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Abstract: This paper evaluates the prices of European-style options when dynamics of the underlying
asset is assumed to follow a Markov-switching Heston’s stochastic volatility model. Under this
framework, the expected return and the long-term mean of the variance of the underlying asset
rely on states of the economy modeled by a continuous-time Markov chain. There is evidence
that the Markov-switching Heston’s stochastic volatility model performs well in capturing major
events affecting price dynamics. However, due to the nature of the model, analytic solutions for the
prices of options or other financial derivatives do not exist. By means of the saddlepoint method,
an analytic approximation for European-style option price is presented. The saddlepoint method
gives an effective approximation to option prices under the Markov-switching Heston’s stochastic
volatility model.

Keywords: European-style options; Markov-switching Heston’s stochastic volatility model;
saddlepoint method; Markov chain

1. Introduction

It is well documented that the stochastic volatility (SV) models take the volatility
smile effect into account in the real markets. Needless to say, the SV models are more
realistic than the standard Black–Scholes model. Nevertheless, Vo (2009) conducted an
empirical study on a Markov-switching stochastic volatility model and showed that the
behaviour of crude oil price is well explained under the Markov-switching SV model.
A significant regime-switching effect on the oil markets is well documented and their
numerical results reveal that the forecasting power of the SV model with Markov switching
outperforms its non-switching counterpart. The empirical study also finds that the SV
model with Markov switching is able to capture large shocks of the oil markets well. These
advantages of empirical findings give us a motivation to pricing options under SV models
with Markov switching.

This paper shows how to price a European-style option in Markov-switching Heston’s
stochastic volatility model. Under the Markov-switching Heston’s stochastic volatility
model, the key parameters of the model follow Markov chains which switch from a state
to another state as time evolves. The Markov-switching (regime-switching) behaviour
could reflect the dynamic preferences and time-varying beliefs of traders or the changing
levels of economy activities. In general, the Markov chain is unobservable and the chain
is modeled by a stochastic differential equation (SDE). Zhu et al. (2012) derive an explicit
European option pricing formulas in a two-state regime by solving a couple of partial
differential equations (PDEs) using the Fourier transform method. Chan and Zhu (2021b)
obtain a closed-form formulas of Lookback options under a Markov-switching Wiener
process. Chan and Zhu (2015) derive a closed-form formula of American convertible bonds
in a Black–Scholes–Merton’s model with regime switching. Chan and Zhu (2021a) obtain
an analytic approach for pricing American options with Markov switching. Elliott et al.
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(2013) price options under the CEV model with Markov switching. Chan and Zhu (2015)
consider a homotopy analysis method to price barrier options under the Markov-switching
Wiener process. Elliott et al. (2014) use a quadratic approximation approach to price barrier
options under the Markov switching model. Bollen (1998) calculates a European option
price under the Markov switching model via a binomial tree. Hardy (2001) proposes a
recursive algorithm to price European options under the Markov switching model. Duan
et al. (2002) use a lattice-approximation method to price European-style and American-
style options under the Markov switching model. Boyle and Draviam (2007) use a finite
difference scheme to price exotic options under the Markov switching model. Li et al.
(2012) derive the bounds of exotic option price using semidefinite programming (SDP)
under the Markov switching model. Lu and Putri (2020) evaluate Markov-switching
American option via Laplace transform. Egami and Kevkhishvili (2020) simplify an optimal
stopping problem for a two-state Markov-switching model to a pair of no-switching optimal
stopping problems. Elliott and Lian (2013) investigate the pricing of variance swaps under
a Markov-switching stochastic volatility model.

The saddlepoint method has been widely used in approximating the probability
distribution of the partial sum of independent random variables since it was proposed by
Daniels in 1954. In this paper, instead of approximating distributions, we use the Lugannani
and Rice (LR) formula (Daniels 1987) to approximate tail probabilities of logarithm of the
underlying asset. In order to obtain the price dynamics under a martingale measure, we
adopt an Esscher transform (Elliott et al. 2005). Once we obtain the closed-form cumulant
generating functions (CGFs) of ln(St) under the martingale measure Q and the physical
probability measure P, respectively, then the saddlepoint equation can be solved via
any symbolic computing package, such as Maple. The remaining procedure for pricing
options is just simple algebraic manipulations. Glasserman and Kim (2009) use saddlepoint
methods to calculate a European call option in a jump-diffusion framework. Zhang and
Chan (2016) obtain saddlepoint approximation for European call options in a Markov-
switching model and our current work extends their work to a Markov-switching SV model.

The paper is organized as follows. Section 2 reviews Markov-switching Heston’s
stochastic volatility model. Section 3 discusses the saddlepoint method and LR formula.
Section 4 derives the cumulant generating functions of the model under different probability
measures. Sections 5 and 6 refer to numerical results and conclusion, respectively.

2. Markov-Switching Heston’s Stochastic Volatility Model

After adopting an Esscher transform (Elliott et al. 2005), the dynamics of underlying
asset and the volatility in the Markov-switching Heston’s stochastic volatility model under
a martingale measure, P , are assumed to follow the following SDEs:

dSt = rtStdt +
√

σtStdWS
t , (1)

dσt = κ(θ?t − σt)dt + σv
√

σtdWσ
t . (2)

Here rt is the short rate, θt is the long-term mean of the variance, κ is a mean-reverting
speed parameter of the variance, σv is the volatility of volatility, µt is the mean rate of
return and θ?t := θt − ρσv(µt − rt). (dWS

t , dWσ
t ) is a two-dimensional Brownian motion

with
〈
dWS

t , dWσ
t
〉
= ρt. We define Yt = ln(St) and apply Ito’s formula to Yt to get a new

process (Y, σ) with

dYt = (rt −
1
2

σt)dt +
√

σtStdWS
t , (3)

dσt = κ(θ?t − σt)dt + σv
√

σtdWσ
t . (4)

From Heston (1993), the value of a European call option is in form of

C(t, S) = EQ
[

exp(−r(T − t))(ST − K)+
]

= S0Q(YT > ln(K))− K exp(−r(T − t))P(YT > ln(K)) . (5)
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Here Q is defined by the measure change dQ
dP = e−r(T−t)eYT−Y0 , which uses ST as a nu-

meraire asset. The dynamics of (Y, σ) can be written as

dYt = (rt +
1
2

σt)dt +
√

σtStdWS,Q
t , (6)

dσt = (κθ?t − (κ − ρσv)σt)dt + σv
√

σtdWσ,Q
t . (7)

Here WS,Q
t and Wσ,Q

t are standard Brownian motions underQwith a correlation parameter
ρ. To make the parameters depend on the chains, we introduced the notation in the
following parameters µt, θt and rt where

µt := 〈µ, Xt〉,
rt := 〈r, Xt〉,
θt := 〈θ, Xt〉.

Here 〈.〉 denotes an inner product. Xt is a continuous-time Markov chain. We assume
that the Markov chain X is irreducible. Without loss of generality, we can identify the
state space of the chain X with the finite set of unit vectors E := {e1, e2, · · · , eN}, where
ei := (0, · · · , 1, · · · , 0)′ ∈ <N . From Elliott et al. (1994), the semi-martingale representation
for the chain is given by X:

Xt = X0 +
∫ t

0
A′Xtdu + Mt. (8)

Here Mt is a martingale and A′ is the transpose of A. A′ := [λij]i,j=1,2,··· ,N denotes the
intensity matrix of the chain X, λij is the constant rate of transition of the chain X from
state ei to state ej. For more details about the Markov-switching model, see Guo (2001) and
Buffington and Elliott (2002).

3. Saddlepoint Methods

The saddlepoint approximation was proposed by Daniels in 1954 and is used to
approximate the probability density function of the sum Ȳ = ∑n

1 Yk/n, where Y′ks are
identically independent distributed random variables. Assume the cumulant generating
function G(z) of Ȳ is known, the probability density fn(ȳ) of Ȳ is in the form of

fn(ȳ) =
n

2πi

∫ τ+i∞

τ−i∞
exp

(
n
(
G(z)− zȳ

))
dz, (9)

for any τ ∈ {y ∈ < : |G(ȳ)| < ∞}. Through the steepest descent method, Daniels (1954)
gave an asymptotics for the integral (9). The approximation f̂n(ȳ) could be computed by
selecting the path to pass through the saddle point z̄ such that G′(z̄)− ȳ = 0. The modulus
of the integrand attains a maximum at z̄ as the function G(z)− zȳ has a minimum at z̄.
While the integrand does not make a contribution apart from a neighbourhood of the
saddlepoint. Consequently, higher order terms in the expansion can be ignored without
losing much precision.

Daniels (1987) obtained a probability approximation formula based on the Lugannani–
Rice (LR) formula. Compared to those of the Edgeworth expansion, the error of the LR
formula is almost uniformly distributed over the whole range of the expectation ȳ. The LR
formula is given by

P(Ȳ > ȳ) = 1−Φ(
√

nŵ) + φ(
√

nŵ)

{
b0

n1/2 +
b1

n3/2 + o(n−3/2)

}
, (10)

where b0 = 1/û − 1/ŵ, b1 = (λ4/8 − 5λ2
3/24)/û − λ3/(2û2) − 1/û3 + 1/ŵ3,

ŵ = sgn(z̄)
√

2(z̄y− G(z̄)), û = z̄
√

G′′(z̄), λ3 = G(3)(z̄)/G′′(z̄)3/2 and
λ4 = G(4)(z̄)/G′′(z̄)4/2.
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Here Φ, φ are the cumulative distribution function and the probability density of the
standard normal distribution, respectively.

4. Pricing European Options in Markov-Switching Heston’s Model

If the underlying asset follows dynamics (1) and (2), the price of a European call option
at time zero is in the form of

C(t, S) = EQ
[

exp(−r(T − t))(ST − K)+
]

= S0Q(YT > ln(K))− K exp(−r(T − t))P(YT > ln(K)) . (11)

The CGF of YT under P is denoted by eG(z,Y,t,σ) = E[ezYT ]. Denote FS
jt, F

σ
jt and FX

t by the

natural filtrations generated by the Brownian motions WS
t , Wσ

t and the Markov chain Xt,
up to time t, respectively, we have

FS
1t := σ̂{WS

u |u ≤ t},
Fσ

1t := σ̂{Wσ
u |u ≤ t},

FX
t := σ̂{Xu|u ≤ t}

and

FS
2t := σ̂{WS,Q

u |u ≤ t},
Fσ

2t := σ̂{Wσ,Q
u |u ≤ t}.

Here σ̂ is the smallest σ-field. To obtain the CGF we calculate the expectation by enlarging
the filtration, where we assume FX

T is known. In such a case, all parameters depending
on the Markov chain X would degenerate to deterministic functions of time. For instance,
given FX

T , the CGF is given by the following lemma.

Lemma 1. If the underlying asset follows the dynamics (1) and (2), and FX
T is given, then the CGF

of the stochastic variable YT = ln(ST) is given by

f j(z, Y, t, σ)|FX
T ) = EQ

[
ezYT |FS

jt ∨ F
σ
jt ∨ FX

T

]
= eF(z,t,T)+H(z,t,T)σ+zY, (12)

where F(z, t, T) and H(z, t, T) are given by

F(z, t, T) =
∫ T

t
〈rz + κθ?H(z, t, T), Xs〉ds,

H(z, t, T) =
bj− ρσvz + d

σ2
v

[
1− ed(T−t)

1− ged(T−t)
],

g =
bj − ρσvz + d
bj − ρσvz− d

,

d =
√
(ρσvz− bj)2 − σ2

v (2ujz + z2),

b1 = κ, b2 = κ − ρσv,

u1 = −1
2

, u2 =
1
2

.

Proof. When the price dynamics follow (1) and (2), Heston (1993) demonstrates that the
value of any asset U(S, σ, t) must satisfy the partial differential equation (PDE)
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1
2 σS2 ∂2U

∂S2 + ρσσvS ∂2U
∂S∂σ + 1

2 σ2
v σ

∂2 f
∂σ2 + rS ∂U

∂S + κ(θ?(t)− σ) ∂U
∂σ − rU + ∂U

∂t = 0. (13)

Thus we guess the solution of the model has the form

C(S, σ, t) = SP2 − Ke−rT P1. (14)

Both of P1 and P2 must satisfy the original PDE (13). Substituting the proposed solution
(14) into the original PDE (13) shows that P1 and P2 must satisfy the PDEs

1
2

σ
∂2Pj

∂Y2 + ρσσvS
∂2Pj

∂Y∂σ
+

1
2

σ2
v σ

∂2Pj

∂σ2 + (r + ujσ)
∂U
∂Y

+ (κθ?t − bjσ)
∂U
∂σ

+
∂U
∂t

= 0, (15)

for j = 1, 2 and where b1 = κ, b2 = κ − ρσv,u1 = − 1
2 , u2 = 1

2 . Pj could be treated as the
conditional probability that the option expires in-the-money,

Pj(Y, σ, T, ln[K]) = Pr[YT ≥ ln[K]|Yt, σt, Xt]. (16)

We can solve PDE (15) by first guessing that the affine form solution might be

f j(z, Y, t, σ)|FX
T ) = eF(z,t,T)+H(z,t,T)σt+zYt . (17)

The functions F(z, t, T) and H(z, t, T) can be found by solving two Riccati ODEs:

−∂F
∂t

= rtz + κθ?t F (18)

−∂H
∂t

=
1
2

z2 + ujz + (ρσvz− bj)H +
1
2

σ2
v H2 (19)

with initial conditions F(z, t, T) = 0 and H(z, T, T) = 0. The solutions are

F(z, t, T) =
∫ T

t
〈rz + κθ?H(z, t, T), Xs〉ds,

H(z, t, T) =
bj− ρσvz + d

σ2
v

[
1− ed(T−t)

1− ged(T−t)
],

g =
bj − ρσvz + d
bj − ρσvz− d

,

d =
√
(ρσvz− bj)2 − σ2

v (2ujz + z2),

b1 = κ, b2 = κ − ρσv,

u1 = −1
2

, u2 =
1
2

.

Lemma 2. If the underlying asset follows the dynamics (1) and (2), then the MGF of the stochastic
variable y(t, T) =

∫ T
t σ(s)ds is given by

f j(z, Y, t, σ) = 〈Φ(z, t, T)Xt, Id〉 × eH(z,t,T)σt+zYt , (20)



J. Risk Financial Manag. 2022, 15, 396 6 of 9

where

Φ(z, t, T) = exp(A′(T − t) + diag[rz(T − t)

+
κθ?

σ2
v
((bj − ρσvz− d)(T − t)− 2 ln[

1− ed(T−t)

1− ged(T−t)
])]),

H(z, t, T) =
bj− ρσvz + d

σ2
v

[
1− ed(T−t)

1− ged(T−t)
],

g =
bj − ρσvz + d
bj − ρσvz− d

,

d =
√
(ρσvz− bj)2 − σ2

v (2ujz + z2),

b1 = κ, b2 = κ − ρσv,

u1 = −1
2

, u2 =
1
2

.

Proof. In order to derive the unconditional MGF, we need to calculate the expectation
without conditioning, where θ? relies on the chain of X process up to time T. Consequently,
we write

f j(z, Y, t, σ) = E
[
ezYT |FS

t ∨ Fσ
t ∨ FX

t
]

= E[E
[
ezYT |FS

t ∨ Fσ
t ∨ FX

T
]
|FS

t ∨ Fσ
t ∨ FX

t ]

= E[eF(z,t,T)+H(z,t,T)σt+zYt |FS
t ∨ Fσ

t ∨ FX
t ]

= E[
∫ T

t 〈rz + κθ?H(z, t, T), Xs〉ds|FS
t ∨ Fσ

t ∨ FX
t ]× eH(z,t,T)σt+zYt .

(21)

By the Proposition 3.2 in Elliott and Lian (2013), we have

E[
∫ T

t
〈rz + κθ?H(z, t, T), Xs〉ds|FS

t ∨ Fσ
t ∨ FX

t ] = 〈Φ(z, t, T)Xt, Id〉, (22)

where Φ(z, t, T) is an N-by-N <-valued matrix given by

Φ(z, t, T) = exp
( ∫ T

t
A′ + diag[rz + κθ?H(z, t, T)]ds)

= exp(A′(T − t) + diag[rz(T − t)

+
κθ?

σ2
v
((bj − ρσvz− d)(T − t)− 2 ln[

1− ed(T−t)

1− ged(T−t)
])]

)
(23)

Id = (1, 1, . . . 1) ∈ <N and A′ denotes the transpose of A. So,

f j(z, Y, t, σ) = 〈Φ(z, t, T)Xt, Id〉 × eH(z,t,T)σt+zYt . (24)

At last Gj(z, Y, t, σ) = ln[ f j(z, Y, t, σ)] = ln〈Φ(z, t, T)Xt, Id〉+ H(z, t, T)σt + zYt. Using
this CGF, we can apply the saddlepoint approximation formula presented in the previous
section to calculate option price.

C(S, σ, t) = SP2 − Ke−rT P1. (25)

5. Numerical Examples

In this section, we give some examples to price European-style call options under
Markov-switching Heston’s stochastic volatility model using the saddlepoint method.
Without the loss of generality, we consider two-regime case: the first regime (Xt = 1) refers
to the ‘Booms’ state of economy and the second regime (Xt = 2) refers to the ‘Recessions’
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state of economy. The parameters setting in our example are S0 = 100, κ = 2, ρ = −0.2,
σv = 0.2, r = [0.03; 0.03], µ = [0.08; 0.04], and θ = [0.009; 0.004]. The transition rate matrix
of the Markov chain A is [−1, 1; 1, −1]. Assuming that the current state is X0 = 1 and
that the current volatility level is V0 = 0.04. The saddlepoint can be found by solving
the saddlepoint equation, G

′
j(z)− ln[K] = 0, through symbolic computing softwares like

Mathematica or Maple. The results for a two-regime case are documented in Table 1.
Here MCi denotes Monte-Carlo results based on current state i. We set sample paths
of Monte-Carlo simulation to 20,000 and the computation is performed using Matlab
R2010b programs as the benchmark. SA1i and SA2i refers to the ASP method based on
the current state i with first order and second order, respectively. The results show that
‘SA2i’ would definitely outperform ‘SA1i’ for all range of maturity. Table 2 demonstrates
option prices with different strikes under Markov-switching Heston’s stochastic volatility
model as well as its non-switching Heston’s counterpart. In a non-switching Heston’s
model, we assume all parameters’ value equals the parameters’ value in the first regime of
the Markov-switching Heston’s model. The numerical results are shown in Figure 1 and
it clearly shows that our approximation is quite precise. We also notice that the option
prices calculated from the Markov-switching Heston’s model are cheaper than their non-
switching counterparts over all range of strike prices given in the Table 2. This is because
parameters’ value in a regime-switching Heston’s model is smaller. As θ1 < θ2 and µ1 < µ2,
so 1

T
∫

θ1dt > 1
T
∫

θtdt and 1
T
∫

µ1dt > 1
T
∫

µtdt. Figure 2 is the plot of the implied volatility.
The maturity time is fixed at T = 1 and leaves other parameters unchanged. When ρ is zero
we get a volatility smile and the implied volatility starts to increase after the strike price
is greater than the initial stock price. A negative ρ has an obvious impact on the shape of
the volatility curve: the volatility smile becomes a smirk. It seems that the changes in the
initial regime only has an impact on the values of implied volatility, but not the shape of
volatility curve.

Table 1. Call option prices (N = 2).

First Order Sec Order

T (year) MC1 MC2 SA11 SA12 SA21 SA22

0.1 8.5315 8.2114 8.4556 8.0806 8.5043 8.1738
0.2 8.4257 7.8141 8.0043 7.3541 8.3253 7.7503
0.5 8.0846 7.1332 7.2920 6.2731 7.9300 7.0056
1 7.7494 6.7888 6.8765 5.8592 7.5898 6.6773

Table 2. Call option prices when T = 1, N = 2.

with Regime-Switching with Regime-Switching without Regime-Switching

K MC1 SA21 First State

70 32.0532 32.1250 32.3157
80 22.8978 22.6910 23.3394
90 14.0194 14.0200 15.4829
100 7.1860 7.1398 9.3352
110 3.0066 2.7466 5.1183
120 1.0630 0.9057 2.5812
130 0.3573 0.2758 1.2193
140 0.1071 0.0829 0.1175
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6. Conclusions

This paper studies a saddlepoint approximation approach for pricing options in a
Markov-switching Heston’s stochastic volatility model. Our approach requires to derive
a closed-form expression of cumulant generating function, which needs to solve partial
differential equations. The numerical results in Section 5 examine the accuracy of our
method and a two-state case has been considered. The results show that saddlepoint
method gives quite accuracy for the given range of maturities.

However, if the closed-form cumulant generating function does not exist, then one
needs to rely on a numerical method to find a saddle point. In this situation, the procedure
becomes slower.

In the future, it is worth considering multi-state Markov chain case and developing an
algorithm to beat the curse of dimensionality. Furthermore, pricing American option under
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Markov-switching Heston’s stochastic volatility model and its calibration are interesting
to study.
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