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Abstract: With the continuous advancement of machine learning and the increasing availability of
internet-based information, there is a belief that these approaches and datasets enhance the accuracy
of price prediction. However, this study aims to investigate the validity of this claim. The study
examines the effectiveness of a large dataset and sophisticated methodologies in forecasting foreign
exchange rates (FX) and commodity prices. Specifically, we employ sentiment analysis to construct a
robust sentiment index and explore whether combining sentiment analysis with machine learning
surpasses the performance of a large dataset when predicting FX and commodity prices. Additionally,
we apply machine learning methodologies such as random forest (RF), eXtreme gradient boosting
(XGB), and long short-term memory (LSTM), alongside the classical statistical model autoregressive
integrated moving average (ARIMA), to forecast these prices and compare the models’ performance.
Based on the results, we propose novel methodologies that integrate wavelet transformation with
classical ARIMA and machine learning techniques (seasonal-decomposition-ARIMA-LSTM, wavelet-
ARIMA-LSTM, wavelet-ARIMA-RF, wavelet-ARIMA-XGB). We apply this analysis procedure to the
commodity gold futures prices and the euro foreign exchange rates against the US dollar.

Keywords: hybrid forecasting approaches; two-step forecasting approaches; gold; euro; sentiment
analysis; machine learning; ARIMA; wavelet transformation; seasonal decomposition; long short-term
memory; random forest; eXtreme gradient boosting

1. Introduction

The increasing utilization of sentiment analysis (SA) for obtaining a sentiment index
holds promise as an approach for predicting commodity prices and foreign exchange rates.
By analyzing unstructured data such as social media posts, news articles, and other textual
data, SA provides insights into public opinions and market sentiment, enabling price
prediction (Smailović et al. 2013). Utilizing a sentiment index, rather than relying on a
large dataset of indicators, offers several advantages, including simplifying the modeling
process and reducing the risk of overfitting. SA also offers a more up-to-date perspective
on market sentiment, as it captures real-time changes in public opinion and market sen-
timent (Philander and Zhong 2016). However, while a sentiment index proves valuable
in predicting short-term fluctuations (Qiu et al. 2022) in commodity and foreign exchange
markets, long-term trends in these markets are more significantly influenced by factors such
as macroeconomic indicators and political events. Hence, while SA presents a promising
approach to prediction, we must also consider its limitations and potential biases and
supplement SA with other relevant data sources and indicators.

Meanwhile, research has demonstrated that advancements in machine learning and
the availability of more data enhance the accuracy of price prediction in certain cases (Bakay
and Ağbulut 2021; Bouktif et al. 2018; Wang and Wang 2016; Amat et al. 2018; Chatzis et al.
2018; Farsi et al. 2021; Zhang and Hamori 2020; Plakandaras et al. 2015; Luo et al. 2019;

J. Risk Financial Manag. 2023, 16, 298. https://doi.org/10.3390/jrfm16060298 https://www.mdpi.com/journal/jrfm

https://doi.org/10.3390/jrfm16060298
https://doi.org/10.3390/jrfm16060298
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com
https://orcid.org/0000-0003-1498-0188
https://doi.org/10.3390/jrfm16060298
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com/article/10.3390/jrfm16060298?type=check_update&version=1


J. Risk Financial Manag. 2023, 16, 298 2 of 25

McNally et al. 2018; Phyo et al. 2022; Nguyen and Ślepaczuk 2022). These technologies aid
in identifying patterns and correlations within large and complex datasets that may prove
challenging for human analysts to discern. However, employing large datasets and machine
learning algorithms does not guarantee accuracy as these techniques are susceptible to
biases, overfitting, and the appropriateness of the model design. In certain scenarios, simple
models may outperform more sophisticated ones (He 2018), particularly when limited data
are available or the underlying relationships are straightforward. Decision making and risk
management may, at times, derive greater benefit from simple models based on relevant
facts and hypotheses.

Recent research has garnered significant interest from academics and practitioners due
to the emergence of hybrid techniques that combine classical models with machine learning
models. Hybrid prediction models have been utilized in various research fields, including
meteorology, hydraulics, and exhaust emissions, for forecasting purposes (Chang et al.
2019; Liu et al. 2018; de O. Santos Júnior et al. 2019; McNally et al. 2018; Sadefo Kamdem
et al. 2020; Selvin et al. 2017; Xue et al. 2022; Sun et al. 2022; Wu et al. 2021; Wu and Wang
2022; Yu et al. 2020; Zhang et al. 2018, 2022; Zolfaghari and Gholami 2021; Ma et al. 2019;
Dave et al. 2021; Zhao et al. 2022; Moustafa and Khodairy 2023; Zolfaghari and Gholami
2021). This study proposes several approaches that integrate machine and deep learning
models with conventional statistical models, based on the assumption that time series can
be decomposed into linear and nonlinear components or into time-dependent sums of
frequency components and noise.

Hence, the primary objectives of this research are as follows: First, to analyze whether
sentiment indicators derived from sentiment analysis techniques can outperform a large
dataset of indicators when employing machine learning and deep learning methods for
prediction. Second, to verify whether machine learning models, which have gained con-
siderable attention, genuinely exhibit better prediction capabilities than classical ARIMA
models. Third, to apply our proposed hybrid model to commodity gold futures prices and
foreign exchange rates, evaluate their prediction performance, and compare them with the
aforementioned machine learning and classical statistical approaches.

This study is divided into three steps. In the first step, we perform sentiment analysis
on the collected unstructured news headlines to obtain a sentiment index (referred to as
the SI dataset). Then, we calculate technical indicators and collect other relevant indicators
from stock markets, bond markets, commodity markets, and foreign exchange markets
to create a multivariate dataset (referred to as the large dataset). In the second step, we
apply moving window machine learning approaches (RF, XGB, and LSTM) and a classical
statistical model (ARIMA) to these two datasets to evaluate their prediction performance
using the root mean squared error (RMSE), mean absolute percentage error (MAPE), and
mean absolute error (MAE). In the third step, we propose several decompositions and
transformations integrated with statistical and machine learning approaches, such as
seasonal-decomposition-ARIMA-LSTM, wavelet-ARIMA-LSTM, wavelet-ARIMA-RF, and
wavelet-ARIMA-XGB. Specifically, we first transform and decompose the time series into
linear and nonlinear parts or dynamic levels and noise parts. Then, we apply classical
ARIMA to predict the linear and dynamic levels and use RF, XGB, and LSTM machine/deep
learning approaches to predict the nonlinear and noise parts. We evaluate our proposed
approaches using RMSE, MAPE, and MAE and compare the prediction results with the
aforementioned forecasting. Additionally, we perform walk-forward testing to validate the
effectiveness of the triple-combination approaches. To assess any statistically significant
differences between our proposed approach and the ARIMA model, we utilize the modified
Diebold–Mariano test statistic. This comprehensive testing methodology provides further
insights into the performance and comparative analysis of the proposed approaches.

The main findings of this study are as follows: First, the combination of the sentiment
indicator with the moving window LSTM machine learning model demonstrates outstand-
ing forecasting performance. Second, the sentiment indicator dataset used in conjunction
with the moving window machine learning and deep learning models does not surpass
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the performance of the traditional ARIMA model. Third, our proposed triple-combination
approaches exhibit superior prediction performance compared to either the machine learn-
ing models or the ARIMA model when forecasting commodity gold futures prices and
euro foreign exchange rates. Lastly, although the sentiment indicator dataset does not
outperform the prediction accuracy of the ARIMA model, our empirical results indicate
that the sentiment dataset is more accurate in predicting commodity prices and foreign
exchange rates than the large dataset, which comprises various indicators.

To the best of our knowledge, this study is the first to investigate whether sentiment
indicators can replace a large dataset of indicators in forecasting commodity prices and
foreign exchange rates. Moreover, this study introduces a novel approach by combining
data decomposition with machine learning models and classical statistical models to predict
prices in commodity and foreign exchange markets. Additionally, the proposed triple-
combination approaches demonstrate higher accuracy compared to the individual models.
These findings offer new insights and potential predictors for investors and policymakers.

The rest of this paper is organized as follows: Section 2 reviews the literature. Section 3
provides a detailed description of the study’s data, methodologies, and evaluation measures.
Section 4 presents and analyzes the empirical results. Finally, Section 5 concludes the study.

2. Literature Review

A wide range of valuable Internet data, particularly textual data such as news press
releases, are being evaluated for forecasting purposes in various fields, thanks to the
rapid expansion of the Internet and advancements in big data technologies. Consequently,
researchers are actively working on improving sentiment analysis (SA) predictions and
exploring the potential of SA to enhance time series forecasting performance in different
markets (Bollen et al. 2011; Naeem et al. 2021; Deeney et al. 2015; Li et al. 2016; Das et al.
2018; Pai and Liu 2018; Razzaq et al. 2019; Bedi and Khurana 2019; Ito et al. 2019, 2020; Sivri
et al. 2022; Seals and Price 2020; Xiang et al. 2021; Guo et al. 2020; Sharma et al. 2020; Mukta
et al. 2022).

The contribution of Bedi and Khurana (2019) is focused on improving SA prediction
for textual data by incorporating fuzziness with deep learning. Ito et al. (2019) and
Ito et al. (2020) propose a novel neural network model called the contextual sentiment
neural network (CSNN) model, which offers insights into the SA prediction process and
utilizes an initialization propagation (IP) learning strategy. Leveraging SA on Twitter
tweets, Naeem et al. (2021) suggest a machine learning-based strategy for forecasting
exchange rates. Their findings demonstrate that SA can facilitate the prediction of foreign
exchange rates, particularly the US dollar against the Pakistani rupee. Li et al. (2016)
acknowledge the usefulness of online data, including news releases and social media
networks such as Twitter, in forecasting price changes. Xiang et al. (2021) propose a Chinese
Weibo SA algorithm that combines the BERT (Bidirectional Encoder Representations from
Transformers) model and the Hawkes process to effectively monitor changes in users’
emotional states and perform SA on Weibo. However, limited studies have examined
whether sentiment indicators can replace large sets of index data for forex prediction.
If sentiment indicators can effectively replace a substantial amount of index datasets
and achieve comparable or better forecasting performance, it could significantly enhance
forecasting efficiency and provide valuable insights to investors and decision-makers.

Moreover, in recently published research, the use of rapidly developing machine and
deep learning modeling techniques for forecasting time series is one of the most extensively
researched topics in the academic literature (Bakay and Ağbulut 2021; Bouktif et al. 2018;
Wang and Wang 2016; Amat et al. 2018; Chatzis et al. 2018; Farsi et al. 2021; Zhang and
Hamori 2020; Plakandaras et al. 2015; Luo et al. 2019; McNally et al. 2018; Phyo et al. 2022).
Specifically, Amat et al. (2018) demonstrate that fundamentals from simple exchange rate
models (such as purchasing power parity (PPP) or uncovered interest rate parity (UIRP)) or
Taylor-rule-based models improve exchange rate forecasts for major currencies when using
machine learning models. Similarly, Zhang and Hamori (2020) find that integrating machine
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learning models with traditional foreign exchange rate models and Taylor’s rule foreign
exchange rate models effectively predict foreign exchange rates. Phyo et al. (2022) train five
of the best ML algorithms, including the extra trees regressor (ETR), random forest regressor
(RFR), light gradient boosting machine (LGBM), gradient boosting regressor (GBR), and K
neighbors regressor (KNN), to build the proposed voting regressor (VR) model. Li et al.
(2020) propose a new dynamic ensemble forecasting system based on a multi-objective
intelligent optimization algorithm to forecast the air quality index, which includes time-
varying parameter weights and three main modules: a data preprocessing module, a
dynamic integration forecasting module, and a system evaluation module. Plakandaras
et al. (2015) predict daily and monthly exchange rates using machine learning techniques.
Building on these empirical results, this paper considers the application of machine learning
and deep learning methodologies to investigate whether sentiment indicator datasets can
substitute for large datasets.

On the other hand, as a classical statistical model, ARIMA is used for long-term
prediction (Darley et al. 2021). Many studies compare ARIMA and machine learning in
forecasting time series (Shih and Rajendran 2019; Siami-Namini et al. 2018, 2019; He 2018;
Yamak et al. 2019; Ribeiro et al. 2020; Liu et al. 2021). Siami-Namini et al. (2018) compare
the ARIMA model with the LSTM model in forecasting time series and demonstrate that
deep learning approaches such as LSTM outperform traditional models such as ARIMA. In
contrast, He (2018) explores weekly crude oil price data from the U.S. Energy Information
Administration between 2009 and 2017 to test the forecasting accuracy of time series models
(simple exponential smoothing (SES), moving average (MA), and autoregressive integrated
moving average (ARIMA)) against machine learning support vector regression (SVR)
models. The main contribution of this study is to determine whether ARIMA provides more
accurate forecasting results for crude oil prices than SVR models. Siami-Namini et al. (2019)
conduct a behavioral analysis and comparison of BiLSTM and LSTM models and compare
the two models with the ARIMA model. The results demonstrate that BiLSTM models
provide better predictions compared to ARIMA and LSTM models. Yamak et al. (2019)
conduct a comparison analysis between ARIMA, LSTM, and gated recurrent unit (GRU)
for time series forecasting. Ribeiro et al. (2020) compare two benchmarks (autoregressive
integrated moving average (ARIMA) and an existing manual technique used at the case site)
against three deep learning models (simple recurrent neural networks (RNN), long short-
term memory (LSTM), and gated recurrent unit (GRU)) and two machine learning models
(support vector regression (SVR) and random forest (RF)) for short-term load forecasting
(STLF) using data from a Brazilian thermoplastic resin manufacturing plant. Their empirical
results show that the GRU model outperforms all other models. Liu et al. (2021) propose
a seasonal autoregressive integrated moving average (SARIMA) model to predict hourly
measured wind speeds in the coastal and offshore areas of Scotland. Motivated by the
results of the prior literature and considering the limited literature comparing ARIMA
models with machine learning and deep learning models for predicting gold prices and
Euro FX prices, this study aims to fill this gap in the literature.

Since we are unable to demonstrate that machine learning and deep learning tech-
niques outperform the traditional ARIMA model, we aim to enhance the accuracy of
commodity price and foreign exchange rate predictions. In our literature research, we dis-
cover numerous studies in various fields, such as astronomy, hydraulics, exhaust emissions,
and meteorology, that employ a combination of traditional models and other techniques
such as machine learning, deep learning methodologies, and two-step models, which
involve preprocessing the data before predicting time series. Some relevant studies include
Chang et al. (2019), Liu et al. (2018), de O. Santos Júnior et al. (2019), McNally et al. (2018),
Sadefo Sadefo Kamdem et al. (2020), Selvin et al. (2017), Xue et al. (2022), Sun et al. (2022),
Wu et al. (2021), Wu and Wang (2022), Yu et al. (2020), Zhang et al. (2018, 2022), Zolfaghari
and Gholami (2021), Ma et al. (2019), Dave et al. (2021), Zhao et al. (2022), Moustafa and
Khodairy (2023), and Zolfaghari and Gholami (2021).
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To enhance prognostic accuracy, Ma et al. (2019) propose a data-fusion approach
that combines long short-term memory (LSTM), recurrent neural network (RNN), and
the autoregressive integrated moving average (ARIMA) method to forecast fuel cell per-
formance. Chang et al. (2019) present an electricity price-prediction model based on a
hybrid of the LSTM neural network and wavelet transform. Liu et al. (2018) attempt to
forecast wind speed using a deep learning strategy with wavelet transform. Dave et al.
(2021) aim to provide accurate predictions of Indonesia’s future exports by developing an
integrated machine learning model with ARIMA. Zhou et al. (2022) propose a combined
model based on complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN), four deep learning (DL) models, and the autoregressive integrated moving
average (ARIMA) model. Zhao et al. (2022) address the lack of using coupled models
to separately model different frequency subseries of precipitation series for prediction
and propose a coupled model based on ensemble empirical mode decomposition (EEMD),
long short-term memory neural network (LSTM), and autoregressive integrated moving
average (ARIMA) for month-by-month precipitation prediction. Moustafa and Khodairy
(2023) implement four models, including long short-term memory (LSTM), autoregressive
integrated moving average (ARIMA), seasonal autoregressive integrated moving average
(SARIMA), and a hybrid model, to forecast the maximum sunspot number of cycles 25
and 26. Zolfaghari and Gholami (2021) employ a hybrid model that combines adaptive
wavelet transform (AWT), long short-term memory (LSTM), and models from the ARIMAX-
GARCH family to forecast stock indices for the Dow Jones Industrial Average (DJIA) and
the Nasdaq Composite (IXIC). Chen and Wang (2019) integrate the LSTM and ARIMA
models for predicting satellite time series data. Inspired by these studies, this investigation
aims to propose hybrid approaches applicable to time series forecasting in commodity
markets and foreign exchange markets.

To summarize, researchers have dedicated significant efforts to enhancing the accuracy
of price prediction by utilizing machine learning techniques and internet-based information.
The increasing availability of data sources, particularly textual data such as news articles,
and advancements in big data technologies have led to the evaluation of various datasets
for forecasting in different domains. However, in the context of time series forecasting
in commodity and foreign exchange markets, there is a lack of literature that thoroughly
compares the effectiveness of sentiment indicator datasets with large datasets containing
diverse variables. Additionally, the recent academic literature extensively explores the
application of rapidly evolving machine learning and deep learning modeling techniques
for time series forecasting. Nevertheless, further investigation is required to determine
whether machine learning and deep learning models outperform classical statistical meth-
ods, such as the ARIMA model, which have long been used for forecasting purposes in the
commodity and foreign exchange markets. Therefore, in our study, we focus on improving
forecasting accuracy by combining traditional models with other methods, including ma-
chine learning, deep learning techniques, and two-step models. We draw inspiration from
previous studies conducted in fields such as astronomy, hydraulics, exhaust emissions, and
meteorology, which have employed time series forecasting in their respective domains.

3. Data and Methodology
3.1. Data
3.1.1. Data Collection

Gold prices are widely regarded as a leading indicator of economic conditions, par-
ticularly inflation and market volatility, making it an extremely important commodity
(Blose 2010; Livieris et al. 2020). As a result, gold is a popular investment asset (Ratner and
Klein 2008) and is commonly used as a hedge against inflation and market volatility (Chua
and Woodward 1982). Predicting gold prices can provide valuable insights for economic
forecasts and assist policymakers and investors in making informed decisions (Raza et al.
2018). Additionally, many central banks maintain gold reserves as a means of preserving
value and protecting against currency fluctuations (Aizenman and Inoue 2013).
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On the other hand, foreign exchange rates have been utilized as leading indicators
of economic growth and inflation (Razzaque et al. 2017). The foreign exchange market
plays a crucial role in international trade (Latief and Lefen 2018), financial instrument
settlement, inflation control, and overall economic development and currency stability.
Accurate predictions of foreign exchange rates are essential for businesses and investors
to develop effective hedging strategies that mitigate risks associated with currency fluctu-
ations. Moreover, such predictions inform government policy decisions related to trade,
monetary policy, and capital flows (Amato et al. 2005; Mussa 1976). Governments can use
exchange rate predictions to anticipate the impacts of policy decisions on the economy and
make necessary adjustments. It is also worth noting that the euro is the second-most traded
currency globally, following the US dollar, and is extensively used by numerous European
Union members. Given the widespread usage of the euro in international trade and its
status as a major reserve currency, exchange rate fluctuations can significantly influence
the costs and risks associated with international transactions. Therefore, forecasting euro
exchange rates is vital for financial stability and effective hedging strategies. Consequently,
this study selected gold futures prices from the commodity market and the EUR foreign
exchange rate as the objects of forecasting.

Based on the concept of proposing a powerful alternative sentiment indicator to replace
large datasets, this study applies sentiment analysis to unstructured data extracted from
news headlines. The prediction objects selected for this study are gold futures prices and
the euro exchange rate against the US dollar, sourced from invest.com. After preprocessing
the dataset, a total of 3957 daily data points were obtained, covering the period from 3
February 2004 to December 2019. The prediction conducted in this study is one-day-ahead
forecasting.

The large dataset used in this study consists of 22 different financial indicators obtained
from various sources such as Bloomberg, Thomson Reuters Datastream, the Federal Reserve
Bank, Investing.com, Yahoo! Finance, and Macrotrends. Specifically, the large dataset
includes the stock market index, 10-year government bond yields, volatility indices, and
significant commodity market indices such as oil, gas, corn, and wheat. Additionally,
it incorporates 10 calculated technical indices, including moving averages, exponential
weighted moving averages, Bollinger bands, moving average convergence divergence, and
the relative strength index.

3.1.2. Sentiment Analysis and Sentiment Indicator

In this study, we conduct sentiment analysis to obtain a sentiment indicator as an
input variable.

First, we utilize unstructured daily news headline text data from 19 February 2003 to
31 December 2020. The data consist of 1,226,258 news headlines collected from a reputable
news source, the Australian Broadcasting Corporation (ABC). The news headline data are
sourced from Harvard Dataverse, which was created by Kulkarni (2018). According to
the authors’ notes, “with a volume of two hundred articles each day and a good focus
on international news, we can be fairly certain that every event of significance has been
captured here”.

For sentiment analysis on daily news headlines, we employ a Python natural language
processing library called TextBlob. TextBlob is chosen for its ability to provide rules-
based sentiment scores and assign polarity and subjectivity to words and phrases. These
scores are derived from a pre-defined set of categorized words readily available from the
Natural Language Toolkit (NLTK) database (Vijayarani and Janani 2016). The input data for
sentiment analysis typically consist of a corpus, such as a collection of text documents. The
output of sentiment analysis includes a sentiment polarity score (indicating positivity or
negativity) and a subjectivity score (measuring opinionated-ness). The polarity score ranges
from −1.0 to 1.0, where −1.0 represents strong negativity and 1.0 represents high positivity.
The subjectivity score ranges from 0.0 to 1.0, where 0.0 denotes extreme objectivity or
factual content, while 1.0 signifies high subjectivity.

Investing.com
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The sentiment analysis procedure is described as follows:

• Firstly, the NLTK is used to clean the unstructured text data.
• Secondly, TextBlob is applied to classify the polarity and subjectivity of each news

headline.
• Thirdly, the total number of subjective, objective, negative, positive, and neutral news

headlines is counted for each day, and then divided by the total number of news
headlines on that day.

• Fourthly, the sentiment analysis output data are obtained, which includes the percent-
age values for subjectivity, objectivity, negativity, neutrality, and positivity for each
day.

• Finally, following Henry’s finance-specific dictionary (Henry and Leone 2016), the
sentiment can be evaluated using the formula below:

SIt =
Np(Ht)− Nn(Ht)

Np(Ht) + Nn(Ht)
(1)

where Ht represents the collected news article headlines at time t, Np represents
the total number of positive news headlines in Ht, Nn represents the total number
of negative news headlines in Ht, and SIt represents the corresponding sentiment
indicator.

The sentiment indicator represents the percentage difference between the number of
positive and negative news articles.

3.1.3. Sentiment Indicator Dataset and Large Indicator Dataset

After data processing, we obtain 3957 daily data points that contain 32 explanatory
variables, covering a 15-year period from 3 February 2004 to 16 December 2019. The
descriptions and sources of the data are elaborated in Table A1 of the Appendix A.

In this study, we use 85% of the daily data (3363 days) to train various models based
on RF, XGBoost, and LSTM models. We then validate the remaining data (594 days) to
conduct out-of-sample forecasting. Figure 1 illustrates the raw data of the gold futures
prices, Figure 2 presents the prices of the euro rates multiplied by 100, and Figure 3 presents
the calculated sentiment index based on the results of sentiment analysis. The dashed
vertical line (14 July 2017) denotes the separation between the training and test data.
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To test the hypothesis that the sentiment indicator can be a substitute for the large
datasets of indicators in exchange rate prediction, we construct two datasets to evaluate
the effectiveness of the sentiment indicator and compare their predictive performance.
Detailed information regarding these variables is provided in Table 1.

Table 1. Datasets used to predict gold futures prices and the euro exchange rates.

Containing Variables Number of Variables

SI dataset Today’s price + Sentiment Indicator 2

Large dataset Today’s price + Collected/Calculated
Indicators + Sentiment Indicator 33

Note: SI dataset represents the dataset comprising of today’s price and sentiment indicator. Large dataset
represents the dataset comprising of today’s price, sentiment indicator, and collected/calculated indicators.
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3.2. Prediction Models and Proposed Approaches

This study applies the RF, XGB, and LSTM approaches in combination with the
expanding moving window (EMW), and fixed moving window (FMW) methods to predict
gold futures commodity prices and the euro foreign exchange rate. The initial parameters
(Wysocki and Ślepaczuk 2022) are selected using the grid search method. Specifically,
trained models with time-varying parameters are used to predict one-period-ahead prices,
and the prediction performance of these models is evaluated using the remaining test
datasets. The moving window technique proceeds iteratively with the prediction, where
the size of the expanding moving window or fixed moving window is extended or shifted
by one-time step in each iteration. Furthermore, the study employs the widely applied
time series forecasting model ARIMA to validate the superiority of the sentiment indicator
dataset. Additionally, triple-combination approaches are proposed, including wavelet-
ARIMA-LSTM (wavelet-ARIMA-RF/wavelet-ARIMA-XGB) and seasonal-decomposition-
ARIMA-LSTM.

3.2.1. Expanding Moving Window (EMW) and Fixed Moving Window (FMW)

This study employs two patterns of moving window techniques to predict one-period-
ahead, aiming to investigate whether there is a difference in prediction performance when
excluding historical data. One pattern is the fixed-length moving window (FMW) technique,
and the other is the expanding-length moving window (EMW) technique.

The moving window statistics proceed iteratively with the prediction, extending or
shifting the size of EMW or FMW by one time step in each iteration. Figure 4 illustrates the
mechanism of EMW, while Figure 5 depicts the mechanism of FMW.
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In terms of the expanding-length window, the initial window size is set to 3363, which
is the same as the length of the validation data (there are 3957 observations from 3 February
2003 to 16 December 2020). When iterating the model fitting, the window size increases by
one period. For example, the first window spans from 3 February 2003 to 16 July 2017, and
is used to estimate 17 July 2017. The framework utilizes the dataset from period 1 to 3363 to
train the model, then uses the trained model to forecast period 3364, and incorporates the
extended training dataset from period 1 to 3364 to retrain the model. The updated model is
then used to predict period 3365. This process is iterated until the last period of the time
series. The expanding moving window technique is also employed in the model evaluation
as walk-forward testing (Baranochnikov and Ślepaczuk 2022).
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In terms of the fixed-length window, the window size is determined to be 3363. For
instance, the first window spans from 3 February 2003 to 16 July 2017, and is used to
estimate 17 July 2017. The model uses the dataset from period 1 to 3363 to train the model
and utilizes this trained model to forecast period 3364. Then, the dataset from period 2 to
3364 is used to train the model, and the updated model is used to predict period 3365. This
process is iterated until the last period of the time series.

3.2.2. Random Forest (RF)

The RF approach, introduced by Breiman (2001), is an ensemble machine learning
method that incorporates multiple decision trees to improve prediction performance. By
extending each tree from randomly selected features and building them from the primal
sample, the RF method addresses the overfitting problem that can arise when adding more
trees to the forest. This approach enhances prediction accuracy.

To maximize the forecasting performance of our model, we conducted a meticulous
parameter-tuning process. We optimized several variables to achieve optimal results in our
forecasting endeavor. The variables that underwent optimization included n_estimators
(with values of 100, 200, 300, 400, and 500), max_depth (with values of 1, 3, 10, 20, 30, 40, and
50), bootstrap (with options of True and False), and min_samples_leaf (ranging from 1 to 10).
After a thorough evaluation based on error metrics, we selected the following parameter
values: n_estimators (300), max_depth (20), bootstrap (True), and min_samples_leaf (3).
These parameter values were found to yield the best performance in our model, ensuring
accurate and reliable forecasting outcomes.

3.2.3. Extreme Gradient Boosting (XGBoost)

XGBoost, an algorithm proposed by Chen and Guestrin (2016), is an ensemble machine
learning model that enhances gradient boosting techniques (Friedman 2001). It employs
an optimized platform for gradient boosting, leveraging parallel processing, tree pruning,
and hardware optimization. XGBoost offers a variety of objective functions, including
classification and regression, and combines weaker and simpler learner estimates (such as
regression trees) to improve prediction accuracy. The model minimizes a subjective loss
function through a penalty term for model complexity (i.e., regression tree functions) and a
convex loss function. Iterative learning involves creating new trees and merging them with
existing trees.

To enhance the predictive performance of our model, we conducted a meticulous
parameter-tuning process. We optimized several variables to achieve optimal results in our
forecasting endeavor. The variables that underwent optimization included n_estimators
(ranging from 100 to 1000 in increments of 100), max_depth (with values of 1, 3, 5, and 10),
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learning_rate (with values of 0.001 and 0.01), and gamma (with values of 0, 0.001, and 0.01).
Subsequently, based on the performance evaluation using error metrics, we selected the
following parameter values: n_estimators (1000), max_depth (3), learning_rate (0.01), and
gamma (0.01).

3.2.4. Long Short-Term Memory (LSTM)

The LSTM algorithm was first introduced by Hochreiter and Schmidhuber (1997). As a
prominent model in deep learning, LSTM exhibits an external loop structure similar to that
of RNN and an internal recurrent structure consisting of memory cells. Each memory cell
possesses self-connected recurrent weights that interact with three types of gates, ensuring
the preservation of signals over multiple time steps without suffering from exploding
or vanishing gradients. Similar to RNN, LSTM can utilize more data at each time step,
resembling the memory capacity of the LSTM unit. The network utilizes these gates to
effectively manage the retention and forgetting of information for subsequent iterations.

To achieve optimal forecasting outcomes, we meticulously tuned the hyperparameters
of our model. Various variables underwent optimization, including batch size (ranging
from 10 to 200), number of epochs (ranging from 10 to 300), optimization technique (SGD,
Adam, RMSprop), learning rate (0.001, 0.01, 0.1), dropout rate (ranging from 0.0 to 0.9),
neuron activation function (relu, sigmoid), number of layers (ranging from 1 to 5), and
number of neurons (16, 32, 46, 64, 128). During the training of the neural networks, we
employed the traditional mean squared error (MSE) loss function, as utilized by Cao et al.
(2019), Chimmula and Zhang (2020), and Livieris et al. (2020). This loss function is widely
recognized and commonly used in the field. Following a comprehensive evaluation process,
we selected the following parameter values that exhibited superior performance: a batch
size of 15, 150 epochs, the Adam optimization technique, a learning rate of 0.001, no dropout
(dropout rate of 0.0), relu activation function, 3 layers, and 46 neurons. These parameter
values were determined to produce the most accurate and reliable forecasting results in
our model.

3.2.5. AutoRegressive Integrated Moving Average (ARIMA)

ARIMA was developed in the 1970s by Box and Jenkins (1968) with the aim of mathe-
matically characterizing variations in time series. Non-stationary data need to be differ-
enced until stationarity is achieved, as ARIMA specifically works with stationary data. In
ARIMA (p, d, q), where p represents the autoregressive terms, d represents the differencing
order, and q represents the lagged errors, the best values for p, d, and q are determined
using the Akaike information criterion to fit the data.

In this study, the selection of optimal (p, d, q) values for time series analysis is per-
formed using the auto_arima function in Python. The auto_arima function employs a
stepwise search method to minimize the Akaike Information Criteria (AIC). To ensure
model parsimony, the maximum values for p and q are set to be less than 5. The determina-
tion of the optimal differencing parameter, d, is achieved through the application of the
Augmented Dickey-Fuller test.

3.2.6. Wavelet-ARIMA-LSTM (Wavelet-ARIMA-RF/Wavelet-ARIMA-XGB)

The wavelet transform was first introduced by French scientist J. Morlet in 1974
(Morlet et al. 1982). Wavelet decomposition has been widely utilized as a preprocessing
approach in various fields such as engineering, time series analysis, and medicine. By
applying wavelet decomposition, time series data can be separated into approximation and
detail components. In this study, we employ discrete wavelet decomposition (DWD) to
decompose the gold futures prices and the euro exchange rate into multiple approximation
and detail component series. Unlike previous research, we simplify the analysis by using
the decomposed approximation series for forecasting one-period-ahead values using the
ARIMA model. We then calculate the residuals and apply the LSTM model to predict the
one-period-ahead residuals, and finally combine them.
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In summary, the DWD technique is employed to decompose the price time series
into linear approximation components and nonlinear residual components. The linear
components are predicted using the ARIMA model, while the nonlinear parts are indepen-
dently forecasted using the LSTM model, taking into account the intrinsic characteristics of
these models.

Similarly, in the case of wavelet-ARIMA-RF and wavelet-ARIMA-XGB, the random
forest model and extreme gradient boosting are applied, respectively, to predict the nonlin-
ear components.

3.2.7. Seasonal-Decomposition-ARIMA-LSTM

Furthermore, we employed another preprocessing technique, known as traditional
seasonal decomposition, for the time series models of gold futures prices and the euro
exchange rate. According to the traditional concept of time series decomposition, a series
is considered as a composite of level, trend, seasonality, and noise components. In this
study, we regard the level, trend, and seasonality components as systematic components
since they exhibit consistency or recurrence and can be described and modeled. Conversely,
we classify the noise component as non-systematic due to its random variation nature.
Diverging from previous research, we utilize the decomposed systematic components,
including the trend series and seasonality series, to apply the ARIMA model for forecast-
ing one-period-ahead values. Subsequently, we employ the decomposed non-systematic
noise components to apply the LSTM model for predicting one-period-ahead noise, and
ultimately aggregate these predicted values.

In summary, the traditional seasonal decomposition method is utilized to decompose
the price time series into linear systematic components and nonlinear non-systematic
components. The linear components are then forecasted using the ARIMA model, while
the nonlinear components are separately predicted using the LSTM model.

3.3. Model Evaluation Measures
3.3.1. Root Mean Squared Error (RMSE)

The discrepancy between the expected and actual values is typically measured using
the RMSE. The RMSE is typically computed as follows:

RMSE =

√
∑N

i=1(xi − x̂i)
2

N
(2)

where N is the number of non-missing data points, xi is the actual observation time series,
and x̂i is the estimated time series.

3.3.2. Mean Absolute Percentage Error (MAPE)

The accuracy of forecasting models is frequently assessed statistically using the mean
absolute percentage error (MAPE). MAPE can be calculated as the average absolute percent
error for each time period minus actual values divided by actual values. Generally speaking,
the following equation defines MAPE:

MAPE =
1
n ∑N

i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣ (3)

where i = variable, N = number of non-missing data points, xi = actual observation time
series, x̂i = estimated time series.

This paper defined the MAPE accuracy (%) by MAPE (%) = 100 ∗MAPE.

3.3.3. Mean Absolute Error (MAE)

The mean absolute error (MAE) is frequently used as a statistical measure of the
average magnitude of the errors in a predicted dataset without considering their direction.
It is the average over the test sample of the absolute differences between prediction and
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actual observation, where all individual differences have equal weight. Generally, MAE is
defined by the following equation:

MAE =
1
n ∑N

i=1|xi − x̂i| (4)

where i = variable, N = number of non-missing data points, xi = actual observation time
series, x̂i = estimated time series.

3.3.4. Modified Diebold–Mariano Test

The DM test was originally introduced by Diebold and Mariano (1995). In empirical
analyses, when there are two or more time series forecasting models, it is often a challenge
to predict which model is more accurate or whether they are equally suitable. This test
identifies whether the null hypothesis (i.e., that the competing model holds equivalent
forecasting power as the base model) is statistically true. Assuming that the actual values
{yt; t = 1, . . . T] , two forecasts {ŷ1t; t = 1, . . . T] , {ŷ2t; t = 1, . . . T] , and forecast error εit are
as follows:

εit = ŷit − yt, i = 1, 2 (5)

where εit denotes the forecast error and the loss function, g(εit), which is defined by the
following function:

g(εit) = (εit)
2 (6)

Then, the loss differential dt is expressed as follows:

dt = g(ε1t)− g(ε2t) (7)

Correspondingly, the statistic for the DM test is expressed using the following formula:

DM =
d√

s
N

(8)

where d, s, and N denote the mean loss differential, the variation of dt, and the number of
data points, respectively.

The null hypothesis is H0 : E[dt] = 0, ∀t, meaning that the two forecast models hold
equivalent forecasting performance. Meanwhile, the alternative hypothesis is
H1 : E[dt] 6= 0, ∀t, which represents the difference in accuracy between these two fore-
casts. Under the null hypothesis, the statistics for the DM test are asymptotically N(0, 1)
normally distributed. The null hypothesis would be rejected when DM > 1.96.

Harvey et al. (1997) proposed a modified DM test. They suggested that the modified
DM test is more suitable when using a small sample. The statistic for the modified DM test
is expressed as follows:

DM∗ =
√
[n + 1− 2h + h(h− 1)]n−1DM (9)

where h represents the horizon and DM refers to the original DM statistic. Here, we
predicted one-period-ahead; hence, h = 1; hence,

DM∗ =
√
(n− 1)n−1DM (10)

Concerning how to interpret the DM test statistic results, since we set g(ε1t) as the
target model, g(ε2t) as the base model, the numerator is (target-base), therefore, if the DM
test statistic is negative, that means the target model has a smaller variance than the base
model; hence, the prediction performance of the target model is better than the base model.
The p-value denotes the significance of this statistic.
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4. Results
4.1. Empirical Results
4.1.1. Prediction Results of SI Dataset and Large Dataset

Firstly, this subsection presents the prediction performance results of the sentiment
dataset and the large dataset to verify whether the sentiment dataset could replace the large
dataset when predicting commodity gold prices and the euro foreign exchange rate.

Table 2 displays the prediction outcomes for gold futures prices utilizing the senti-
ment indicator dataset, while Table 3 presents the prediction results for gold futures prices
employing the large dataset. Likewise, Table 4 lists the prediction results for the euro
foreign exchange rate based on the sentiment indicator dataset, and Table 5 showcases the
prediction results for the euro foreign exchange rate utilizing the large dataset. Overall,
the prediction results indicate that the sentiment indicator dataset generally exhibits better
forecasting performance than the large dataset. When comparing the performance metrics,
namely RMSE, MAPE, and MSE, between the two datasets, it becomes evident that the fixed
moving window LSTM approach using the SI dataset outperforms the alternative dataset
and models considered. This finding suggests that combining the sentiment indicator with
the moving window LSTM machine learning model yields the best results for predicting
gold futures prices and euro exchange rates. These results align with the outcomes of previ-
ous studies by Plakandaras et al. (2015), Nwosu et al. (2021), and Dunis and Williams (2002),
which suggest that neural network models or their proposed approaches, particularly when
combined with neural networks, offer more accurate forecasts compared to other models.
Furthermore, these results provide additional evidence supporting the superiority of the
LSTM model’s complex loop structure. Turning to the forecasting results using the large
dataset, the moving window RF results demonstrate the best performance. This may be
attributed to the use of a large indicator dataset, which allows the RF classifier to effectively
enhance the predictive power. Although our study employs a different data source for
sentiment analysis compared to previous research (Naeem et al. 2021), our empirical results
broadly align with the findings of Li et al. (2016) and Naeem et al. (2021) in terms of
predicting gold futures and euro exchange rates, thus indicating that the sentiment dataset
can serve as a viable substitute for the large dataset.

Table 2. Results of the SI dataset for gold futures prices.

Dataset Evaluation RF_EMW RF_FMW XGBoost_EMW XGBoost_FMW LSTM_EMW LSTM_FMW

SI dataset
RMSE 10.3122 10.4261 9.9711 9.9852 11.1461 9.3283
MAPE 0.5810 0.5832 0.5480 0.5480 0.6160 0.5130
MSE 7.7159 7.7159 7.3015 7.3056 8.2074 6.8072

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-term
memory. The underline followed by EMW denotes the expanding moving window technique, while the underline
followed by FMW denotes the fixed moving window technique. RMSE denotes the root mean squared error.
MAPE denotes the mean absolute percentage error. MAE denotes the mean absolute error. The best performance
in this set of prediction results is shown in bold.

Table 3. Results of the large dataset for gold futures prices.

Dataset Evaluation RF_EMW RF_FMW XGBoost_EMW XGBoost_FMW LSTM_EMW LSTM_FMW

Large
dataset

RMSE 9.8462 9.8752 10.6259 10.6373 14.0267 11.1016
MAPE 0.5450 0.5470 0.5910 0.5930 0.8230 0.6340
MSE 7.2544 7.2544 7.9100 7.9534 10.8288 8.3960

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-term
memory. The underline followed by EMW denotes the expanding moving window technique, while the underline
followed by FMW denotes the fixed moving window technique. RMSE denotes the root mean squared error.
MAPE denotes the mean absolute percentage error. MAE denotes the mean absolute error. The best performance
in this set of prediction results is shown in bold.
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Table 4. Results of the SI dataset for euro foreign exchange rate.

Dataset Evaluation RF_EMW RF_FMW XGBoost_EMW XGBoost_FMW LSTM_EMW LSTM_FMW

SI dataset
RMSE 0.550 0.553 0.596 0.603 0.479 0.47384
MAPE 0.370 0.372 0.396 0.400 0.322 0.3180
MSE 0.430 0.430 0.460 0.465 0.374 0.3693

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-term
memory. The underline followed by EMW denotes the expanding moving window technique, while the underline
followed by FMW denotes the fixed moving window technique. RMSE denotes the root mean squared error.
MAPE denotes the mean absolute percentage error. MAE denotes the mean absolute error. The best performance
in this set of prediction results is shown in bold.

Table 5. Results of the large dataset for euro foreign exchange rate.

Dataset Evaluation RF_EMW RF_FMW XGBoost_EMW XGBoost_FMW LSTM_EMW LSTM_FMW

Large
dataset

RMSE 0.518 0.521 0.775 0.870 0.677 0.583
MAPE 0.343 0.346 0.484 0.546 0.412 0.395
MSE 0.399 0.399 0.563 0.636 0.476 0.458

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-term
memory. The underline followed by EMW denotes the expanding moving window technique, while the underline
followed by FMW denotes the fixed moving window technique. RMSE denotes the root mean squared error.
MAPE denotes the mean absolute percentage error. MAE denotes the mean absolute error. The best performance
in this set of prediction results is shown in bold.

4.1.2. Prediction Results of ARIMA Model

However, when comparing with the classical statistical model, ARIMA, whether the
conclusion holds robustness needs to be investigated. Therefore, we conducted the simple
prediction by ARIMA, and the lags were chosen using the Akaike Information Criteria
(AIC). The forecasting results are presented in Table 6.

Table 6. Results of the ARIMA for gold futures prices and the euro foreign exchange rate.

Evaluation Gold Euro

RMSE 9.2658 0.47388
MAPE 0.5090 0.3170
MSE 6.7591 0.3687

Note: RMSE denotes the root mean squared error. MAPE denotes the mean absolute percentage error. MAE
denotes the mean absolute error.

Based on the above results, we are pleasantly surprised by the effectiveness of the
powerful yet simple statistical model, ARIMA, in predicting time series. This finding aligns
with the research reported by He (2018). However, it contradicts the studies conducted
by Siami-Namini et al. (2018) and Siami-Namini et al. (2019). These results suggest that
simplicity may be the key when it comes to designing prediction models for time series,
despite the prevalence of complex models and fancy datasets. In contrast to the findings
of Nwosu et al. (2021) and Dunis and Williams (2002), our results indicate that it is worth
considering the use of simple traditional models in the design of prediction models.

4.1.3. Prediction Results of Proposed Approaches

However, it is worth noting that machine learning and deep learning models have
been extensively validated in numerous studies for their superior effectiveness and ac-
curacy in predicting time series compared to ARIMA models. Therefore, it is neces-
sary to further verify the robustness of the simple statistical model, ARIMA. Inspired by
Abdulrahman et al. (2021) and others, we propose a triple combination of wavelet-ARIMA-
LSTM, wavelet-ARIMA-RF, and wavelet-ARIMA-XGB models, as well as the seasonal-
decomposition-ARIMA-LSTM approach, to investigate this objective. The prediction results
are summarized in Tables 7 and 8.
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Table 7. Results of the proposed approaches for gold futures prices.

Evaluation SeasonalDecomposition_
ARIMA_LSTM

Wavelet_
ARIMA_LSTM

Wavelet_
ARIMA_XGB

Wavelet_
ARIMA_RF ARIMA LSTM XGB RF

RMSE 3.3916 8.4439 5.4610 5.4610 9.2658 12.2605 10.0311 10.8282
MAPE 0.0020 0.4840 0.3060 0.3060 0.5090 0.7670 0.5420 0.6140
MSE 2.6869 6.4376 4.0516 4.0516 6.7591 9.9841 7.2283 8.1704

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-
term memory. RMSE denotes the root mean squared error. MAPE denotes the mean absolute percentage error.
MAE denotes the mean absolute error. The best performance in this set of prediction results is shown in bold.
SeasonalDecomposition denotes the seasonal decomposition. Wavelet represents the wavelet decomposition.

Table 8. Results of the proposed approaches for euro foreign exchange rate.

Evaluation SeasonalDecomposition_
ARIMA_LSTM

Wavelet_
ARIMA_LSTM

Wavelet_
ARIMA_XGB

Wavelet_
ARIMA_RF ARIMA LSTM XGB RF

RMSE 0.1632 0.4083 0.1813 0.3443 0.4739 0.5578 0.5952 0.6526
MAPE 0.1120 0.2687 0.1200 0.2400 0.3170 0.3960 0.3950 0.4410
MSE 0.1298 0.3122 0.1389 0.2784 0.3687 0.4573 0.4595 0.5122

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-
term memory. RMSE denotes the root mean squared error. MAPE denotes the mean absolute percentage error.
MAE denotes the mean absolute error. The best performance in this set of prediction results is shown in bold.
SeasonalDecomposition denotes the seasonal decomposition. Wavelet represents the wavelet decomposition.

Based on the results presented in Tables 7 and 8, Figures 6 and 7, our proposed triple-
combination approach demonstrates superior prediction accuracy compared to individual
ARIMA, machine learning, and deep learning approaches. This suggests that by decom-
posing time series into linear and nonlinear components and combining classical statistical
models with machine learning approaches, we achieve more precise predictions. However,
the best performing approach for both object time series, namely gold futures prices and
the euro foreign exchange rate, is the SeasonalDecomposition_ARIMA_LSTM model. It is
followed by Wavelet_ARIMA_XGB and Wavelet_ARIMA_RF. This finding suggests that
the systematic and non-systematic decomposition combined with the ARIMA and LSTM
models for predicting commodity prices and foreign exchange rates is preferable. These
results align with previous studies (Chang et al. 2019; Chen and Wang 2019; Liu et al.
2018; Ma et al. 2019; Moustafa and Khodairy 2023), further supporting the effectiveness of
the integrated multiple-model approach in prediction. Our empirical forecasting results
provide additional evidence that the multiple-model integrated approach performs better
in prediction.
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In summary, first, the combination of the sentiment indicator with the fixed moving
window LSTM machine learning model produces the best prediction results compared
to the large dataset. This result demonstrates that sentiment indicators obtained through
sentiment analysis outperform the large dataset in terms of prediction ability and can be
utilized as a better alternative independent predictor. Second, based on the prediction
results, the traditional and classical ARIMA model surprisingly outperforms both the
sentiment indicator dataset and the large dataset combined with machine learning tech-
niques. Finally, our proposed triple-combination techniques are superior to both machine
learning models and the traditional statistical ARIMA model in terms of commodity price
and foreign exchange rate prediction performance. The top three performing forecasting
methods are the seasonal-decomposition_ARIMA_LSTM, the wavelet_ARIMA_XGB, and
the wavelet_ARIMA_RF. In the first step, these approaches decompose the data into linear
and nonlinear components by adopting seasonal decomposition or wavelet transformation.
In the second step, they use the ARIMA model to predict the linear part and machine
learning or deep learning models to predict the nonlinear part.

4.2. Model Evaluation Results
4.2.1. Walk-Forward Testing Results

In this study, we employ the walk-forward testing method as the chosen back-testing
technique to validate the effectiveness of the proposed triple-combination approaches.
To evaluate the performance of these models, we adopt an expanding moving window
approach, focusing on the last 50 observations. The testing procedure involves conducting
separate walk-forward tests on each decomposition component, followed by aggregating
the results and comparing the error metrics against those obtained from the ARIMA model.

As we present in Tables 9 and 10, the walk-forward testing results for gold futures
prices and euro foreign exchange provide robust estimations for evaluating the effectiveness
of our proposed triple-combination approaches. These results offer valuable insights into
the performance and reliability of the models in predicting the respective market dynamics.
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Table 9. Results of Walk-Forward Testing for gold futures prices.

Evaluation SeasonalDecomposition_
ARIMA_LSTM Wavelet_ARIMA_LSTM Wavelet_ARIMA_XGB Wavelet_ARIMA_RF ARIMA

RMSE 2.8765 3.1308 3.5565 5.0426 9.2658
MAPE 0.1445 0.1638 0.1868 0.2642 0.5090
MSE 2.1304 2.4265 2.7682 3.9170 6.7591

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-
term memory. SeasonalDecomposition denotes the seasonal decomposition. Wavelet represents the wavelet
decomposition. RMSE denotes the root mean squared error. MAPE denotes the mean absolute percentage error.
MAE denotes the mean absolute error.

Table 10. Results of Walk-Forward Testing for euro foreign exchange rate.

Evaluation SeasonalDecomposition_
ARIMA_LSTM Wavelet_ARIMA_LSTM Wavelet_ARIMA_XGB Wavelet_ARIMA_RF ARIMA

RMSE 0.1263 0.1028 0.1206 0.3142 0.4739
MAPE 0.0937 0.0762 0.0886 0.2226 0.3172
MSE 0.1037 0.0844 0.0980 0.2466 0.3687

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-
term memory. SeasonalDecomposition denotes the seasonal decomposition. Wavelet represents the wavelet
decomposition. RMSE denotes the root mean squared error. MAPE denotes the mean absolute percentage error.
MAE denotes the mean absolute error.

4.2.2. Diebold–Mariano Test Results

The Diebold–Mariano test is conducted to assess the predictive superiority of the
triple-combination approaches compared to the ARIMA models. We present the results of
this test in Tables 10 and 11, offering insights into the relative performance of the proposed
approaches. The DM test results for both gold futures prices and euro foreign exchange
rates are analyzed.

Table 11. DM test results of gold futures prices.

Target Approach Base Model (ARIMA)

DM Test p-Value

SeasonalDecomposition_ARIMA_LSTM −9.9779 0.000
Wavelet_ARIMA_LSTM −9.4216 0.000
Wavelet_ARIMA_XGB −9.9468 0.000
Wavelet_ARIMA_RF −7.1182 0.000

Note: DM test indicates the modified Diebold–Mariano test statistic. RF represents random forest. XGBoost
denotes eXtreme gradient boosting. LSTM denotes long short-term memory. SeasonalDecomposition denotes the
seasonal decomposition. SeasonalDecomposition denotes the seasonal decomposition. Wavelet represents the
wavelet decomposition. RMSE denotes the root mean squared error. MAPE denotes the mean absolute percentage
error. MAE denotes the mean absolute error.

From the results presented in Tables 11 and 12, it is noteworthy that the proposed
triple-combination approaches demonstrate a significant outperformance over the classical
statistical model, the ARIMA model.

Table 12. DM test results of euro foreign exchange rate.

Target Approach Base Model (ARIMA)

DM Test p-Value

SeasonalDecomposition_ARIMA_LSTM −12.9469 0.000
Wavelet_ARIMA_LSTM −4.5330 0.000
Wavelet_ARIMA_XGB −12.6462 0.000
Wavelet_ARIMA_RF −6.3385 0.000

Note: DM test indicates the modified Diebold–Mariano test statistic. RF represents random forest. XGBoost
denotes eXtreme gradient boosting. LSTM denotes long short-term memory. SeasonalDecomposition denotes the
seasonal decomposition. SeasonalDecomposition denotes the seasonal decomposition. Wavelet represents the
wavelet decomposition. RMSE denotes the root mean squared error. MAPE denotes the mean absolute percentage
error. MAE denotes the mean absolute error.
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5. Conclusions and Policy Implications

As highlighted by Naeem et al. (2021) and Li et al. (2016), the rapid advancement of the
Internet and big data technology has led to an abundance of online data, including textual
data from sources such as Twitter and news releases, which can help to identify influential
factors in specific markets. Motivated by this, our study aims to examine whether the
sentiment indicator dataset obtained through sentiment analysis of unstructured online
news headlines can serve as a substitute for the large dataset comprising various indicators
in predicting commodity prices and foreign exchange rates.

In our empirical analysis, we employ sentiment analysis using the Python natu-
ral language processing library to process news headlines from ABC, which consists of
1,226,258 news headlines, to derive a sentiment indicator. Additionally, we collect 30 ad-
ditional indicators to construct the large dataset. Subsequently, we utilize this sentiment
indicator in conjunction with moving window machine learning and deep learning models,
namely RF, XGBoost, and LSTM, to forecast commodity gold futures prices and the euro
exchange rate. Alongside comparing the prediction performance of the datasets, we also
conduct a prediction comparison between the classical statistical model, ARIMA, and
time-varying parameter machine learning models.

Based on the results of the model comparisons, we cannot conclude that sentiment
indicators combined with machine learning outperform the ARIMA model. However,
from an alternative perspective, we propose triple-combination approaches that involve
decomposing the time series data into linear and nonlinear components and subsequently
forecasting the linear component using the robust statistical model, ARIMA, and the nonlin-
ear component using machine learning models such as LSTM, XGB, and RF. This research
sheds light on the issue of comparing the out-of-sample superiority of our proposed triple-
combination approaches for foreign exchange rate prediction with the traditional powerful
statistical model, ARIMA. Furthermore, we conduct walk-forward testing to validate the
triple-combination approaches and employ the modified Diebold–Mariano test statistic
to investigate statistically significant differences between the proposed approach and the
ARIMA model.

The study’s primary conclusions are as follows: Firstly, the combination of the sen-
timent indicator with the moving window LSTM machine learning model demonstrates
the best forecasting performance. These findings align with previous studies conducted by
Plakandaras et al. (2015), Nwosu et al. (2021), and Dunis and Williams (2002). Secondly, the
sentiment indicator dataset used by deep learning and moving window machine learning
models does not surpass the classical ARIMA model, consistent with the findings reported
by He (2018). This result contradicts the studies conducted by Siami-Namini et al. (2018)
and Siami-Namini et al. (2019). Thirdly, the proposed triple-combination methods, which
expand upon and derive from the approaches of Chang et al. (2019), Chen and Wang
(2019), Liu et al. (2018), Ma et al. (2019), and Moustafa and Khodairy (2023), exhibit supe-
rior performance in predicting commodity prices and foreign exchange rates compared
to both machine learning models and the ARIMA model. The seasonal-decomposition
ARIMA-LSTM, wavelet-ARIMA-XGB, and wavelet-ARIMA-RF demonstrate the top three
forecasting performances based on error metrics, walk-forward testing results, and Diebold–
Mariano test results. In the first step, the data are decomposed into linear and non-linear
components using wavelet transformation or seasonal decomposition. In the second
step, the linear component is predicted using ARIMA, while the non-linear component
is predicted using machine learning or deep learning models. Lastly, in addition to the
aforementioned findings, the comparison of results between the sentiment indicator dataset
and the large dataset indicate that sentiment indicators obtained through sentiment anal-
ysis possess superior forecasting capabilities compared to the large dataset consisting of
various indicators. Consequently, they can be utilized as better alternative predictors. Our
empirical results generally align with the findings of Li et al. (2016) and Naeem et al.
(2021) in terms of predicting gold futures and euro exchange rates, further highlighting the
potential of the sentiment dataset to enhance forecasting in time series prediction.
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To the best of our knowledge, this study presents a pioneering investigation into the
potential of sentiment indicators as a substitute for extensive datasets in forecasting com-
modity prices and foreign exchange rates. The novelty lies in proposing a novel integration
of machine learning models, statistical models, and data decomposition techniques to
enhance price predictions in these markets. Importantly, the results validate the superior
accuracy of the proposed triple-combination approach compared to individual models. Fur-
thermore, these findings offer valuable insights for investors and policymakers, providing
them with fresh perspectives, predictive tools, and alternative forecasting approaches.

For investors, the research offers fresh perspectives on forecasting commodity prices
and foreign exchange rates. It introduces new predictive tools and alternative approaches
that enhance their decision-making processes and potentially lead to more accurate fore-
casts. Additionally, precise prediction of gold prices and euro exchange rates is crucial for
informing hedging strategies aimed at mitigating risks arising from currency fluctuations.

For policymakers, these findings play a vital role in making informed investment deci-
sions. Gold is widely utilized as a means to hedge against inflation and market volatility,
and fluctuations in the euro exchange rate have a substantial impact on the costs and risks
associated with international transactions as the second most traded currency globally.
Moreover, improving the accuracy of gold price predictions is crucial for central banks
that maintain gold reserves as a safeguard against currency fluctuations and as a store of
value. Given that the euro is a major reserve currency used in international transactions
and investments, precise prediction of euro exchange rates can bolster financial stability.
Furthermore, gold prices and euro exchange rates are closely intertwined with the interna-
tional economy and play a pivotal role in informing government policy decisions regarding
trade, monetary policy, and capital flows. Therefore, our findings contribute to economic
forecasting, empowering policymakers and investors to leverage these predictions for
informed decision making, ensuring they are well-prepared to navigate and respond to
evolving economic conditions.

Despite these findings, this study has its limitations. Since we only employ RF, XGB,
and LSTM methods to compare forecasts with the ARIMA model, we cannot conclusively
determine that ARIMA is superior to other machine learning and deep learning models.
Further verification is necessary to address this point. Additionally, there are numerous
other data decomposition methods that require testing to validate the conclusions.

In future research, it is recommended to explore alternative data decomposition meth-
ods, as well as additional machine learning and deep learning techniques, to expand the
investigation to major commodity prices and currency exchange rates. This will help vali-
date the rationality and robustness of the proposed approaches’ superiority. Furthermore,
considering the potential of the sentiment indicator as a promising alternative dataset,
empirical testing is planned to assess whether incorporating the proposed approaches
with the additional sentiment indicator can further enhance the forecasting accuracy for
commodity prices and foreign exchange rates.
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The descriptions of and sources of the data are presented in Table A1.
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Table A1. Descriptions and sources of the indicators used in this study.

Variable Description Source

EUR Euro against the US dollar Investing.com

CAD Canadian dollar against the US dollar Investing.com

JPY Japanese yen against the US dollar Investing.com

WTIf WTI Crude Oil futures prices Bloomberg

Brent_oil Brent Crude Oil futures prices Investing.com

Henryhub_gas Henry Hub Natural Gas futures prices Bloomberg

SP500 Standard & Poor’s 500 Stock Index FRB 1

FTSE100 The Financial Times Stock Exchange Group:London
Stock Exchange FRB 1

NASDAQ NASDAQ Composite Index FRB 1

HangSeng Hong Kong Hang Seng Composite stock market index Macrotrends

CAC40 France’s CAC 40 stock market index Macrotrends

GSPTSE Canadian S&P/TSX Composite Index Investing.com

US10_Bond US 10-Year Treasury Constant Maturity Rate Yahoo! Finance

UK10_Bond United Kingdom 10-Year Bond Yield Investing.com

Germany10_Bond Germany 10-Year Bond Yield Investing.com

DAX Germany’s DAX 30 stock market index Macrotrends

NIKKEI Tokyo Stock Exchange:Nikkei index FRB 1

Gold Gold futures prices Bloomberg

TWUSDI Trade Weighted U.S. Dollar Index FRB 1

FederalFunds Federal Funds Rate Macrotrends

CORN Corn futures prices Datastream 2

WHEAT Wheat futures prices Datastream 2

RSI Relative Strength Index Calculated

ma7 7-days Moving Average Calculated

ma21 21-days Moving Average Calculated

26ema 26-days Exponential Weighted Moving Average Calculated

12ema 12-days Exponential Weighted Moving Average Calculated

MACD Moving Average Convergence/Divergence oscillator Calculated

20sd 20-days Standard Deviation Calculated

upper_band Bollinger Bands Calculated

lower_band Bollinger Bands Calculated

ema Exponential Moving Average Calculated

Note: 1 Federal Reserve Bank. 2 Thomson Reuters Datastream.
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