furthermore, recent studies have shown that DWI b2000 is better than DWI b1000 for the
localization of PCa [17,18]. However, to the best of our knowledge, DLA studies based on
high-b-value DWI alone are scarce. Thus, we hypothesized that a DLA based on acquired
DWI b2000 and corresponding ADC maps as a single input for discriminating CSC from
non-CSC might deliver more beneficial results. The purpose of this study was to investigate
the feasibility of using a DLA developed based on ADC maps (b2000) alone for tumor
segmentation and discrimination of CSC from non-CSC in patients with PCa.

2. Materials and Methods
2.1. Patient Selection Criteria

The pertinent institutional review board approved this retrospective study (IRB num-
ber blinded). Informed consent from patients was waived. Between October 2018 and
March 2022, the relevant medical records of a total of 157 patients meeting the following
inclusion criteria were collected: (i) complete 3T-MRI, including DWI and corresponding
ADC maps, (ii) histological diagnosis of PCa and topographic map availability via radical
prostatectomy and (iii) GS documentation availability via pathological reports. Among
them, 8 patients were excluded based on one of the following exclusion criteria: (i) poor MR
image quality due to severe artifacts (n = 1) or (ii) incomplete pathologic topographic map
(n = 7). Finally, 149 patients (mean age: 69.2 years, range: 47–84 years) were enrolled for the
training and internal validation datasets (80 and 20% of the data, respectively). For external
validation, 22 consecutive patients (mean age: 69.6 years, range: 56–80 years), for whom
five different MR machines had been employed and different parameters applied, were
separately recruited during the same period. The case enrollment process is summarized
in Figure 1.

2.2. MRI Technique

All of the MRI examinations for the training and internal validation datasets were
performed using a 3.0-T MR machine (Achieva TX; Philips, Best, The Netherlands) with a
parallel-array torso coil (SENSE Torso/cardiac coil; USA Instruments, Gainesville, FL, USA).

The scanning protocol was composed of axial, sagittal and coronal T2-weighted
turbo spin-echo (TSE) and axial DWI sequences (b values, 0, 100, 1000, 2000 s/mm2).
Corresponding ADC maps were generated for the designated b values, respectively. The
detailed scan parameters are summarized in Table 1.



Curr. Oncol. 2023, 30 7277
Curr. Oncol. 2023, 30, FOR PEER REVIEW  3 
 

 

 
Figure 1. Flowchart of case enrollment process. 

2.2. MRI Technique 
All of the MRI examinations for the training and internal validation datasets were 

performed using a 3.0-T MR machine (Achieva TX; Philips, Best, The Netherlands) with a 
parallel-array torso coil (SENSE Torso/cardiac coil; USA Instruments, Gainesville, FL, 
USA). 

The scanning protocol was composed of axial, sagittal and coronal T2-weighted turbo 
spin-echo (TSE) and axial DWI sequences (b values, 0, 100, 1000, 2000 s/mm2). 
Corresponding ADC maps were generated for the designated b values, respectively. The 
detailed scan parameters are summarized in Table 1. 

Table 1. MRI sequence parameters for training set. 

Parameters T2-Weighted Axial, Sagittal, 
and Coronal TSE 

DWI (b = 0, 100, 1000 and 2000 
s/mm2) 

TR (msec) 3370.7 5725 
TE (msec) 100 77.8 

Slice thickness (mm) 3 3 
Slice gap (mm) 0.3 0.3 

Matrix size 316 × 272 120 × 118 
NEX 1 1 

FOV (mm × mm) 220 × 220 240 × 240 
Number of slices 30 30 

TR, repetition time; TE, echo time; NEX, umber of excitations; FOV, Field of view; TSE, Turbo spin 
echo. Note that diffusion-weighted imaging (DWI) was performed using the single-shot echo-planar 
imaging (SS-EPI) technique. 

2.3. Data Processing 
Two radiologists (with 18 and 3 years of experience, respectively) determined the 

tumor and whole-gland borders by consensus on axial ADC maps generated from b 
values of 0 and 2000. For segmentation, they reviewed T2WI in 3 planes and DWI (b = 
2000 s/mm2) after referencing the topographic map as a ground truth. After determination 

Figure 1. Flowchart of case enrollment process.

Table 1. MRI sequence parameters for training set.

Parameters T2-Weighted Axial, Sagittal,
and Coronal TSE

DWI (b = 0, 100, 1000 and
2000 s/mm2)

TR (msec) 3370.7 5725

TE (msec) 100 77.8

Slice thickness (mm) 3 3

Slice gap (mm) 0.3 0.3

Matrix size 316 × 272 120 × 118

NEX 1 1

FOV (mm × mm) 220 × 220 240 × 240

Number of slices 30 30
TR, repetition time; TE, echo time; NEX, umber of excitations; FOV, Field of view; TSE, Turbo spin echo. Note that
diffusion-weighted imaging (DWI) was performed using the single-shot echo-planar imaging (SS-EPI) technique.

2.3. Data Processing

Two radiologists (with 18 and 3 years of experience, respectively) determined the tu-
mor and whole-gland borders by consensus on axial ADC maps generated from b values of
0 and 2000. For segmentation, they reviewed T2WI in 3 planes and DWI (b = 2000 s/mm2)
after referencing the topographic map as a ground truth. After determination of the tumor
and gland borders, the junior radiologist drew the regions of interest (ROIs) along the deter-
mined tumor and gland borders on the ADC maps (b = 2000 s/mm2) using DEEP:LABEL
software v.1.0.4 (Deepnoid, Seoul, Republic of Korea). When there were multiple tumors in
a patient, the largest one was considered as the index tumor. The reviewers also recorded
the PIRADS score for the index tumor based on PIRADS v2.1. The order of patients was
random. The reviewers were blinded to the patients’ GS.

2.4. DL Architecture for Tumor and Gland Segmentation

As a convolutional neural network (CNN), U-Net was used for tumor and gland
segmentation due to its high accuracy at various image sites. This architecture consists of
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a down-sampling encoder for features learning and an up-sampling decoder for feature
production, and it is efficient, even with small datasets [19].

In the gland segmentation, each of the following pre-processing steps was performed
for overall segmentation effectiveness. All of the labeled images were cropped with a
margin of 5 pixels for delineation of the borders of the prostate gland. The Min–Max
normalization guaranteed that all features were of the same scale. Finally, all of the images
were resized to 128 × 128 pixels for use as inputs to the U-Net architecture for gland
segmentation. Several hyper-parameters were tested to train the optimal DLA, for which
purpose the Adam optimizer (learning rate: 0.001, decay rate: 0.95) was selected. In
the tumor segmentation, the same pre-processing steps were performed, and the Adam
optimizer (learning rate: 0.0001, decay rate: 0.95) was again employed for DLA training.

After tumor and gland segmentation, all of the labeled tumor data (148 images for GS6,
580 images for GS7) and gland data (535 images for GS6, 935 images for GS7) were used
to evaluate the DLA predictive performance for accuracy, sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV) and Dice score.

2.5. DL Architecture for Tumor Classification
2.5.1. Training Architecture

For tumor classification, the labeled tumor data were filtered with a cutoff of 25 pixels.
Finally, 93 images for GS6 and 372 images for GS7 were used. For balanced training, the
GS7 images were randomly allocated into four subsets of 93 images each in order to match
the number of GS6 images. Therefore, 186 GS6/7 images were divided into 146 images for
use as a training dataset and 40 for use as an internal validation dataset in each session.
The Min–Max normalization and resizing steps were performed in the same manner as for
the segmentation task.

Several CNNs, such as Inception, ResNet and DenseNet, were trained for tumor
classification, and DenseNet 201 was selected for tumor classification due to its superior
performance in distinguishing GS6 from GS7 [20–22]. DenseNet connects each layer to
every other layer in a feed-forward manner. It also alleviates the vanishing-gradient
problem, strengthens feature propagation, encourages feature reuse and substantially
reduces the number of parameters [22]. It has shown good performance, even with an
insufficient dataset. In the present study, based on four training and internal validation
sessions, the DLA with the best diagnostic performance was selected and applied for
external validation. All of the data processing as well as DL and training procedures
were implemented in DEEPPHI (http://www.deepphi.ai/, accessed on 25 April 2022), a
web-based open artificial intelligence platform.

2.5.2. External Validation

For external validation of segmentation and classification, 22 consecutive patients
from 5 different institutions (25 images for GS6, 70 images for GS7) representing different
MR machines each with different parameters were recruited. The MR machines consisted
of 1.5T (n = 1) and 3.0T (n = 21) scanners, and the images with the highest b values of DWI
were composed of b800 (n = 1), b1000 (n = 4) and b2000 (n = 17). A total of 95 tumor slices
(25 GS6 images, 70 GS7 images) and 180 gland slices were included and analyzed in order
to externally validate the DLA that had been developed with the training dataset.

2.6. Reference Standard

Dedicated urologists performed the radical prostatectomies. A dedicated pathologist
assessed each pathological slide according to the Gleason grading system [23] and drew up
a topographic map that served as the ground truth for tumor segmentation on MRI. For
classification of CSC and non-CSC, the GS, as obtained after surgery, was set as the gold
standard. CSC was defined as GS ≥ 7 and non-CSC as GS6 [24].

http://www.deepphi.ai/


Curr. Oncol. 2023, 30 7279

2.7. Statistical Analysis

For the categorical data, the chi-square test or Fisher’s exact test was used to find
any difference between the training and external validation datasets. For the continuous
data, the t-test was used. The Dice score was used to quantify the performance of image
segmentation. A Dice score of 1.0 means perfect overlap, and a score of 0.0 corresponds to
no overlap [25]. The diagnostic performance for classification was calculated via receiver
operating characteristic (ROC) curve analysis and expressed as the area under the ROC
curve (AUC). Diagnostic predictive values, including accuracy, PPV and NPV, were also
estimated under the maximal AUC. For all of the statistical calculations, MedCalc software
for Windows (MedCalc Software version 20.111, Mariakerke, Belgium) was used. A p value
of less than 0.05 was considered statistically significant.

3. Results
3.1. Patient Demographics

The age, prostate-specific antigen level, GS, PIRADS score and tumor location were not
significantly different between the training and external validation datasets. The average
time interval between MRI and surgery was 37.0 days (range, 5–447 days). The average
volume of GS 6 tumors was not significantly different from that of GS 7 tumors in both
training and internal validation sets (GS 6, 4.1 ± 6.6 cm3; GS 7, 7.0 ± 7.3 cm3, p = 0.1822)
and the external validation set (GS 6, 1.9 ± 1.9 cm3; GS 7, 6.3 ± 6.1 cm3, p = 0.1348). The
patients’ demographic data and analysis results are presented in Table 2.

Table 2. Demographic data and analysis results for study population.

Parameter All
Training and Internal

Validation Sets
(n = 149)

External Validation Set
(n = 22) p Value

Mean Age, years [range] 69.2982 [47–84] 69.2483 [47–84] 69.6364 [56–80] 0.8049

Mean PSA, ng/mL [range] 14.6315 [0.85–149] 14.4478 [0.85–149] 21.1709 [3.0–131] 0.3597

GS, n (%)
6 46 (27) 40 (27) 6 (27) 0.9307
7 125 (73) 109 (73) 16 (73) 0.9912

3 + 4 89 76 13
4 + 3 36 33 3

PIRADS v2.1, n (%)
3 17 (10) 17 (11) 0 (0) 0.1131
4 55 (32) 49 (33) 6 (27) 0.7006
5 99 (58) 83 (56) 16 (73) 0.3307

Tumor location, n (%)
Peripheral zone 92 (54) 81 (54) 11 (50) 0.8245

Transitional zone 48 (28) 38 (26) 10 (45) 0.1204
Fibromuscular zone 4 (2) 4 (3) 0 (0) 0.4422

Diffuse 27 (16) 26 (17) 1 (5) 0.1453

GS, Gleason score; PSA, prostate-specific antigen.

3.2. Diagnostic Performance of DLA

In terms of gland segmentation, U-Net had a sensitivity of 95%, a specificity of 96%
and a Dice score of 0.951 for internal validation and 92%, 97% and 0.9413, respectively, for
external validation (Figure 2). As for tumor segmentation, it had a sensitivity of 82%, a
specificity of 96% and a Dice score of 0.822 for internal validation and 77%, 95% and 0.7776,
respectively, for external validation (Figure 3) (Table 3).

As for classification, the overall accuracies of internal and external validation were
73 and 75%, respectively. For internal validation, the diagnostic predictive values for CSC
(hereafter sensitivity, specificity, PPV and NPV, in order) were calculated as 72, 74, 74 and
72%, respectively. For external validation, the diagnostic predictive values were estimated
as 84, 48, 82 and 52%, respectively (Table 4). The DenseNet 201 classifier achieved an
AUC of 0.6269. The average precision scores for GS6 and GS7 were 0.4462 and 0.8149,
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respectively (Figure 4). Out of a total of 95 tumor slices (25 GS6 images, 70 GS7 images),
13 slices of GS6 were over-estimated as GS7 and 11 slices of GS7 were under-estimated as
GS6 (Figures 5 and 6).

Curr. Oncol. 2023, 30, FOR PEER REVIEW  6 
 

 

3.2. Diagnostic Performance of DLA 
In terms of gland segmentation, U-Net had a sensitivity of 95%, a specificity of 96% 

and a Dice score of 0.951 for internal validation and 92%, 97% and 0.9413, respectively, for 
external validation (Figure 2). As for tumor segmentation, it had a sensitivity of 82%, a 
specificity of 96% and a Dice score of 0.822 for internal validation and 77%, 95% and 0.7776, 
respectively, for external validation (Figure 3) (Table 3). 

   
Figure 2. A representative case of gland segmentation. (a,b) The Dice score for the gland 
segmentations was 0.94. Axial T2-weighted image (a) and corresponding ADC map (b) (b = 2000 
s/mm2) with gland segmentation ((b), dotted lines). (c) Segmentation through the convolutional 
neural network (CNN, U-Net) shows that the green color represents the matched area and the red 
color the unmatched area. 

   
Figure 3. A representative case of tumor segmentation with GS7(4 + 3). (a,b) The Dice score for the 
tumor segmentations was 0.78. Axial T2-weighted image (a) and corresponding ADC map (b) (b = 
2000 s/mm2) with tumor segmentation ((b), dotted lines). (c) Segmentation through the 
convolutional neural network (CNN, U-Net) shows that the green color represents the matched area 
and the red color the unmatched area. 

Table 3. Diagnostic predictive values of DLA for segmentation of glands and tumors. 

 Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Dice Score 
Gland       

Internal 
validation 

96 95 96 95 96 0.951 

External 
validation 

95 92 97 96 93 0.9413 

Tumor       
Internal 

validation 
93 82 96 83 96 0.822 

External 
validation 

92 77 95 79 95 0.7776 

U-Net was used for deep learning algorithm (DLA). 

As for classification, the overall accuracies of internal and external validation were 73 
and 75%, respectively. For internal validation, the diagnostic predictive values for CSC 
(hereafter sensitivity, specificity, PPV and NPV, in order) were calculated as 72, 74, 74 and 

Figure 2. A representative case of gland segmentation. (a,b) The Dice score for the gland segmen-
tations was 0.94. Axial T2-weighted image (a) and corresponding ADC map (b) (b = 2000 s/mm2)
with gland segmentation ((b), dotted lines). (c) Segmentation through the convolutional neural
network (CNN, U-Net) shows that the green color represents the matched area and the red color the
unmatched area.

Curr. Oncol. 2023, 30, FOR PEER REVIEW  6 
 

 

3.2. Diagnostic Performance of DLA 
In terms of gland segmentation, U-Net had a sensitivity of 95%, a specificity of 96% 

and a Dice score of 0.951 for internal validation and 92%, 97% and 0.9413, respectively, for 
external validation (Figure 2). As for tumor segmentation, it had a sensitivity of 82%, a 
specificity of 96% and a Dice score of 0.822 for internal validation and 77%, 95% and 0.7776, 
respectively, for external validation (Figure 3) (Table 3). 

   
Figure 2. A representative case of gland segmentation. (a,b) The Dice score for the gland 
segmentations was 0.94. Axial T2-weighted image (a) and corresponding ADC map (b) (b = 2000 
s/mm2) with gland segmentation ((b), dotted lines). (c) Segmentation through the convolutional 
neural network (CNN, U-Net) shows that the green color represents the matched area and the red 
color the unmatched area. 

   
Figure 3. A representative case of tumor segmentation with GS7(4 + 3). (a,b) The Dice score for the 
tumor segmentations was 0.78. Axial T2-weighted image (a) and corresponding ADC map (b) (b = 
2000 s/mm2) with tumor segmentation ((b), dotted lines). (c) Segmentation through the 
convolutional neural network (CNN, U-Net) shows that the green color represents the matched area 
and the red color the unmatched area. 

Table 3. Diagnostic predictive values of DLA for segmentation of glands and tumors. 

 Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Dice Score 
Gland       

Internal 
validation 

96 95 96 95 96 0.951 

External 
validation 

95 92 97 96 93 0.9413 

Tumor       
Internal 

validation 
93 82 96 83 96 0.822 

External 
validation 

92 77 95 79 95 0.7776 

U-Net was used for deep learning algorithm (DLA). 

As for classification, the overall accuracies of internal and external validation were 73 
and 75%, respectively. For internal validation, the diagnostic predictive values for CSC 
(hereafter sensitivity, specificity, PPV and NPV, in order) were calculated as 72, 74, 74 and 

Figure 3. A representative case of tumor segmentation with GS7(4 + 3). (a,b) The Dice score for
the tumor segmentations was 0.78. Axial T2-weighted image (a) and corresponding ADC map
(b) (b = 2000 s/mm2) with tumor segmentation ((b), dotted lines). (c) Segmentation through the
convolutional neural network (CNN, U-Net) shows that the green color represents the matched area
and the red color the unmatched area.

Table 3. Diagnostic predictive values of DLA for segmentation of glands and tumors.

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Dice
Score

Gland

Internal
validation 96 95 96 95 96 0.951

External
validation 95 92 97 96 93 0.9413

Tumor

Internal
validation 93 82 96 83 96 0.822

External
validation 92 77 95 79 95 0.7776

U-Net was used for deep learning algorithm (DLA).
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Table 4. Diagnostic predictive values of DLA for tumor classification.

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC

Internal validation set
CSC 73 72 74 74 72

External validation set
CSC 75 84 48 82 52 0.6269

DenseNet 201 was used for the deep learning algorithm (DLA). CSC, clinically significant cancer.
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4. Discussion

Regarding tumor segmentation, the DLA, which was based on ADC maps (b2000)
alone in our study, showed Dice scores of 0.94 and 0.78 for gland and tumor segmentation,
respectively. Our observations are similar to those of a previous study on mono-parametric
MRI. Alkadi et al. reported that the accuracy of a DLA, which was based on T2WI only for
tumor segmentation, was 89% [9]. As for tumor segmentation based on bp-MRI, Schelb
et al. reported that the Dice scores for a DLA based on bp-MRI (T2WI + DWI b1500)
using U-Net for detection and segmentation of CSCs were 0.35 for tumors and 0.89 for
glands [10]. Relative to this latter study, in our opinion, the relatively high Dice score for
tumor segmentation in this present study might have been due to the use of DWI b2000.
Rosenkrantz et al. revealed that DWI b2000 achieved significantly higher sensitivity for
tumor detection than b1000 [17]. Vural et al. found that b2000 showed the best lesion
conspicuity and background suppression among b values of 1500, 2000 and 3000 [26].
In addition, Cha et al. reported that the optimal b value of DWI was within a range of
1700–1900 for the detection of a prostatic lesion [27].

In terms of tumor classification, the DLA in the present study showed an accuracy
of 75% and an AUC of 0.63 in external validation. Recently, many deep-learning-based
computer-aided detection/classification (DL-CADe/CADx) systems have been developed
to assist human radiologists. Rampun et al. compared the 11 different CAD systems
employed to detect peripheral-zone cancer (GS ≥ 7), only for T2WI on 3T-MRI [12]. The
results varied from an AUC of 0.69 (k-Nearest Neighbor classifier) to 0.93 (combined
Bayesian Network and Multilayer Perceptron classifiers), according to the applied CNNs.
Ishioka et al. reported AUCs ranging from 0.636 to 0.645 for tumor (GS ≥ 6) detection via
combined U-Net with ResNet50, as trained on T2WI only with the 1.5T-MRI machine [13].
Although only ADC maps (b2000) were used in our study, the diagnostic performance for
tumor classification seems comparable to mono-parametric MRI using T2WI alone.

Beyond mono-parametric MRI, Arif et al. found that a DLA (Keras with TensorFlow)
developed based on bp-MRI (T2WI + DWI b800) showed an AUC of 0.89, a sensitivity of
94% and a specificity of 74% for discrimination of CSCs from non-CSCs [2]. In our study,
the sensitivity and specificity for GS7 were 84 and 48%, respectively. The relatively low
specificity might have been due to the mono-parametric MRI based study, without any
other sequences. Zhong et al. compared the diagnostic performance of DLA models trained
with T2WI (DLAT2) alone, ADC images (DLAADC) alone and combined T2WI and ADC
images (DLAT2 + ADC) in discriminating CSC from non-CSC [3]. All three models showed
the same sensitivity of 77%, and the combined T2WI and ADC (b800) information, notably,
helped to reduce false-positive prediction, thereby improving the specificity from 52 to 64%
after adding DLAT2 + ADC to DLAADC.

Considering the previously mentioned merits of DenseNet, including reduction in the
vanishing gradient, enhancement of feature propagation, reuse of features, reduction in
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the number of parameters [22] and its robustness, we think that our DLA, as developed
by DenseNet and based on ADC maps, could be a simple and convenient option for the
differentiation of CSC from non-CSC.

Our study has several limitations. First, tumor segmentation was conducted not on
a three-dimensional (3D)-volume data basis but on a 2D-image basis, due to the inherent
technical limitation of the segmentation tool. Therefore, when a classification error occurred
in one tumor-bearing slice, there was a tendency that those errors would continue to
consecutive slices. As a result, diagnostic performance for tumor classification might have
been underestimated. Second, there is a possibility of selection bias, as only GS7 tumors
were included in the CSC group. However, GS8-or-higher tumors are frequently advanced
cases of metastatic disease, for which systemic chemotherapy would be adopted rather
than radical prostatectomy. Considering the purpose of this study, to separate the group
capable of surveillance from the group that is not, the study was conducted except for
tumors with a score of GS8 or higher that were already inoperable. It would be better to
have a larger sample size for GS6 in the external validation set; however, it was difficult to
enroll patients with GS6. Patients with GS6 have a relatively good prognosis; thus, active
surveillance and observation can be followed instead of radical prostatectomy. Third, the
DLA’s value added to the human radiologists’ performance for tumor classification was
not investigated. As for the added value, several previous observations have been reported
in the literature [14,15]. Winkel et al. reported that the DL-CAD system increased the
diagnostic accuracy in detecting clinically suspicious lesions (PIRADS ≥ 4) and reduced
both the inter-reader variability and the reading time [14]. However, it was beyond the
scope and aim of the present study. To investigate the added value of a DLA to the
performance of human radiologists for tumor classification, further studies on DLA efficacy
in this regard are warranted.

5. Conclusions

In conclusion, tumor segmentation and classification of PCa through a DLA developed
based on ADC maps (b2000) alone are feasible.
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