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Abstract: It has been recognized that volatility in commodity markets fluctuates significantly depend-
ing on the demand–supply relationship and geopolitical risk, and that risk and financial management
using multivariate derivatives are becoming more important. This study illustrates an applica-
tion of multi-layered neural networks for multi-dimensional Bermudan option pricing problems
assuming a multi-asset stochastic volatility model in commodity markets. In addition, we aim to
identify continuation value functions for these option pricing problems by implementing smooth
activation functions in the neural networks and evaluating their accuracy compared with other
activation functions or regression techniques. First, we express the underlying asset dynamics using
the multi-asset stochastic volatility model with mean reversion properties in the commodity market
and formulate the multivariate Bermudan commodity option pricing problem. Subsequently, we
apply multi-layer perceptrons in the neural network to represent the continuation value functions of
Bermudan commodity options, wherein the entire neural network is trained using the least-squares
Monte Carlo simulation method. Finally, we perform numerical experiments and demonstrate that
applications of neural networks for Bermudan options in a multi-dimensional commodity market
achieve sufficient accuracy with regard to various aspects, including changing the exercise dates, the
number of layers/neurons, and the dimension of the problem.

Keywords: Bermudan commodity options; multi-layer perceptron; multi-asset stochastic volatility
model

1. Introduction

In commodity markets, typical products include directional trades such as futures and
forwards, which establish an obligation to purchase or sell an underlying commodity in
the future (Clark 2014). As essential tools for managing risks from these contracts, which
may consist of multiple underlying assets, there are various options contracts that provide
a right to trade the underlying commodity under a specified condition. In this study, we
focus on early-exercisable options on multiple underlying assets in commodity markets,
i.e., multivariate Bermudan commodity options.

Solving Bermudan commodity option pricing problems with multiple underlying
assets and factors is challenging because computational efforts grow exponentially in tan-
dem with the problem dimension in general, which is determined by the number of assets
and factors. However, the improvement of algorithms and the rapid growth of computa-
tional power have led to a remarkable surge of interest in computational science in recent
years. Currently, a wide variety of machine learning algorithms, such as deep learning
and neural networks, are successfully employed for classification, regression, clustering, or
dimensionality reduction tasks and are applied for large-sized and high-dimensional data
in various areas. In this study, we develop a new Bermudan commodity option algorithm
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via multi-layered neural networks and show its efficiency and effectiveness based on the
multi-asset commodity market model with stochastic volatility, wherein significant changes
in volatility may be observed according to the demand–supply relationship and geopolitical
conditions in commodity markets.

An important feature of Bermudan options is that they can be exercised early, with
their value being determined by whether or not they are exercised before maturity. In
other words, the option holder must decide whether to continue holding the option or
immediately exercise it at a prespecified period. In this situation, it is crucial to determine
the continuation value, i.e., the value of holding the option until the next exercise window.
Such a continuation value may be given as the discounted conditional expectation of the
remaining option value on one step ahead under a risk-neutral probability measure, which
generally has no explicit boundary conditions. Moreover, the conditional expectation pro-
viding the continuation value is an unknown (possibly nonlinear and complex) multivariate
function whose dimensions depend on the number of underlying factors; hence, an exact
(yet still approximate) computation involves high-dimensional discrete grids concerning
state variables and is quite difficult to solve.

To price early-exercisable options with estimations of continuation value functions,
Longstaff and Schwartz (2001) proposed a simple yet powerful numerical method involv-
ing a regression-based functional estimation using simulated sample paths known as the
least-squares Monte Carlo (LSMC) method. Since then, several studies have examined the
application of neural networks (or machine learning methods) for estimating continuation
value functions in option pricing based on the LSMC method. For American options’ pric-
ing, Haugh and Kogan (2004) applied a neural network with one hidden layer for valuation,
whereas Kohler et al. (2010) proved price consistency and convergence with multiple payoff
types. Lapeyre and Lelong (2021) gave several numerical examples of Bermudan options
and proved convergence. There are additional examples, e.g., the 5000 assets rainbow
option (Becker et al. 2021) and expected exposures (Andersson and Oosterlee 2021). Fur-
thermore, other machine learning algorithms have been used for early-exercisable options,
e.g., radial basis functions (Ballestra and Pacelli 2013), nearest-neighbor (Feng et al. 2013),
deep learning (Becker et al. 2020; Liang et al. 2021), unsupervised learning (Salvador et al.
2020), and reinforcement learning (Li 2022), as well as the support vector machine (Lin and
Almeida 2021). Moreover, numerical approaches have also been used, including stochastic
kriging metamodels (Ludkovski 2018), high-dimensional partial differential equations
(Sirignano and Spiliopoulos 2018), and backward stochastic differential equations (Chen
and Wan 2021). Furthermore, there are other applications of neural networks in the finance
field, e.g., extending the feature set (Montesdeoca and Niranjan 2016), the calculation of im-
plied volatilities (Liu et al. 2019), and decision-making (Puka et al. 2021). A comprehensive
review of these methods was conducted by Ruf and Wang (2020).

Although this study shares the same ideas as the aforementioned studies—in particular,
as in Lapeyre and Lelong (2021), given that a multi-layer perceptron (MLP) is applied in
the neural network—it is worthwhile to mention that our study may be considered novel
in several aspects: We illustrate an algorithm for estimating the continuation values of
multi-asset Bermudan commodity options with stochastic volatility features, whereby a
smooth activation function, such as the sigmoid function, is applied in the MLP to reflect
the smoothness of conditional expectations regarding state variables. The smoothness of
functions to represent conditional expectations is key in this study. In the Markovian setting,
the conditional probability density functions are usually smooth given state variables; thus,
conditional expectations are smooth functions. Therefore, the target continuation value
function is smooth, and we can expect a better fit to the target function by using a smooth
activation function in the MLP. This is in contrast with more commonly used piecewise
linear functions such as the leaky ReLU function applied in the numerical experiments
by Lapeyre and Lelong (2021), wherein the fitting function may not be smooth but only
piecewise smooth. (Note that, in a similar context with the smoothness of estimated
functions, Yamada (2012, 2017) applied the generalized additive model to calculate smooth
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functions for conditional expectations in multivariate hedging problems with European
and Bermudan options.) Additionally, we applied more sophisticated techniques such as
the resampling procedure and early stopping to improve the computational efficiency and
avoid possible biases in pricing or overfitting for optimal learning (see Section 3.2 and the
numerical experiments).

While several neural network/machine learning models for option pricing exist, we
believe that, for this type of research, the current methodologies, along with developed
computational algorithms, need to be combined with existing techniques using the cur-
rently available computational environment. In this context, the choice of problem and
methodology choice is important, as is the approach to the problem and how to perform the
numerical experiments. The combination of multi-asset commodity options with stochastic
volatility and recently developed neural network techniques (including the computational
environment and software) is meaningful since commodity markets are largely volatile,
and this volatility may change over time. Moreover, the multi-asset Bermudan commodity
options with stochastic volatility, to the best of our knowledge, have not been previously
considered despite the problem’s importance. It should become more challenging in nu-
merical calculations to configure multiple underlying assets that recognize mean-reverting
dynamics and solve boundary conditions with stochastic factors (see, e.g., Hahn and Dyer
2008 and Ball and Roma 1994).

The present study implements a multi-layered neural network and examines its
efficiency and effectiveness for multi-asset Bermudan commodity option pricing problems
with stochastic volatility. First, we formulate the multi-asset commodity market with
stochastic volatility, wherein individual asset price dynamics are expressed as a two-factor
model by combining a well-known commodity model by Schwartz (1997) with Heston’s
stochastic volatility model (Heston 1993). Next, we apply MLPs in the neural network to
represent the continuation value functions in Bermudan option pricing, whereby the entire
neural network is trained using LSMC simulations. We perform numerical experiments
to compare the continuation value function accuracy in response to changing the exercise
dates, the number of layers/neurons, and the dimension of the problem. We also compare
the relationship between the continuation values and network configurations.

The outline of this article is as follows. Section 2 gives an introduction to the commod-
ity option structure adopted in this study and the formulation of the multi-dimensional
Bermudan option problem. Section 3 describes the configuration of neural networks, a
multi-dimensional asset model with stochastic volatility, and a Bermudan options pricing
procedure for learning and valuation via Monte Carlo sample paths. Section 4 presents
the numerical results of the Bermudan option prices and compares the accuracy of the
continuation value surfaces. Section 5 summarizes the analysis results and discussions.
Lastly, Section 6 concludes this study.

2. Pricing Multi-Asset Bermudan Commodity Options with Stochastic Volatility

In this section, we introduce early-exercisable commodity options and formulate the
problem of pricing multi-asset Bermudan commodity options with stochastic volatility.

2.1. Early-Exercisable Commodity Options

As stated earlier, in commodity markets, typical products include plain directional
trades such as future and forward contracts, which establish an obligation to buy or sell a
particular commodity asset at a specified price in the future (Clark 2014). Depending on the
terminal values of commodity assets, holding these contracts may lead to a loss or profit
for the contractor, while a large loss is particularly undesirable for the holder; furthermore,
the possibility of a large profit may be pursued. Such opportunities are realized using
options contracts, giving a right to purchase or sell an underlying commodity asset with a
prespecified strike price in the future.

Among the many types of options used as hedging tools in commodity markets,
early-exercisable options provide additional flexibility regarding exercise timing and are
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considered useful for hedgers, in practice. Traditionally, such options are characterized
as American options; however, in the context of exotic options, Bermudan options have
similar flexibility. These options allow holders to exercise them early, although only on
specific dates before maturity; thus, the option holder must decide whether to continue
holding the option or immediately exercise it during the exercisable period. However, such
continuation value is usually unknown because it depends on future option values on
specific exercisable dates. Therefore, it is paramount to determine the continuation values
for Bermudan options. The objective of this study is to evaluate computational performance
(including the accuracy of continuation value estimation) for pricing multi-asset Bermudan
commodity options via multi-layered neural networks.

2.2. Multi-Dimensional Bermudan Option Pricing Problem

In this subsection, we describe the multi-dimensional Bermudan option pricing prob-
lem, following Lapeyre and Lelong (2021). Given a complete filtered probability space (Ω,
F , (Ft)0≤t≤T , P) with a finite time horizon T > 0, we assume that a set of underlying assets
is modeled via a multifactored process (Xt)0≤t≤T adapted to the filtration, (Ft)0≤t≤T , and
that P is an associated risk-neutral measure. We consider a Bermudan option with exercise
dates 0 = T0 ≤ T1 < T2 < . . . < TN = T and a discrete-time payoff process PTn if exercised
at times (Tn)0≤n≤N , where PTn is specified as a function of XTn . Then, Bermudan option
prices ZTn are computed using the following recursive equation:{

ZTN = PTN
ZTn = max

(
PTn , e−rδTnE

[
ZTn+1 |FTn

])
, 0 ≤ n ≤ N − 1

(1)

where E denotes the expectation under the risk-neutral probability measure P with the
risk-free interest rate r and the interval between Tn−1 and Tn as δTn . Furthermore, assuming
that (Xt)0≤t≤T is a multi-dimensional Markov process, there exists a measurable function
Φn : Rdx → R , such that:

e−rδTnE
[
ZTn+1 |FTn

]
= e−rδTnE

[
ZTn+1 |XTn

]
= Φn(XTn) , 0 ≤ n ≤ N − 1. (2)

Herein, we refer to Φn as a continuation value function in this paper.
Note that finding the exact Φn is difficult; alternatively, one may identify a function fn

to minimize the following quantity,

E
[∣∣∣e−rδTn ZTn+1 − fn(XTn)

∣∣∣2], (3)

over a parametrized set of functions B. If all (real-valued) square-integrable measurable
functions are searched to minimize Equation (3), it turns out that the function Φn providing
the conditional expectation in Equation (2) is achieved via an optimizer. However, there
is a trade-off between the generality of a set of functions and the efficiency of computa-
tion. Additionally, computational tractability depends on the methodology to solve the
optimization problem.

2.3. Multi-Asset Commodity Market Model with Stochastic Volatility

This study employs a multivariate commodity market model consisting of multiple
underlying assets with stochastic volatility for the Bermudan option problem. To this
end, we adopt a stochastic volatility model for the mean-reverting commodity dynamics
(Schwartz 1997) and expand it to the multi-asset case.

Consider the Bermudan option problem with n underlying assets at time t, Si,t, i =
1, . . . , l, the i-th price dynamics of which are governed by the following two-dimensional
stochastic differential equations (SDEs):

dSi,t = κSi (µi − ln Si,t)Si,tdt +√vi,tSi,t dWSi ,t,
dvi,t = κvi (θi − vi,t)dt + ξi

√vi,tdWvi ,t.
(4)
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Herein, WSi ,t and Wvi ,t are correlated Brownian motions with appropriate correlation
parameters, while the magnitude of the speed coefficient κSi measures the degree of mean
reversion to the long-run mean µi, including the market price of risk in the underlying
asset price processes. The second term characterizes the i-th volatility process, σi,t ≡

√vi,t,
where κvi indicates a degree of mean reversion toward long-term volatility θi, and ξi is the
volatility of volatility.

Since each of the underlying asset price dynamics in (4) follows a two-dimensional
Markov process, the state variables at time t, denoted by Xt, corresponding to the input
features X of the MLP in the previous subsection, may be described as

Xt := [S1,t, σ1,t, S2,t, σ2,t, . . . , Sl,t, σl,t]
> ∈ Rdl . (5)

The dimension dl in (5) depends on the number of state variables and is given by
dl := 2l. Note that the SDEs of the underlying assets are used to generate sample paths of
the LSMC method in the Bermudan option pricing problem.

3. Application of Neural Networks with MLP

When pricing Bermudan commodity options using a model with multi-dimensional
factors—including the multi-asset stochastic volatility model introduced in the previous
section—it is crucial to determine continuation values at each exercisable date. In order to
identify a continuation value function in the multi-asset Bermudan option pricing problem
with stochastic volatility, this study takes a neural network approach with MLP, similar to
Lapeyre and Lelong (2021). First, we introduce the neural network architecture considered
in this study, which generates a continuation value in Bermudan commodity options
pricing. Second, we present the underlying assets model with multi-dimensional factors,
which has multi-asset and stochastic volatility. Finally, we provide algorithms for learning
the entire network and option pricing procedure.

3.1. Continuation Value Functions via MLPs

First, we explain the configuration of an MLP to express a general multi-dimensional
function and to approximate the continuation value function in the multi-dimensional
Bermudan option problem.

The basic configuration of the MLP is shown in Figure 1, where X ∈ Rd is an input
vector and Z ∈ R is an output of the entire neural network. Each neuron is called a
“perceptron” that defines a mapping of input/output signals with appropriate dimensions,
being dependent on the number of neurons at input/output layers. For example, if x ∈ Rdx

denotes an input signal of a perceptron with a weight matrix W ∈ Rdx×dy and a bias vector
b ∈ Rdy , then, an output signal y ∈ Rdy from the perceptron is given by

y = h
(

WTx + b
)

, (6)

where h : Rdy → Rdy is a component-wise activation function. Typical choices of activa-
tion functions in neurons are as follows:

Sigmoid : x 7→ 1
1+e−x

ReLU : x 7→ max(x, 0)
. (7)

In the case where the MLP is applied for a regression, all the weight matrices and bias
vectors in the MLP are computed to minimize the sum of squared errors between the actual
dependent variable, denoted by Z ∈ R, and the predicted dependent variable Ẑ ∈ R given
the training datasets of X ∈ Rdx and Z ∈ R (expressed using the MLP in Figure 1).

Note that the MLP can express a continuous and complex nonlinear surface in entire
networks by sequentially performing a linear and nonlinear transformation on inputs X ∈
Rdx to the compiled layer output Ẑ ∈ R. The properties of the MLP function derive from
the universal approximation theorem proposed by Cybenko (1989) and the Kolmogorov–
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Arnold representation theorem put forward by Kolmogorov (1957) and Arnold (2009), in
which any function can be approximated if the input size and network are infinite. In this
sense, functions expressed by the MLP are generally considered suitable for a problem with
complicated interactions because of the adjustable basis functions (see Choon et al. 2008).
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For the randomly generated sample paths of (Xt)0≤t≤T , we can apply the LSMC
method (see Appendices A and B) combined with the MLP, whereby the continuation value
function is modeled at each step using a function given by the MLP. Let X(1)

t , X(2)
t , . . . , X(M)

t
and 0 ≤ t ≤ T be the simulated M sample paths of (Xt)0≤t≤T . Since the discrete-time
payoff process PTn (if exercised at times (Tn)0≤n≤N) is specified as a function of XTn for a
Bermudan option and ZTN = PTN , the training data of the output variable, Z ≡ ZTN ∈ R,

in the first step of the LSMC method, are computed as P(1)
TN

, P(2)
TN

, . . . , P(M)
TN

, corresponding
to the payoffs of the Bermudan option at maturity along the sample path of XTN . The
MLP in the first step is constructed for the training data of X ≡ XTN−1 ∈ Rdx , given

as X(1)
TN−1

, X(2)
TN−1

, . . . , X(M)
TN−1

, together with those of Z ≡ ZTN ∈ R. Then, we obtain an

approximation of the continuation value function, denoted by Φ̂N−1, and the continuation
values along the sample path, Φ̂N−1

(
X(m)

TN−1

)
, m = 1, . . . , M.

In the second step, the training data of the output variable, Z ≡ ZTN−1 ∈ R, are
computed using (1), as

Z(m)
TN−1

= max
(

P(m)
TN−1

, Φ̂N−1

(
X(m)

TN−1

))
, m = 1, . . . , M, (8)

as well as the training data of X ≡ XTN−2 ∈ Rdx , given as X(1)
TN−2

, X(2)
TN−2

, . . . , X(M)
TN−2

. Using
these training datasets, the MLP is constructed to find an approximation of the continuation
value function, denoted by Φ̂N−2, and the continuation values along the sample paths,
Φ̂N−2

(
X(m)

TN−2

)
. We then repeat the same procedure until T0.

3.2. Learning Networks and Option Pricing

For learning neural networks, we generate Monte Carlo sample paths using the SDEs
in Section 3.2 based on a similar idea to that of the ordinary LSMC method introduced by
Longstaff and Schwartz (2001). Herein, we apply nonlinear functions of the MLPs instead
of polynomial functions for the basis of the continuation value functions. Additionally, we
introduce techniques such as early stopping to improve the fitted continuation functions
and avoid possible overfitting or biases in learning and pricing. We also introduce the
resampling procedure to avoid a possible bias caused by using the same random samples
between learning and valuation, and we regenerate Monte Carlo sample paths for the
valuation of Bermudan option prices (see Appendix A for pricing details).
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Herein, we summarize a learning procedure, as described in Algorithm 1 below, where
the underlying price and the volatility vector are denoted by St := [S1,t, S2,t, . . . , Sl,t]

> and
σt := [σ1,t, σ2,t, . . . , σl,t]

>, while g denotes a payoff function of St. Given simulation the
sample paths generated by the multi-asset stochastic volatility models in (4), we provide a
Bermudan option pricing procedure involving the algorithm for estimating the continuation
values using neural networks. This algorithm operates to find MLP Φ as a continuation
value function satisfying Equation (8) in the previous section and gives the Bermudan
option price.

Algorithm 1. Bermudan option pricing with learning networks.

Require: Initiate paths S(j)
t , σ(j)

t , t = T0, T1, · · · , TN , j = 1, 2, · · · , M
1:Let p be the patience and Maxiter be the maximum number of epochs

2:Put V(j) ← g
(

S(j)
TN

)
for all j

3:for t from TN−1 to T1 do

4: Let X(j) ← S(j)
t ,σ(j)

t and V(j) ← e−rδt ·V(j) for all j
5: if t on exercisable periods then
6: Perform learning on X to obtain network Φt with Z to be V
7: i← 0
8: k← 0
9: while i < Maxiter do
10: Train Φt on X and V
11: if improved then
12: k← 0
13: else
14: k← k + 1
15: end if
16: if k == p then
17: Break
18: end if
19: i← i + 1
20: end while
21: Calculate the continuation value Φt

(
X(j)

)
for all j

22: for j from 1 to M do

23: if g
(

S(j)
t

)
> Φt

(
X(j)

)
then

24: V(j) ← g
(

S(j)
t

)
25: end if
26: end for
27: end if
28:end for
29:return mean of e−rδt ·V

Note This study does not use the selection technique, which performs regression using only the in-the-money

paths proposed by Longstaff and Schwartz (2001), for the purpose of constructing a versatile algorithm.

It is noted that one cycle of training with the complete training data is known as
an epoch and is repeated for learning purposes for each continuation value function in
Algorithm 1. In general, the larger the number of epochs, the better learning of the training
data. However, a large number of epochs usually requires a long computational time, even
with large computer resources, and sometimes leads to overfitting of the training data. To
prevent such situations, we introduce an early stopping rule for the learning procedure
given a specified integer p in Algorithm 1. Under the early stopping rule, the objective
function (3) is monitored for improvement, and the number of iterations (i.e., the number
of epochs) without improvement (compared with the previous epoch), denoted by k, are
counted. If this number reaches p, the iteration stops and the learning procedure of the
continuation value function terminates; otherwise, the iteration continues as long as the
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iteration index i is less than Maxiter, where Maxiter is the maximum number of epochs
specified at the beginning of Algorithm 1. Note that the introduction of the early stopping
rule not only decreases the computational time but also prevents overfitting/underfitting
for the MLP.

Based on the network configuration of the neural networks, the computational com-
plexity of Algorithm 1 is given by the number of iterations for parameter estimation of
the MLP. This number of iterations depends on the maximum number of epochs and
the number of exercisable dates, Maxiter and N − 1. Once these values are specified, the
maximum number of iterations is Maxiter × (N − 1), which is the total number of epochs
applied in Algorithm 1. In addition, the computational complexity of each epoch in the
MLP depends on the network configuration (see Serpen and Gao 2014).

To price the Bermudan commodity options using the continuation functions estimated
in Algorithm 1, we regenerate different sample paths from those used in the learning
procedure for computing the continuation values and Bermudan commodity option prices,
given the neural networks in Algorithm 1, i.e., we separate the learning and the valuation
procedures, and Algorithm 1 may be applied without learning (i.e., given the estimated
neural networks) for the valuation procedure. The merit of this resampling is that it avoids
a price bias, which results from overfitting using the same sample paths. Accordingly, this
study adopts the following procedure:

1. Generate the sample paths of the underlying assets for the MLP learning of Algorithm 1.
2. Find the MLP network parameters via learning in Algorithm 1 using the sample paths

in Step 1.
3. Given the estimated neural networks, regenerate a different set of sample paths and

apply Algorithm 1 (without learning) to compute the continuation values and the
initial prices of the Bermudan options.

4. Repeat Step 2 and calculate statistical values such as the mean and the standard
deviation of the Bermudan option prices.

In the above, it is key that learning and pricing (i.e., valuation) utilize the different
simulation sample paths set in Steps 1 and 3. Figure 2 shows a flowchart of the entire
procedure for learning and valuation.
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4. Numerical Experiments

The objective of this section is to execute numerical experiments based on the learning
and valuation procedure explained in the previous section and make comparisons of the
Bermudan option pricing between the MLP and the benchmark polynomial regression (i.e.,
the standard (naïve) LSMC method by Longstaff and Schwartz 2001).
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4.1. Problem Setting and Preliminary Experiment

Herein, we consider Bermudan commodity options with early-exercisable dates in
discretized periods until maturity T, i.e., 0 = T0 < T1 < . . . < TN = T, the payoffs of which
are given by g(St) when exercised. We define several settings for different dimensions
of Bermudan options, dl (i.e., the number of state variables in (5)), exercisable dates, and
payoff functions. We also introduce a constant volatility model as a one-dimensional
problem to perform a preliminary experiment.

For the exercisable dates of the Bermudan commodity options, we consider two cases
as depicted in Figure 3. One is a two-period problem, wherein the Bermudan commodity
option is issued at time T0 and can be exercised at T1 and maturity T2. The other is a
case with multiple exercisable dates, wherein we choose ten exercisable timings before
maturity. In both cases, the options can be exercised after a half-year period to compare the
continuation value surfaces at time T1 between different methodologies, and the values of
the options are evaluated at the initial time period, T0.
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Moreover, the payoff functions for Bermudan basket put options are given as

g(St) = max

(
K− 1

l ∑
i

Si,t, 0

)
. (9)

Then, an upper limit price D is introduced to the payoff function as

g(St) = min

(
max

(
K− 1

l ∑
i

Si,t, 0

)
, D

)
(10)

for Bermudan capped put options. Note that the upper limit, D, provides an additional
complexity of the payoff functions.

The parameters of the underlying assets and neural networks are set as shown in
Tables 1 and 2 below.

4.2. Low-Dimensional Case: Single-Asset Bermudan Options with Stochastic Volatility and
Constant Volatility

We begin with the simplest valuation based on Schwartz’s (1997) single-asset and
constant volatility model in, compared with the standard LSMC method using polynomial
regression and the finite difference method (FDM) detailed by Tavella and Randall (2000).
In the MLP, we applied Algorithm 1 for learning neural networks with Monte Carlo simu-
lations and then repeated the valuation procedure (using Algorithm 1 without learning)
100 times. The MLP in this experiment contains two hidden layers with sixty-four neurons
of sigmoid activate functions. In the standard LSMC method, we use a quintic function for
one-dimensional problems (i.e., dl = 1) and a multi-dimensional quadratic function for two
or more higher-dimensional problems (i.e., dl ≥ 2) and apply the same procedure (i.e., the
learning and valuation procedure). The FDM is based on the Crank–Nicolson scheme with
discretized 2000/200/50 grids in the time/asset/volatility directions.
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Table 1. Parameters of the underlying asset model with constant and stochastic volatility.

Parameter Constant Vol. (dl=1) Stochastic Vol. (dl≥2) 1

Spot rate (S0) 100.0
Strike rate (K) 105.0

Capped rate (D) 10.0
Time to maturity (T) [years] 1.0
Risk-free interest rate (r) [%] 6.0

Initial volatility ( σi,0) [%] 30.0
Long-run mean (µ) 4.8
Kappa of asset (κSi ) 0.3

Long-term volatility (
√

ϑi) [%] - 30.0
Correlation (ρSi , vi ) - −0.1

Corr. among assets (ρSi , Sj ) - 0.7 (1.0 i f i = j)
Corr. assets and vol. (ρSi , vj ) - −0.07

Corr. among vols. (ρvi , vj ) - 0.007 (1.0 i f i = j)
Kappa of vol. (κvi ) - 1.5

Vol. of vol. (ξi) - 0.2
Num. of paths (learning) 100,000

Num. of paths (valuation) 10,000
Sim. path timesteps (per yr.) 20

1 We applied Euler’s method as a discretized method.

Table 2. Neural networks’ learning parameters.

Learning Parameters Value

Num. of sim. paths (M) 100,000
Batch size 4096

Max. num. of epochs (Maxiter) 200
Train paths percentage 80%

Evaluation paths percentage 20%
Optimizer Adam 1

1 Learning optimizer Adam (Kingma and Ba 2014) hyperparameters are set to 0.01 for the learning rate, 0.9 for
beta1, 0.999 for beta2, and 1 × 10−7 for epsilon; training is completed when the loss does not improve even after
20 epochs, as early stopping. Randomized 20% of input paths are used in evaluations to avoid over-learning.

Table 3 compares the means and standard deviations of the option prices obtained
with the MLP and the standard LSMC methods. Considering the option price of the FDM
as a proxy for the value of the Bermudan commodity option price, we see that both the
MLP and the standard LSMC method almost achieve the Bermudan option price value,
i.e., the gap between the three prices is sufficiently small for this one-dimensional problem.
We implemented Algorithm 1 using the MLP and the standard LSMC on Python, using
a machine learning package based on TensorFlow (Abadi et al. 2015) and the Polynomi-
alFeatures toolbox of the scikit-learn library (Pedregosa et al. 2011). All our numerical
experiments were run using Google Colaboratory (Google 2022) with 36 GB of RAM and a
dual-core CPU of 2.3 GHz.

Table 3. Bermudan (capped) put option prices in single-asset constant volatility (dl = 1).

Bermudan Put Option (dn=1) Bermudan Capped Put Option (dn=1)

# of Ex. N = 2 N = 11 # of Ex. N = 2 N = 11

LSMC price Mean 11.474 11.786 LSMC price Mean 5.731 6.244
(St. dev.) (0.071) (0.069) (St. dev.) (0.027) (0.029)

MLP price Mean 11.471 11.812 MLP price Mean 5.729 6.320
(St. dev.) (0.069) (0.061) (St. dev.) (0.027) (0.031)

FDM price 11.415 11.808 FDM price 5.752 6.350
note FDM = finite difference method; LSMC = least-squares Monte Carlo; MLP = multi-layer perceptron.
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When considering a single-asset stochastic model, the corresponding Bermudan com-
modity option problem becomes two-dimensional, i.e., dl = 2, we can observe a slight
difference between the MLP and the LSMC methods, compared with the approximate
solution of the FDM, as shown in Table 4. First, we see that there is no significant difference
between the 3 cases for the Bermudan put option with exercisable dates N = 2. However,
the gap between the LSMC and FDM prices becomes slightly wider, compared with that
between the MLP and FDM prices with exercisable dates N = 11. For the Bermudan
capped put option, there is a slightly larger difference vis-à-vis the FDM price for both the
MLP and LSMC prices, whereas a slight improvement was achieved by using the MLP in
terms of the gap from the FDM price, as illustrated in the box plots in Figure 4.

Table 4. Bermudan (capped) put option prices in single-asset stochastic volatility (dl = 2).

Bermudan Put Option (dl=2) Bermudan Capped Put Option (dl=2)

# of Ex. N = 2 N = 11 # of Ex. N = 2 N = 11

LSMC price Mean 11.114 11.170 LSMC price Mean 5.489 5.985
(St. dev.) (0.139) (0.137) (St. dev.) (0.047) (0.043)

MLP price Mean 11.113 11.417 MLP price Mean 5.504 6.015
(St. dev.) (0.140) (0.133) (St. dev.) (0.047) (0.045)

FDM price 11.090 11.460 FDM price 5.541 6.070
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4.3. Higher-Dimensional Case: Multi-Asset Bermudan Options with Stochastic Volatility

In the case of higher-dimensional Bermudan commodity options with multi-asset
stochastic volatility (e.g., two asset problems with dl = 4), it is difficult (or unrealistic) to
obtain an approximate Bermudan option price with high accuracy using the FDM. Thus,
we compare option prices obtained with the MLP with the benchmark polynomials (i.e., the
standard LSMC method) only, where we set dl = 10, i.e., five-asset stochastic volatility, in
the numerical experiments. Then, we will discuss the source of the difference in view of the
continuation value functions for both methods in the next section. Additionally, we will
compare the accuracy of estimated continuation values by considering a two-asset problem
with dl = 4 and two exercisable dates N = 2.

Table 5 shows our numerical results, which compare the mean and standard deviation
between the LSMC and the MLP prices for N = 2 and N = 11, obtained via the learning
and valuation procedure described in Section 3. In the case of the Bermudan put option for
N = 2, we see that there is no significant difference between the two methods, as with the
case with a low-dimensional problem, dl = 2. However, the gap between the two increased
for the Bermudan capped put options and the case with N = 11, as shown in the box plots
in Figure 5. In other words, we see that the differences between the MLP and the LSMC are
emphasized by introducing additional complexity to the payoff function or by increasing
exercisable dates.
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Table 5. Bermudan (capped) put option prices in the five-asset (dl = 10) stochastic volatility model.

Bermudan Put Option (dl=10) Bermudan Capped Put Option (dl=10)

# of Ex. N = 2 N = 11 # of Ex. N = 2 N = 11

LSMC price Mean 9.712 9.803 LSMC price Mean 5.406 5.884
(St. dev.) (0.108) (0.105) (St. dev.) (0.043) (0.039)

MLP price Mean 9.712 9.888 MLP price Mean 5.414 5.904
(St. dev.) (0.103) (0.098) (St. dev.) (0.043) (0.040)
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Additionally, we demonstrated the same numerical experiments above but increased
the number of assets in the stochastic volatility model to 10 and 20 assets, respectively
(i.e., dl = 20 and dl = 40) and compared the estimated Bermudan commodity option
prices between the MLP and the LSMC. To observe the effects of increasing the number
of exercisable dates more clearly, we added N = 6 between N = 2 and N = 11 to obtain
the estimation values shown in Tables 6 and 7 (corresponding to the cases of dl = 20 and
dl = 40, respectively). Table 6 shows the means, the standard deviations, and the gaps
between the estimated prices for the Bermudan put options and Bermudan capped put
options with dl = 20, and Table 7 shows those with dl = 40.

Table 6. Bermudan (capped) put option prices in the 10-asset (dl = 20) stochastic volatility model.

Bermudan Put Option (dl=20) Bermudan Capped Put Option (dl=20)

# of Ex. N = 2 N = 6 N = 11 # of Ex. N = 2 N = 6 N = 11

LSMC price Mean 9.539 9.595 9.571 LSMC price Mean 5.359 5.747 5.848
(St. dev.) (0.120) (0.098) (0.097) (St. dev.) (0.036) (0.042) (0.041)

MLP price Mean 9.548 9.681 9.684 MLP price mean 5.376 5.765 5.851
(St. dev.) (0.112) (0.091) (0.095) (St. dev.) (0.035) (0.041) (0.041)

Difference
(MLP—LSMC) Mean 0.009 0.087 0.113 Difference

(MLP—LSMC) Mean 0.016 0.018 0.003

Table 7. Bermudan (capped) put option prices in the 20-asset (dl = 40) stochastic volatility model.

Bermudan Put Option (dl=40) Bermudan Capped Put Option (dl=40)

# of Ex. N = 2 N = 6 N = 11 # of Ex. N = 2 N = 6 N = 11

LSMC price Mean 9.338 9.4855 9.453 LSMC price Mean 5.362 5.728 5.828
(St. dev.) (0.112) (0.111) (0.111) (St. dev.) (0.048) (0.042) (0.037)

MLP price Mean 9.369 9.596 9.600 MLP price Mean 5.382 5.750 5.833
(St. dev.) (0.111) (0.105) (0.104) (St. dev.) (0.048) (0.040) (0.037)

Difference
(MLP—LSMC) Mean 0.031 0.111 0.147 Difference

(MLP—LSMC) Mean 0.020 0.022 0.005
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Similar to the previous cases, the gap between the MLP and LMSC increases for the
Bermudan put prices given a larger number of exercisable dates but decreases for the
Bermudan capped put options when N = 11 for both dl = 20 and dl = 40. It is possible
that the choice of regression function has a weaker effect for higher dimensional Bermudan
capped put options with a larger number of exercisable dates, i.e., the continuation value
functions of the capped put options may become flatter or smoother when the number
of exercisable dates increases and can be fitted with less sophisticated functions. This
phenomenon should be investigated in more detail in a future study.

4.4. Comparison of Continuation Value Surfaces

In the previous subsection, we observed that there are some differences between the
MLP and the LSMC regarding the estimated prices and that these differences were more
notable for Bermudan capped put options and/or increased exercisable dates. Herein, we
discuss the possible reason for this price difference by visualizing the continuation value
surfaces for both the MLP and the LSMC methods. For visualization purposes, we consider
single-asset Bermudan capped put options with stochastic volatility and constant volatility,
i.e., the low-dimensional cases with dl = 1 and dl = 2 introduced in Section 4.2.

The left-hand plot of Figure 6 illustrates the continuation value function estimated at
T1 in the one-dimensional Bermudan capped-put option problem (corresponding to the
single-asset constant volatility model) using the LSMC, whereas the right-hand plot shows
the problem using the MLP. We first observe that the continuation value function of the
MLP monotonically decreases with the underlying price, whereas the one obtained from
the LSMC method is a nonmonotonic function. Since the payoff function of the Bermudan
capped put option is piecewise linear and it monotonically decreases with the underlying
price, the monotonicity of the continuation value function is more consistent with the payoff
structure of the Bermudan capped-put option. In this sense, we see that the continuation
value function of the MLP reflects the monotonic property more appropriately than that of
the LSMC method in the one-dimensional single-asset problem.
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For the two-dimensional case with single-asset stochastic volatility for Bermudan
capped put options, the continuation value functions have three-dimensional surfaces, as
shown in Figure 7, wherein the left-hand and right-hand plots depict the continuation
values with respect to volatility and underlying asset price directions for the LSMC method
and the MLP, respectively. As in the one-dimensional problem, the payoff function is
piecewise linear with respect to the underlying asset price direction and is flat when the
underlying asset price exceeds the strike price K = 105 or is less than a certain value related
to the capped rate D = 10. Since continuation value functions are supposed to approximate
the payoff function at the maturity T2, given the information up to time T1, their surfaces
are expected to have similar shapes, i.e., continuation values are approximately zero or
close to the capped rate for larger or smaller values of the underlyings, respectively. In
view of this payoff structure for the Bermudan capped put options, the continuation value
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surface of the MLP seems to approximate the payoff function more accurately than that of
the LSMC.
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Remark 1. In general, the visualization of nonparametric methods provides an intuitive interpreta-
tion of the estimated functions. We have observed that “the continuation value function of the MLP
monotonically decreases with the underlying price, whereas the one obtained from the LSMC method
is a non-monotonic function,” and that “since the payoff function of the Bermudan capped-put
option is piecewise linear and it monotonically decreases with the underlying price, the monotonicity
of the continuation value function is more consistent with the payoff structure of the Bermudan
capped-put option,” as stated earlier in this section. Such a visualization helps in understanding
the valuation structure for the applied method in the middle of the process for Bermudan option
pricing, but the effect of the approximation error may be weakened in the total procedure. However,
we should be able to understand the approximation errors of estimated continuation value functions
intuitively in the middle of the process from such a visualization.

4.5. Comparison of Accuracy in Continuation Values

In the previous subsection, we observed that the continuation value surfaces of the
MLP may approximate the payoff functions more accurately than those of the LSMC by
visualizing the continuation value surfaces. To further investigate the estimated contin-
uation value surfaces in higher-dimension problems, we next measure the accuracy of
the continuation values using a four-dimensional problem of the Bermudan capped put
basket option with two exercisable dates (i.e., dl = 4 and N = 2) for both the MLP and the
LSMC method.

Consider a problem of estimating the continuation values at T1, as shown in Figure 8.
Since Bermudan options with exercisable dates N = 2 become simple European options if
not exercised at T1, the continuation values at T1 may be estimated via European option
prices expiring at T2, given the state variables at T1, i.e., XT1 =

[
S1,T1 , σ1,T1 , S2,T1 , σ2,T2

]>.
Therefore, we can calculate the accuracy of the estimated continuation values at T1 by mea-
suring the differences between the estimated continuation values and the European option
prices at T1 by specifying different state variables as input values of the European options.
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We first solved the Bermudan option problem with dl = 4 and N = 2 using the
same parameter settings as those in the previous subsections by applying the MLP and the
LSMC methods; subsequently, we calculated the continuation values at T1, given the state
variables specified in Table 8. Note that Table 8 defines the discretized domain of the state
variables, wherein each state variable is discretized in the interval between the minimum
and maximum values so that the number of grid points in 1 dimension becomes 24 + 1.
Then, the total number of grid points is given by 83,521 (= 174). Similarly, we applied the
standard Monte Carlo simulation to compute the European option price on each grid and
repeated this procedure 83,521 times to estimate the surface of the European option prices.
This surface of the European option prices may be considered to provide an approximation
of the theoretical continuation value (see notes in Table 8), and we can measure the accuracy
of the continuation values using the difference between the estimated continuation values
with the MLP and the LSMC methods and the simulation-based (theoretical) surface.

Table 8. State variables at T1. Each state variable is equally discretized into the number of points
from minimum up to maximum value.

Variable Minimum Maximum # of Points 1 Interval

S1,T1 25.0 175.0 24 + 1 9.375
σ1,T1 0.05 0.55 24 + 1 0.03125
S2,T1 25.0 175.0 24 + 1 9.375
σ2,T1 0.05 0.55 24 + 1 0.03125

1 The number of grid points with state variables at T1 are 83,521 (= 174) in total. The number of sample paths
generated for evaluating each European option in the standard Monte Carlo simulation is 10,000. The average
values of estimated European prices and standard errors are 4.997 and 0.027, respectively, indicating that the 95%
confidence interval is given by 4.997± 0.053 on average for the Monte Carlo simulations.

Additionally, we can change the number of hidden layers/neurons and the type of
activation function in the MLP to verify their effects on its accuracy. In this study, we
evaluate the size of accuracy in terms of the following normalized root-mean-squared error
(NRMSE) for each methodology:

NRMSE =
1√

I

√
∑I

i=1(pi − p̂i)
2

p̂max − p̂min
, (11)

where I is the total number of grid points (i.e., I = 83, 521), and pi and p̂i are the ith-
continuation value and the corresponding European option price on the same grid point.
In Equation (11), the root-mean-squared error is normalized by the difference between p̂min
and p̂max, which are the minimum and maximum values of European option prices over
the entire grid.

We computed the NRMSEs for different settings of neural networks in the case of
the MLP, as shown in Table 9, wherein we changed the number of hidden layers/neurons
and applied two types of activation functions, i.e., the ReLU and sigmoid functions. Note
that the NRMSE with the LSMC method is also computed, as shown in the bottom row of
the table, while Figure 9 compares the same NRMSE with respect to a different number
of neurons for 16, 32, and 128 using bar graphs. In Table 9, we first observe that the
MLP almost always provided better accuracy in terms of NRMSEs compared with the
LSMC. Second, when comparing the types of activation functions, the MLP with the
sigmoid function was always better than the MLP with the ReLU function for estimating
continuation value surfaces when the number of hidden layers/neurons was fixed. This
may be explained by the smoothness of the sigmoid function; the continuation value
functions are expected to be smooth with respect to the state variables and can be fitted via
smooth functions (e.g., the sigmoid function) better than non-smooth functions, such as
the ReLU function. Third, an increase in the number of hidden layers is effective for a few
hidden layers but does not necessarily improve the NRMSE when the number of hidden
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layers is three or larger for both MLPs with the ReLU and sigmoid functions. However, in
any case, we obtained better NRMSEs by using the MLP with the sigmoid function.

Table 9. NRMSE comparisons with continuation values at T1 by network settings of the MLP. It
differs by activation functions and the number of hidden layers/neurons.

NRMSE

# of Neurons 16 32 64 128 256

# of Hidden
Layers ReLU Sigmoid ReLU Sigmoid ReLU Sigmoid ReLU Sigmoid ReLU Sigmoid

1 0.266 0.075 0.262 0.099 0.198 0.160 0.244 0.162 0.160 0.211
2 0.176 0.101 0.145 0.078 0.161 0.081 0.154 0.073 0.311 0.100
3 0.215 0.083 0.246 0.072 0.126 0.097 0.157 0.083 0.271 0.085
4 0.128 0.115 0.225 0.098 0.172 0.079 0.124 0.059 0.184 0.082
5 0.137 0.097 0.132 0.100 0.169 0.090 0.132 0.127 0.154 0.076

LSMC 0.244
note NRMSE = normalized root-mean-squared error.
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5. Discussion of Robustness and Computational Costs

In this section, we discuss the robustness and computational costs of our experiment
for the pricing algorithm of multi-asset Bermudan commodity options using the MLP.

First, we discuss the learning adaptability of the MLP applied to our multi-asset
Bermudan commodity option problems with stochastic volatility. Figure 10 depicts changes
in the mean and standard deviation of learning rates with respect to the number of epochs
in the MLP. In this figure, we see that training and validation losses remain close, which
indicates no overfitting. Furthermore, the learning rate decreases rapidly until the number
of epochs is 10 and stays at sufficiently good levels thereafter.

Next, we estimated the computational costs of the learning and valuation procedure
when the problem dimension is increased. Table 10 compares the computational costs
with respect to the dimensions of dl = 2, 4, 8, 16, 32, 64, wherein the same numerical
experiment as that of the previous section was repeated 100 times and computed the mean
and standard deviation of the computational time for each algorithm. Furthermore, the
average numbers of epochs in learning are also computed in the MLP. Although the LSMC
generally performs much better in terms of computational costs when the dimension is
particularly low, its computational time grows exponentially in tandem with the size of the
dimension. This is because when using a polynomial regression in the LSMC, the number
of terms in the polynomial function increases combinatorially with the number of variables,
even though its maximum order is fixed.
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Table 10. Computational cost comparisons. Each algorithm’s computational time periods (seconds)
and their statistics by dimensions were calculated 100 times in the same option condition, as shown
in Figure 10. In the MLP, the average numbers of epochs in learning are also listed.

LSMC [Sec.] MLP [Sec.] 2

Dimensions Learning 1 Valuation Learning Valuation

(dl) Mean (St. Dev.) Mean (St. Dev.) Mean (St. Dev.) # of Epochs Mean (St. Dev.)

2 0.025 (0.002) 0.003 (0.003) 20.038 (3.599) 186.19 0.006 (0.002)
4 0.076 (0.019) 0.003 (0.001) 17.637 (4.403) 156.56 0.006 (0.002)
8 0.257 (0.064) 0.005 (0.001) 17.382 (5.089) 157.43 0.006 (0.001)
16 0.861 (0.083) 0.020 (0.004) 9.773 (7.707) 81.99 0.007 (0.002)
32 3.708 (0.334) 0.068 (0.020) 5.114 (2.829) 38.53 0.008 (0.002)
64 19.887 (2.842) 0.210 (0.018) 5.367 (1.468) 36.58 0.009 (0.002)

1 LSMC with a multi-dimensional quadratic function. 2 MLP with 2 hidden layers with 64 neurons of sigmoid
activation functions.

In contrast with the LSMC, the computational cost in the MLP is mostly unaffected
by the size of the dimension but is directly proportional to the average number of epochs
in learning. The computational cost of learning depends on how often the networks are
updated during training, but the computation cost per one cycle of training data (i.e., epoch)
remains the same when the size of the network is fixed. In the numerical experiments,
we applied two hidden layers with sixty-four neurons using sigmoid activation functions,
whereby the computational cost per epoch remained almost the same regardless of dimen-
sions; the computational time in learning is determined by the total number of epochs.
Although the computational cost per epoch slightly increases as the number of features
in the input layer increases by dimension, the average computational time decreases even
for large dimensions with the reduction in the average number of epochs due to the early
stopping rule. This is the benefit of introducing the early stopping rule in Algorithm 1,
which is particularly effective for higher-dimensional problems to avoid unnecessarily
increasing training iterations (and overfitting). Note that the average computational time
for both learning and valuation became smaller for the MLP than the LSMC when dl = 64.

6. Conclusions

In this study, we detailed the use of a neural network for pricing multi-asset Bermudan
option problems with stochastic volatility in commodity markets and illustrated its effective-
ness. First, we employed the MLP to estimate continuation values in the multi-dimensional
Bermudan commodity option problem, whereby we formulated the multi-asset stochastic



J. Risk Financial Manag. 2023, 16, 192 18 of 23

volatility model and generated Monte Carlo simulation sample paths for learning con-
tinuation value functions using the MLP. Then, in the applied algorithm, we introduced
early stopping into the learning of the MLP to avoid unnecessarily increasing training
iterations and overfitting. The early stopping rule was activated by counting the number
of epochs without improvement compared with the previous epoch. We also introduced
a resampling process, and a valuation procedure was applied for the estimated neural
networks by generating a different set of simulation sample paths. We executed numerical
experiments to evaluate the accuracy of the continuation values and the initial price of
the option using different settings of networks, problem dimension, and exercisable dates,
whereby two types of payoff functions for Bermudan commodity options were considered,
namely Bermudan put options and Bermudan capped put options. From our numerical
analysis, we clarified the following observations:

1. No significant difference was observed between the MLP and the standard LSMC
method when solving Bermudan put option problems with a few exercisable dates.
However, there was a slight difference for the Bermudan capped put options; this
difference was emphasized when the number of excisable dates increased. A similar
tendency was observed for higher-dimensional cases, but the gap narrowed between
the mean values of the two methods for Bermudan capped put options, as shown in
our additional numerical experiments.

2. While it turned out that the MLP was not much better than the standard LSMC from
the numerical experiments in Section 4.3 for high-dimensional cases, it is meaningful
to show how the accuracy and computational time can be achieved using the current
computational resources. In addition, we expect that the MLP has the potential
to achieve much better accuracy due to its generality and flexibility. Moreover, if
computational power is increased, the MLP should become more efficient since
computational effort grows slower than that of polynomial regressions in the standard
LSMC for higher-dimensional problems, as illustrated in the numerical experiments
in Section 5.

3. From the perspective that the continuation value function is expected to approximate
the payoff function (given state variables) one step before maturity, the shape of the
continuation values from the MLP reflected the structure of payoff functions more
accurately than the LSMC method.

4. Based on the fact that the continuation values of Bermudan options one step before
maturity can be computed as European option prices, we measured the accuracy
of the estimated continuation values and examined the effects of different network
configurations in the MLP, changing the number of hidden layers/neurons and the
choice of activation functions. We observed that the MLP almost always provided
better accuracy in terms of NRMSEs compared with the LSMC; furthermore, when
comparing the types of activation functions, the MLP with the sigmoid function was
always better than the MLP with the ReLU function for estimating continuation value
surfaces. An increase in the number of hidden layers was effective for a few network
layers but did not necessarily improve the accuracy when the number of hidden layers
was three or larger.

5. We computed the learning rate by epochs to show the learning adaptability of our
proposed algorithm using the MLP, which indicated no overfitting and achieved
sufficiently good levels of learning rates at approximately 10 epochs. Additionally,
we showed that although the LSMC generally performs significantly better in terms
of computational costs when the dimension is particularly low, its computational
time grows exponentially with the size of the dimension due to the combinatorial
characterization with respect to the number of terms in the polynomial functions.
Conversely, the computational costs of the MLP were mostly unaffected by the size of
the dimension or even decreased for large dimensions due to the introduction of the
early stopping rule.
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Essentially, the use of neural networks for option pricing has the advantage of recog-
nizing sizable input features and generating flexible output features in a unified framework.
Nevertheless, there are some drawbacks: high computational effort and resources are
required for learning networks, especially for exotic options, including the Bermudan com-
modity options considered in this study. Additionally, it is necessary to frequently re-learn
the networks in response to market conditions. However, we observed that the neural
network approach using the MLP reached an appropriate level of learning rates at around
10 epochs, even in high-dimensional cases, as illustrated in our numerical experiments.
Therefore, this approach is expected to reduce learning costs if network configurations are
developed appropriately.

Although this study chose a relatively simple structure of multi-layered networks,
there are other types of network structures such as a recursive structure and unsupervised
learning, as discussed in various fields, including pattern recognition and time-series
prediction. In finance, although some examples of recursive neural networks for time-series
analyses exist, to the best of our knowledge, their use for option pricing has not been
considered sufficiently. Moreover, it is important to use empirical data and demonstrate
the practicability and applications for risk management in actual commodity market
businesses. Such further investigation is interesting and could be considered potential
topics for future study.
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Appendix A. Recursive Formulation for a Bermudan Option Pricing Problem

Given a complete filtered probability space (Ω, F , (Ft)0≤t≤T , P) with a finite time
horizon T > 0, we assume that a set of underlying assets is modeled using a multifactored
process (Xt)0≤t≤T adapted to the filtration, (Ft)0≤t≤T , and that P is an associated risk-
neutral measure. We consider a Bermudan option with exercise dates 0 = T0 ≤ T1 < T2 <
. . . < TN = T and discrete-time payoff process PTn if exercised at times (Tn)0≤n≤N , where
PTn is specified as a function of XTn .

In the Bermudan option, the continuation and exercise values are compared at each
exercisable period, while the option is exercised if the exercise value is higher. Therefore,
Bermudan option value VTn is computed using the following recursive equation:{

VTN = PTN

VTn−1 = max
(

PTn−1 , e−rδTnE
[
VTn

∣∣FTn−1

])
, 1 ≤ n ≤ N

. (A1)

In the risk-neutral measure, the conditional expected value of the risk-neutral probability
measure P̃ with the risk-free interest rate r and the interval between Tn−1 and Tn as δTn ,
based on the filtration FTn−1 up to time Tn−1, indicates the continuation value UTn−1 as

UTn−1 = e−rδTn Ẽ
[
VTn

∣∣FTn−1

]
. (A2)
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Bermudan option value VTn−1 at time Tn−1 is sequentially calculated backward when the
continuation value UTn−1 is identified. The key is estimating the continuation value as
a function that consists of underlying multivariate risk factors. Since underlying assets
consist of a multi-dimensional Markov process, the continuation value function can be
expressed as the multi-dimensional nonlinear function with the Markov process state
variables XTn−1 ,

Ẽ
[
VTn

∣∣FTn−1

]
= Ẽ

[
VTn

∣∣XTn−1

]
. (A3)

Furthermore, from the definition of the conditional expectation, there is a measurable
function hTn−1 that satisfies the following equation:

hTn−1

(
XTn−1

)
= e−rδTn Ẽ

[
VTn

∣∣XTn−1

]
. (A4)

For the approximation of a function hTn−1

(
XTn−1

)
, we can consider ΦTn−1

(
xTn−1

)
as

the approximation function at time Tn−1,

hTn−1

(
XTn−1

)
≈ ΦTn−1

(
XTn−1

)
. (A5)

After that, the price at time t = 0 is calculated by following recursive backward
procedures using the relationship VTn and VTn−1 . At maturity TN(= T), the continuation
value of the Bermudan option is UT ≡ 0. Therefore, the Bermudan option’s value at
maturity TN is:

VTN = PTN . (A6)

By (A4), the continuation value UTN−1 at time TN−1 is expressed as

UTN−1 = hTN−1

(
XTN−1

)
≈ ΦTN−1

(
XTN−1

)
. (A7)

The Bermudan option value at time TN−1 is expressed as

VTN−1 := max
(

PTN−1 , ΦTN−1

(
XTN−1

))
. (A8)

We can obtain Bermudan option value VT0 by adapting (A7) and (A8) backward,
recursively, each time step to n = 1. In multi-asset Bermudan option pricing, Monte Carlo
simulations are generally used because other numerical methods become exponentially
more difficult in higher-dimensional cases. By simulating a large number of paths, we can
use the average of the prices obtained from each path as an estimator of the price as

VT0 =
1
M

M

∑
j=1

V(j)
T0

, (A9)

where M is the number of simulated paths.
From the above, the prices of the Bermudan options can be obtained by finding the

approximate functions of the continuation value functions at each exercisable period.

Appendix B. Least-Squares Monte Carlo Method

The least-squares Monte Carlo (LSMC) method, proposed by Longstaff and Schwartz
(2001), is a method of early-exercisable option pricing in which regression calculation uses
simulation sample paths. In the LSMC method, a polynomial function of the Markov
process state variables is applied to identify the continuation values. The following is an
algorithm for Bermudan option pricing using the LSMC method.

Step 0. Generate Monte Carlo sample paths of the underlying asset prices and state vari-

ables. We denote the underlying asset prices at time t in the j-th sample path as S(j)
t
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and the Markov process state variables as x(j)
t . Subsequently, we obtain the series

of paths as

S(1)
T1

, S(1)
T2

, . . . , S(1)
TN

S(2)
T1

, S(2)
T2

, . . . , S(2)
TN

...
...

...
...

S(M)
T1

, S(M)
T2

, . . . , S(M)
TN

,

x(1)T1
, x(1)T2

, . . . , x(1)TN

x(2)T1
, x(2)T2

, . . . , x(2)TN
...

...
...

...
x(M)

T1
, x(M)

T2
, . . . , x(M)

TN

. (A10)

Step 1. Calculate the series of Bermudan option values at maturity TN(= T), as follows:

VTN :=
[

g
(

S(1)
TN

)
, g
(

S(2)
TN

)
, . . . , g

(
S(M)

TN

)]>
, (A11)

where g denotes a payoff function of St.
Step 2. Find a polynomial function that approximates the continuation values. Herein, we

denote a polynomial function as ĥTN−1 and a measurable function in (A4) as hTN−1 .
Then,

hTN−1

(
xTN−1

)
≈ ĥTN−1

(
xTN−1

)
. (A12)

Additionally, ĥT−1 is sought to minimize the following equation:

1
M

M

∑
i=1

(
ĥTN−1

(
xTN−1

)
− e−rδTN VTN

)2
. (A13)

Step 3. Calculate the approximated continuation values. Let hTN−1 ≡ ĥTN−1 and set the
series of approximated continuation values at TN−1 as[

ĥTN−1

(
x(1)TN−1

)
, ĥTN−1

(
x(2)TN−1

)
, . . . , . . . , ĥTN−1

(
x(M)

TN−1

)]>
. (A14)

Step 4. Calculate the exercised values and Bermudan option values. The series of exercise
values at TN−1 using underlying asset prices (A10) is[

g
(

S(1)
TN−1

)
, g
(

S(2)
TN−1

)
, . . . , g

(
S(M)

TN−1

)]>
. (A15)

Then, the series of Bermudan option values VTN−1 at time TN−1 is obtained as[
VTN−1

(
S(1)

TN−1
, x(1)TN−1

)
, VTN−1

(
S(2)

TN−1
, x(2)TN−1

)
, . . . , . . . , VTN−1

(
S(M)

TN−1
, x(M)

TN−1

)]>
, (A16)

where

VTN−1

(
S(j)

TN−1
, x(j)

TN−1

)
:= max

(
g
(

S(j)
TN−1

)
, hTN−1

(
x(j)

TN−1

))
, j = 1, . . . , M, (A17)

Step 5. Repeat Step 2 to Step 4 for possible exercise times TN−1, TN−2, . . . , until time T0. A
series of Bermudan option values VT0 at time T0 are obtained by repeating Step 2
to Step 4 backward to time T0.

Step 6. Calculate the Bermudan option price VT0 . Equation (A9) gives the Bermudan option
price VT0 at time T0.

Using this approach, we calculated the Bermudan option price using the continuation
values from the polynomial function at each exercisable time. The main point of the pricing
procedure in the LSMC method is that the polynomial function is defined to approximate
the continuation values at each exercisable time point.
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