

Article Differential Impact of Fintech and GDP on Bank Performance: Global Evidence

Soon Suk Yoon ¹, Hongbok Lee ¹ and Ingyu Oh ^{2,3,4,*}

4

- ¹ School of Accounting, Finance, Economics, and Decision Sciences, College of Business and Technology, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA; ss-yoon@wiu.edu (S.S.Y.); h-lee@wiu.edu (H.L.)
- ² College of Global Engagement, Kansai Gaidai University, Osaka 573-1001, Japan
- ³ International Centre for Organization & Innovation Studies, Singapore 518152, Singapore
 - Asia Pacific Business Review, London SW1P 1WG, UK
- Correspondence: oingyu@kansaigaidai.ac.jp

Abstract: Using the World Bank Global Findex Database for 91 countries in 2014, 2017, and 2021, we examine whether fintech levels influence bank performance and whether fintech's interaction with GDP per capita causes differential effects on bank performance globally. Since fintech levels were already very high for rich countries when the World Bank started providing fintech development statistics in 2014, we estimate *AbFintech* by regressing fintech levels on GDP per capita by year. *AbFintech* is the difference between the fintech level and its fitted values. Then, using multiple regression analyses, we investigate the impact of *AbFintech* on bank performance. We find *AbFintech* significantly increases bank performance, primarily in less developed countries. Specifically, *AbFintech* increases the ratio in the least developed countries. The resulting policy implication is that banks in less developed countries benefit most from investing in fintech innovation since they can provide a broader customer base, including formerly unbanked or underbanked customers, with more convenient services at lower costs.

Keywords: fintech; abnormal fintech; bank performance; ROA; net interest margin; income mix; cost-to-income ratio

JEL Classification: G10; G15; G20; G21; O0; O3

1. Introduction

We examine the impact of fintech development on bank performance using global data extracted from the World Bank Database. The Financial Stability Board (2017, p. 7) defines fintech as "technology-enabled innovation in financial services that could result in new business models, applications, processes, or products with an associated material effect on the provision of financial services." Fintech activities cover virtually the entire spectrum of financial services at both the retail (i.e., households and small and medium enterprises) and wholesale (corporations, non-bank financial institutions, and inter-bank) levels, including (i) payments, clearing, and settlement; (ii) deposits, lending, and capital raising; (iii) insurance; (iv) investment management; and (v) market support (Financial Stability Board 2017). "The big promise of fintech is to build on the potential cost-cutting allowed by digital technologies to dramatically reduce financial frictions" (Bofondi and Gobbi 2017, p. 111).

Stulz (2022) provides a shorter definition of fintech as "financial innovation that is based on the use of digital technologies and big data." He expects fintech firms to be

Citation: Yoon, Soon Suk, Hongbok Lee, and Ingyu Oh. 2023. Differential Impact of Fintech and GDP on Bank Performance: Global Evidence. Journal of Risk and Financial Management 16: 304. https:// doi.org/10.3390/jrfm16070304

Academic Editor: Thanasis Stengos

Received: 19 May 2023 Revised: 18 June 2023 Accepted: 18 June 2023 Published: 21 June 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). able to compete with incumbent banks through offering cheaper and better products more conveniently. Constraints and costs associated with (large) incumbent banks, such as regulatory costs, legacy IT systems, and organizational frictions inherent in diversified firms, operate as advantages for fintech firms. At the same time, he argues that incumbent banks have their competitive advantages, such as large established customer bases, experience in dealing with regulators, and a broader set of product offerings.

Fintech service providers enhance competition in financial markets through delivering services provided by incumbent financial institutions more efficiently or introducing new services, but they will not replace traditional financial institutions (Navaretti et al. 2017). Incumbent banks are actively responding to the competition from fintech firms through replicating fintech models such as online lending platforms or partnering with fintech firms. Therefore, traditional financial institutions and fintech firms will likely coexist and compete (Bofondi and Gobbi 2017).

Numerous studies examine the effect of fintech development on bank performance.¹ The results are mixed. Among others, Phan et al. (2020) report that the growth of fintech firms in Indonesia negatively affects bank performance. Katsiampa et al. (2022) also report fintech firms' entry into the credit market erodes traditional Chinese banks' profitability.

Contrary to the reports above, several studies show fintech development is positively associated with the performance of financial institutions. For example, Haddad and Hornuf (2021) examine 87 countries for 2006–2018 and report that the number of fintech startup formations is significantly positively associated with profitability and stock returns of traditional financial institutions. Nguyen et al. (2022) find fintech credit significantly positively affects the risk-adjusted profitability by examining 73 countries for 2013–2018. Li et al. (2017) report the stock returns of incumbent retail banks in the United States are significantly positively related to the growth of fintech funding volume and the growth of the number of fintech deals. Ky et al. (2019) report that mobile money services significantly enhance banks' profitability in the East African Community.

Those studies examine individual countries or multiple countries in aggregate. Unlike the existing literature, we segment our sample of 91 countries into quartiles based on GDP per capita. As our primary contribution to the literature, we investigate the effect of the interaction between fintech and country income levels on bank performance. We predict the marginal contribution from fintech innovations during our sample period is greater in underdeveloped countries than in rich countries since fintech adoption was already widespread in rich countries by the time the World Bank started providing fintech development indices, and developing economies can benefit from backwardness advantage (Barsby 1969; Andersson and Axelsson 2016). Further, we make improvements over existing studies on measuring fintech levels. Prior research uses various metrics for fintech levels that potentially have multicollinearity issues in regression analyses. To properly execute the regression analyses without the interference of the multicollinearity issue, we invented a new fintech development measure, abnormal fintech (*AbFintech*).

Consistent with our prediction, we find that *AbFintech* significantly increases bank performance, primarily in less developed countries. Specifically, *AbFintech* increases ROA in the least developed countries and NIM in 75th percentile countries. Interestingly, the positive effect of *AbFintech* on NIM declines in magnitude and significance as the fintech application setting moves from the less developed to richer countries. In addition, *AbFintech* decreases the cost-to-income ratio (i.e., improves bank efficiency) in 75th percentile countries. However, there is no significant association between *AbFintech* and the income mix ratio, measured as noninterest income to total income.

We make two significant contributions to the extant literature on the effect of fintech on financial industry performance. First, we devised a new measure of fintech development, *AbFintech*, generated by regressing fintech levels on GDP per capita. *AbFintech* represents regression residuals for individual countries by year. By controlling GDP per capita in measuring fintech levels, we can measure fintech's effects on bank performance more

accurately as we avoid the multicollinearity issue in the regression analysis that arises from the high correlation between GDP per capita and fintech development. We believe this is the most sensible way of addressing our research question, whether fintech adoption has a differential impact on bank performance in distinct groups of countries with different income levels. Second, we investigate the interaction effects of *AbFintech* with the country's income category by segmenting the sample into quartiles of income levels. To our knowledge, no previous studies have examined the interaction effects of fintech and the country's income level.

This article reviews extant literature and develops hypotheses in the next section. Section 3 presents data and descriptive statistics. The research design is detailed in Section 4, and the results are provided in Section 5. Section 6 provides the implications and limitations of the study. Finally, Section 7 summarizes and concludes.

2. Literature Review and Hypothesis Development

2.1. Prior Literature

Numerous studies examine the effect of fintech on bank performance or behavior, covering individual countries (Li et al. 2017; Misati et al. 2020; Phan et al. 2020; Wang et al. 2021; Katsiampa et al. 2022; Li et al. 2022; Zhao et al. 2022), particular regions on the globe (Vives 2017; Ky et al. 2019), and many countries across the world (Haddad and Hornuf 2021; Nguyen et al. 2022). In addition, some studies examine the impact of disruptive technologies and P2P platforms on banks (Chen et al. 2019; Tang 2019). The results are mixed.

Phan et al. (2020) examine the growth in the number of fintech firms and its impact on bank performance in the Indonesian market from 1998 to 2017. They report that the growth of fintech firms negatively affects bank performance measured by ROA (return on assets), ROE (return on equity), NIM (net interest margin), and YEA (yield on earning assets). Katsiampa et al. (2022) study how the growth of exchange-listed fintech lenders in China for 2013–2019 affects banks' financial performance. They find that fintech firms' entry into the credit market erodes traditional banks' profitability measured by ROA and ROE. Zhao et al. (2022) study fintech development in China and its impact on bank performance from 2003 to 2018. Based on the fintech development index constructed by the total number of financing, they report that fintech development improves banks' capital adequacy and management efficiency but worsens asset quality and earning power. They argue that competition from the fintech industry (e.g., P2P lending) causes Chinese banks' asset quality and earning power to deteriorate.

Li et al. (2022) construct a fintech index via textual analysis of the annual reports of 36 commercial banks in China for 2003–2019 and assess the impact of fintech on the revenue margin of commercial banks. They examine the four dimensions of fintech, including technology basis (represented by the keywords of big data, cloud computing, AI, blockchain, and biometrics), electronic communication (E-banks and online banks), electronic financing (Internet lending and network financing), and electronic payment (mobile payment). Their findings are mixed in the sense that technological basis has a significantly negative effect on the performance of commercial banks, whereas electronic payment has a positive impact. Li et al. (2017) investigate the impact of digital banking startups on the stock returns of traditional banks using the data of the US digital banking startups (funding volume and the number of deals) and the US retail banks from 2010 to 2016. They find that the stock returns of incumbent retail banks are significantly positively associated with the fintech funding growth and the number of fintech deals. They argue that the results present no evidence of incumbents' value destruction by the growth of the fintech industry but rather that the fintech industry has a positive spillover to the traditional retail banking industry.

Misati et al. (2020) examine the effect of fintech services on bank performance in Kenya from 2009 to 2018. They use the value of mobile transactions and the number of

mobile accounts to measure the level of fintech services. When all banks are examined, the value of mobile transactions is positively related to the banks' ROE, whereas the effect of the number of mobile accounts is insignificant. However, when the sample is segmented into groups of large, medium, and small banks, the positive effect of the value of mobile transactions on bank profitability is most pronounced for large banks. For small banks, the impact of the mobile transaction value is insignificant. In contrast, the number of mobile accounts negatively affects the banks' ROE during the interest-rate capping period in the later sample period, September 2016 to June 2018.

Wang et al. (2021) assess the impact of fintech on the Chinese banking industry from 2008 to 2017. Their fintech development indicators include big data, artificial intelligence, distributed technology, the interconnectedness of technology, and technology security. They report that fintech development improves the total factor productivity² of Chinese commercial banks. They argue fintech helps reduce bank operating costs, improves service efficiency, strengthens risk control capabilities, and creates enhanced customer-oriented business models.

Ky et al. (2019) study the effect of mobile money services of banks on their performance in the East African Community (Burundi, Kenya, Rwanda, Tanzania, and Uganda) from 2009 to 2015. They report significantly positive relationships between mobile money services and banks' profitability measured by ROA, ROE, and Z-score. Also, they document a significantly negative association between mobile money services and banks' efficiency, measured using the cost-to-income ratio. Vives (2017) notes that mobile-based payment services significantly impact countries where a small percentage of people own a current account at a bank. In African countries, people have greater access to a mobile phone than a traditional bank account, and thus, these countries are becoming testing grounds for new payment systems.

Haddad and Hornuf (2021) examine the effect of the number of fintech startups on the performance of financial institutions in 87 countries from 2006 to 2018. They report that an increase in fintech startups positively affects incumbent financial institutions' performance, while its impact has declined recently. Specifically, the number of fintech startups is positively associated with ROA, ROE, NIM, and stock returns of traditional financial institutions. However, the fintech startups' positive impact has been weakened during 2012–2018 compared to 2005–2011. They also report that large financial institutions most benefited from fintech startup formations, while there is no evidence of benefits for small financial institutions. Nguyen et al. (2022) examine the relationship between fintech credit and bank performance in 73 countries from 2013 to 2018. They measure fintech credit by the ratio of credit provided by fintech to GDP and bank performance by ROA, ROE, risk-adjusted ROA and risk-adjusted ROE. Risk adjustment is made by dividing the performance by its standard deviation. They find that fintech credit is negatively related to the banks' ROE but positively related to the risk-adjusted ROA and ROE. They argue that fintech lenders chip away some profits from incumbent banks but also benefit banks in terms of improved stability.

Chen et al. (2019) study the value of fintech innovation by constructing a data set of fintech patent applications over the 2003–2017 period based on the Bulk Data Storage System (BDSS) of the United States Patent and Trademark Office (USPTO). They report that fintech innovations are valuable to the financial sector as a whole, while certain fintech innovations negatively impact some financial industries. For example, mobile transaction innovations negatively affect the banking industry in terms of stock market responses but positively affect the payments industry. When innovations involve disruptive technologies from young nonfinancial startups, they affect financial industries more negatively. They also find that market leaders suffer less from disruptive innovation due to their enormous financial resources and technical economies of scale, enabling them to invest heavily in their own innovation. Chen et al. (2019) shed light on empirical tests of theories on how innovation from outside of an industry can harm or benefit incumbent firms (Lieberman and Montgomery 1988; Henderson and Cockburn 1996; Christensen 1997; Adner 2012) and on how incumbents can protect themselves from outside threats by using their own innovation (Dasgupta and Stiglitz 1980; Gilbert and Newbery 1982; Aghion et al. 2001; Aghion and Griffith 2005).

Tang (2019) examines whether P2P platforms and banks are substitutes or complements in the consumer credit market using data from LendingClub's website for P2P loans from 2009 to 2012 and Call Reports for bank data. Tang finds deterioration in P2P borrower quality as borrowers migrating from banks to P2P platforms due to reduced credit supply by banks are of worse quality than existing P2P borrowers, indicating P2P platforms act as substitutes for banks. However, Tang also finds that bank borrowers migrating to P2P platforms applied for larger loans than existing P2P borrowers, suggesting P2P platforms operate as complements to banks in the small loan market. Table 1 summarizes prior literature.

Authors	Sample and Period	Methodology	Major Findings
Phan et al. (2020)	Indonesia (1998–2017)	Regression analysis	The growth of fintech firms negatively affects bank performance (ROA, ROE, NIM, YEA).
Katsiampa et al. (2022)	China (2013–2019)	Regression analysis	Fintech firms' entry into the credit market erodes traditional banks' profitability (ROA, ROE).
Zhao et al. (2022)	China (2003–2018)	Two-step system with dynamic GMM estimator, dynamic panel threshold model	Fintech development improves banks' capital adequacy and management efficiency but worsens asset quality and earning power.
Li et al. (2022)	China (2003–2019)	Textual analysis for fintech, regression analysis	Technological basis negatively affects the performance of commercial banks; electronic payment has a positive impact.
Li et al. (2017)	USA (2010–2016)	Regression analysis augmented by Fama-French three- and five-factor models	Stock returns of incumbent retail banks are positively affected by the fintech funding growth and the number of fintech deals.
Misati et al. (2020)	Kenya (2009–2018)	Regression analysis	The value of mobile transactions is positively related to the banks' ROE.
Wang et al. (2021)	China (2008–2017)	Regression analysis	Fintech development improves the total factor productivity of Chinese commercial banks.
Ky et al. (2019)	East African Community (Burundi, Kenya, Rwanda, Tanzania, and Uganda) (2009–2015)	Panel data fixed effects regression	Positive relationships exists between mobile money services and banks' profitability (ROA, ROE, Z-score).
Haddad and Hornuf (2021)	87 countries (2006–2018)	Two-step GMM dynamic panel estimator	An increase in fintech startups positively affects incumbent financial institutions' performance (ROA, ROE, NIM).
Nguyen et al. (2022)	73 countries (2013–2018)	Regression analysis	Fintech credit is negatively related to the banks' ROE but positively related to the risk-adjusted ROA and ROE.
Chen et al. (2019)	USA (2003–2017)	Supervised machine learning, regression analysis	Fintech innovations are valuable to the financial sector as a whole.
Tang (2019)	USA (2009–2012)	Regression analysis	P2P platforms act as substitutes for as well as complements to banks.

 Table 1. Summary of literature on fintech and bank performance.

All these previous studies examine the relationship between fintech development and bank performance for individual countries or multiple countries in aggregate (see Table 1). However, unlike the existing literature, we segment our sample into four groups based on GDP per capita and investigate if fintech's effects on bank performance varies depending on the level of economic development.

2.2. Testable Hypotheses

Our test period covers relatively recent years of 2014, 2017, and 2021, when the World Bank's global fintech development indicators are publicly available. Since fintech innovations had already widely permeated advanced countries by the time the World Bank started announcing global fintech indices and developing countries have an advantage of backwardness (Barsby 1969; Andersson and Axelsson 2016), the marginal contribution from fintech innovations is expected to be greater in underdeveloped countries than in rich countries for our sample period. Also, when it comes to the financial performance of banks impacted by fintech development worldwide, the interaction effects between fintech levels and countries' income levels need to be considered. Hence, we hypothesize abnormal fintech levels' interaction effects with the country's income category differ in affecting bank performance globally. Specifically, we test the following three hypotheses for bank performance indicators.

Hypothesis 1 (H1). *Interaction effects between per capita GDP and fintech have differential impacts on bank profitability across the globe.*

Hypothesis 2 (H2). *Interaction effects between per capita GDP and fintech have differential impacts on bank income mix across the world.*

Hypothesis 3 (H3). Interaction effects between per capita GDP and fintech have differential impacts on bank cost-to-income ratios worldwide.

By testing these hypotheses, we contribute to the literature where existing studies do not consider the interaction effects and the backwardness issue of fintech innovation.

3. Data

3.1. Data Source and Bank Performance Metrics

We collected the data from the World Bank Global Findex Database³. The World Bank started providing global fintech development indicators in 2014 and updated them twice in 2017 and 2021. Fintech metrics include, among others, 'Made or received a digital payment,' Made a digital payment,' 'Made a utility payment: using a mobile phone,' 'Sent domestic remittances: through a mobile phone,' 'Made a digital in-store merchant payment: using a mobile phone,' 'mobile money account,' and 'Individuals using the Internet' for various age categories, gender groups, and income levels for 126 countries, though some countries have missing values. Considering data availability and representativeness, we use 'Made or received a digital payment (%, age 15+) (series code: g20.t.d)' as a proxy for fintech to examine the impact of fintech on bank performances across the world.⁴

We use conventional bank performance metrics as dependent variables, measured by return on assets after tax (ROA) (series code: GFDD.EI.05) and net interest margin (NIM) (series code: GFDD.EI.01) (Dietrich and Wanzenried 2014; Shaban and James 2018). We also investigate how fintech development affects banks' income mix and cost-to-income ratios. Income mix is defined as noninterest income to total income (series code: GFDD.EI.03). Banks' cost-to-income ratio is defined as operating expenses to the sum of net interest income and other operating income (series code: GFDD.EI.07) and commonly used to measure bank efficiency (Pasiouras and Kosmidou 2007; Dietrich and Wanzenried 2014). We also collect country statistics from the World Bank Database to control country characteristics. See Appendix A for variables and definitions.

3.2. Sample

We start with 115 countries, subject to data availability on fintech, bank performance, and control variables in all three years of 2014, 2017, and 2021. We delete countries if key fintech, bank performance, and control variables are unavailable in the three years.

The filtering process left us with a final sample of 91 countries. Therefore, we have 273 country-year observations for analyses from 91 countries in the three years.

3.3. Descriptive Statistics and Correlation Matrix

Table 2 shows descriptive statistics for the variables of interest, including bank performance, fintech, and macroeconomic variables. The mean bank performance measured by ROA and NIM was 1.1 percent and 3.8 percent during our sample period, respectively. As expected, interest is a dominant source of income for banks, indicated by the ratio of noninterest income to total income, with less than 40 percent on average. The cost-to-income ratio is 56 percent on average. Bank performance measures show much less variation worldwide than income mix or cost-to-income ratio. The global fintech levels average 62 percent. The fintech levels (untabulated) rapidly rose globally at 54 percent, 62 percent, and 70 percent in 2014, 2017, and 2021, respectively.

Table 2.	Descriptive statistics	(n = 273))
----------	------------------------	-----------	---

Measure	Mean	Median	S.D.	Min.	Max.
Return on assets (ROA, %)	1.09	0.99	1.14	-5.84	6.74
Net interest margin (NIM, %)	3.80	3.17	2.63	0.17	14.11
Income mix (%)	37.66	34.37	13.02	10.71	79.01
Cost-to-income (%)	55.97	55.61	11.76	26.15	94.50
Fintech (%)	61.66	63.66	28.87	4.17	100.00
AbFintech (%)	0.00	1.91	14.29	-43.17	51.45
Population (Natural log of millions)	2.85	2.80	1.53	-0.83	7.25
Inflation (%)	5.60	3.32	9.70	-2.84	113.29
GDP Growth (%)	4.16	3.96	3.56	-20.74	15.34

Notes: Return on assets = after-tax net income/total assets; net interest margin = net interest income/interestbearing assets; income mix = noninterest income/total income = noninterest income/(net interest income + noninterest income); cost-to-income = operating expenses/total income. We do not use Fintech in the analyses. It is shown here for information purposes only.

The correlation matrix (Table 3) shows negative correlations between bank performance (ROA and NIM) and fintech. In contrast, the correlation between income mix and fintech is positive. Fintech correlates positively with cost-to-income ratio, indicating fintech increases cost. The correlation coefficients for the entire sample indicate that fintech negatively affects bank performance. Suppose we use fintech as a key explanatory variable to investigate fintech's effect on bank performance. In that case, we have an omitted variable issue, not adequately controlling the high correlation between fintech levels and GDP levels. Also, if we include both fintech and GDP levels as explanatory variables, we have a serious multicollinearity issue. Thus, we use abnormal fintech (*AbFintech*, elaborated in Section 4.2) to address multicollinearity issues and correctly detect fintech's impact on bank performance. *AbFintech* has a zero average by construction since it represents the average of the regression residuals (Table 2).

Table 3.	Correlation matrix	(<i>n</i> =	273).
		`	

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(2)	0.59							
(3)	-0.13	-0.30						
(4)	-0.29	-0.05	0.43					
(5)	-0.29	-0.56	0.27	0.09				
(6)	0.05	0.04	0.12	0.04	0.49			
(7)	0.02	0.02	-0.04	-0.05	-0.19	-0.01		
(8)	0.30	0.45	0.06	-0.08	-0.19	0.02	0.10	
(9)	0.20	0.13	-0.15	-0.08	-0.04	-0.06	-0.07	0.08

(1) ROA, (2) NIM, (3) income mix, (4) cost-to-income ratio, (5) fintech, (6) AbFintech, (7) population, (8) inflation, (9) GDP growth.

3.4. Differences in Bank Performance by Quartile Groups

Table 4 reports differences in bank profitability, income mix, and cost-to-income ratio across four quartile groups based on GDP per capita before considering the abnormal fintech levels. Panel A shows bank performance and variation decline as we move from the least developed to the most developed country group. ROA for the first quartile countries (the least developed) is more than two times that of the fourth quartile countries (the most developed), while NIM for Q1 countries is more than four times that of Q4 countries. On the other hand, less developed countries show greater variation in ROA and NIM compared with advanced economies. Interestingly, the richest countries earn the largest noninterest income mix is 8 (10) percentage points higher. The income mix indicates that banks in less developed countries rely more heavily on interest income than in advanced economies. There is minimal variation in cost-to-income ratios across the quartile groups.

Table 4. Bank performance by quartile groups and mean difference tests. Panel (A): bank performance comparison among quartile groups (unit: %); Panel (B): mean difference tests for performance between Q1 (poor) and Q4 (rich) country groups.

				(A)					
	Classification of Countries into Quartile Groups Based on GDP Per Capita									()
Measure	Q1 (Pc	or)	Q2		Q3	5	Q4 (Ri	ch)	10	tal
-	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.
ROA	1.64	1.37	1.25	1.23	0.80	1.05	0.67	0.38	1.09	1.14
NIM	5.97	3.05	4.72	1.98	3.02	1.51	1.46	0.66	3.80	2.63
Income mix	35.37	12.57	33.90	11.15	37.78	12.84	43.86	13.50	37.66	13.03
Cost-to-income	55.38	10.41	53.54	11.41	56.66	11.32	58.79	13.43	55.97	11.76
	(B)									
Measure	Grou	ıp	n		Mea	in	S.D.		t-Stat	<i>p</i> -Value
DOA	Q1		69	69 1.64		1.37		F 70	0.000	
KUA	Q4		66		0.67		0.38		5.70	0.000
	Q1		69		5.9	97	3.05		10.00	0.000
INIM	Q4	Q4		66		1.46		0.66		0.000
T	Q1		69		35.37		12.57		2 79	0.000
Income mix	Q4		66		43.8	36	13.50)	-3.78	0.000
Cool to in const	Q1		69		55.3	38	10.41		1.64	0.052
Cost-to-income	Q4		66		58.7	58.79		13.43		0.052

Notes: ROA = after-tax net income/total assets; NIM = net interest income/interest-bearing assets; income mix = noninterest income/total income; cost-to-income = operating expenses/total income.

Panel B reports the mean differences in profitability, income mix, and cost-to-income ratios between the Q1 and Q4 country groups. The results show differences between the Q1 and Q4 groups are highly significant, except for the cost-to-income ratio. The difference in the cost-to-income ratios between Q1 and Q4 is marginally significant.

4. Research Design

4.1. Control Variables

The control variables are: population (modified by taking the natural logarithm of one million people; code: SP.POP.TOTL), inflation (%) (GDP deflator; code: NY.GDP.DEFL.KD. ZG), GDP growth (%) (code: NY.GDP.MKTP.KD.ZG), GDP per capita (modified by taking natural logarithm; code: NY.GDP.PCAP.CD), and year dummies (YD1 for 2017, YD2 for 2021). We select those variables to control distinct country characteristics while avoiding multicollinearity issues. In addition, we examined many alternative control variables, including political, cultural, and legal variables and industry structure. Specifically, we

considered control of corruption, government effectiveness, political stability and absence of violence/terrorism, regulatory quality, rule of law, voice and accountability, and primary industry's (agriculture, forestry, and fishing) share in the GDP. However, they are highly related to each other and to GDP per capita and fintech levels as well. Therefore, we decided not to include them as control variables.⁵

4.2. Multicollinearity Issues and Abnormal Fintech

We use 'Made or received a digital payment (%, age 15+)' as a proxy for original fintech. Then, we regress fintech levels on GDP per capita by year and use the regression residuals to estimate abnormal fintech levels (*AbFintech*) as follows:

$$AbFintech_{ct} = Fintech_{ct} - (\alpha_0 + \alpha_1 GDP \ per \ capita_{ct}) \tag{1}$$

where *c* stands for individual countries and *t* stands for 2014, 2017, and 2021, respectively.

The reason for using regression residuals as estimated abnormal fintech is because fintech levels correlate highly with GDP per capita (correlation coefficient = 0.87). A high positive correlation coefficient is expected since fintech levels would be high (low) for countries with high (low) GDP per capita.⁶

4.3. Contemporaneous Regression Model

We assume that the abnormal fintech levels in the current year affect bank performance in the same year. In other words, we ignore the lagged effect of fintech levels on bank performance. The contemporaneous model enables us to use all the data provided in the World Bank Database for 2014, 2017, and 2021. The contemporaneous regression model is as follows:

$$Y = \beta_0 + \beta_1 AbFintech + \beta_2(Q1 \times AbFintech) + \beta_3(Q2 \times AbFintech) + \beta_4(Q3 \times AbFintech) + \beta_5 Population + \beta_6 Inflation + \beta_7 GDP growth + \beta_8 YD1 (2) + \beta_9 YD2 + \varepsilon$$

In this model, the Q4 quartile (the richest) group is a default group to which the three other groups' differential impact on bank performance is tested. See Appendix B for the list of countries in GDP per capita quartiles.

5. Results

5.1. Analyses of Bank Performance

The regression results with ROA after tax as a dependent variable (Panel A of Table 5) show that *AbFintech* does not affect banks' ROA. However, when interactions of *AbFintech* with income levels are considered, the results become significant for one income category. More specifically, *AbFintech* significantly increases ROA for banks in the first-quartile countries (the least developed countries) compared to banks in the fourth-quartile countries (the richest countries). On the other hand, the impact of *AbFintech* on ROA in second-and third-quartile countries is insignificant and indistinguishable from that of the fourth-quartile countries. Also, inflation and GDP growth positively affect ROA, consistent with the earlier studies on bank performance and its determinants (Demirgüç-Kunt and Huizinga 1999; Athanasoglou et al. 2008).

Panel B of Table 5 reports the factors that affect banks' NIM (net interest margin) globally. While *AbFintech* significantly decreases NIM ($\beta_1 = -0.126$ and t = -3.172) in the fourth-quartile countries, it significantly positively affects NIM at the conventional level in the first and second quartile countries. The effect of *AbFintech* in the third quartile countries is marginally significant. The declining coefficient and significance of the *AbFintech* effect in the first (0.225 at the 1% level), second (0.097 at the 5% level), and third quartile countries (0.078 at the 10% level) indicate that the marginal benefit from adopting fintech innovation wears out as the fintech application setting moves to the richer countries. Inflation and GDP growth positively affect NIM. Also, NIM has decreased over time, as evidenced by

the significant negative coefficient of YD2 (-1.248), indicating a significantly lower NIM in 2021 than in 2014. Overall, the results for less developed countries in Table 5 are consistent with the previous studies that report positive effects of fintech on the bank performance (Ky et al. 2019; Misati et al. 2020; Haddad and Hornuf 2021).

Table 5. Bank profitability. Panel (A): ROA after tax as a dependent variable; Panel (B): NIM as a dependent variable.

		(A)			
	Coefficients	S.E.	t-Stat	<i>p</i> -Value	Adj. R ²
Intercept	0.644	0.176	3.655	0.000	0.166
AbFintech	-0.028	0.020	-1.394	0.165	
Q1*AbFintech	0.057	0.021	2.671	0.008	
Q2*AbFintech	0.028	0.022	1.301	0.194	
Q3*AbFintech	0.010	0.022	0.472	0.637	
Population	0.007	0.042	0.156	0.876	
Inflation	0.028	0.007	4.092	0.000	
GDP growth	0.062	0.019	3.343	0.001	
YD1	0.150	0.155	0.964	0.336	
YD2	-0.119	0.166	-0.718	0.473	
		(B)			
	Coefficients	S.E.	t-Stat	<i>p</i> -Value	Adj. R ²
Intercept	3.117	0.347	8.979	0.000	0.389
AbFintech	-0.126	0.040	-3.172	0.002	
Q1*AbFintech	0.225	0.042	5.347	0.000	
Q2*AbFintech	0.097	0.043	2.262	0.025	
Q3*AbFintech	0.078	0.044	1.795	0.074	
Population	0.012	0.083	0.150	0.881	
Inflation	0.105	0.013	7.771	0.000	
GDP growth	0.111	0.037	3.009	0.003	
YD1	-0.083	0.306	-0.270	0.787	
YD2	-1.248	0.327	-3.821	0.000	

Table 6 reports how the income mix (noninterest income/total income) is affected by various factors globally. We find that *AbFintech* does not affect income mix no matter what the country's wealth level is. There is no differential interaction effect of per capita income levels with the fintech development on the income mix ratio. GDP growth negatively affects the ratio, while 2021 marginally positively affects the ratio.

Table 6. Income mix as a dependent variable.

	Coefficients	S.E.	t-Stat	<i>p</i> -Value	Adj. R ²
Intercept	39.130	2.173	18.008	0.000	0.027
AbFintech	0.089	0.248	0.359	0.720	
Q1*AbFintech	0.002	0.264	0.007	0.994	
Q2*AbFintech	-0.030	0.269	-0.110	0.912	
Q3*AbFintech	0.060	0.272	0.222	0.825	
Population	-0.481	0.516	-0.931	0.353	
Inflation	0.089	0.084	1.058	0.291	
GDP growth	-0.690	0.230	-3.002	0.003	
YD1	2.760	1.917	1.439	0.151	
YD2	3.891	2.044	1.904	0.058	

Table 7 reports the factors associated with banks' cost-to-income ratios globally. The results reveal that *AbFintech* increases the cost-to-income ratio (i.e., worsens bank efficiency) in the richest countries, while significantly decreasing the ratio (i.e., improving bank

efficiency) in less wealthy countries. Interestingly, the *AbFintech*'s effect of improving the cost-to-income ratio gets stronger and more significant as the fintech application setting moves from the first quartile countries (-0.510 at the 5% level) to the second quartile countries (-0.649 at the 1% level) and the third quartile countries (-0.677 at the 1% level).

	Coefficients	S.E.	t-Stat	<i>p</i> -Value	Adj. R ²
Intercept	58.383	1.973	29.587	0.000	0.016
AbFintech	0.600	0.225	2.666	0.008	
Q1*AbFintech	-0.510	0.239	-2.131	0.034	
Q2*AbFintech	-0.649	0.244	-2.657	0.008	
Q3*AbFintech	-0.677	0.247	-2.738	0.007	
Population	-0.519	0.469	-1.107	0.269	
Inflation	-0.089	0.076	-1.167	0.244	
GDP growth	-0.223	0.209	-1.066	0.287	
YD1	-0.677	1.741	-0.389	0.698	
YD2	0.755	1.856	0.407	0.684	

Table 7. Cost-to-income ratio as a dependent variable.

In sum, we find that *AbFintech* favorably affects banks' performance, primarily in less developed countries, as predicted. Specifically, *AbFintech* increases ROA in the least developed countries and net interest margin in 75th percentile countries. In addition, *AbFintech* decreases the cost-to-income ratio of banks (improves efficiency) in 75th percentile countries, while it increases the ratio (worsens efficiency) in the richest countries. However, there is no significant association between *AbFintech* and the income mix ratio, measured as noninterest income to total income.

Our analysis results lead to important policy implications. Banks in less developed countries benefit the most from investing in fintech innovation, particularly in digital payments, since banks can provide a broader customer base, including formerly unbanked or underbanked customers, with more convenient services at lower costs. Various studies indicate fintech can potentially increase financial inclusion (Alliance for Financial Inclusion 2018; Makina 2019; Arner et al. 2020; Beck 2020; Hollanders 2020; Chen and Yoon 2022; Sahay et al. 2022).

5.2. Robustness Checks

Table 8 reports regression results by quartile group. Panel A shows *AbFintech* significantly increases banks' ROA in the least developed countries while *AbFintech* marginally decreases ROA in the most developed countries. Panel B shows *AbFintech* increases NIM only in the least developed countries. In the third and fourth quartile countries, *AbFintech* decreases NIM. In Panel C, we find no significant association between *AbFintech* and income mix in any quartile group countries. We also find that the cost-to-income ratio is insensitive to *AbFintech* in all the quartile groups (Panel D). Overall, the results are qualitatively compatible with the previous analyses except for the cost-to-income ratio.

We also implemented regression analyses using lagged *AbFintech* (results not tabulated for the sake of space). We found qualitatively similar results to the contemporaneous regression analyses except for the effect of lagged *AbFintech* on the cost-to-income ratio. The cost-to-income ratio regression fails to produce any significant coefficients.

Table 8. Robustness checks: regressions by quartile group. Panel (A): ROA as a dependent variable;
Panel (B): NIM as a dependent variable; Panel (C): income mix as a dependent variable; Panel (D):
cost-to-income ratio as a dependent variable.

						(A)						
	Q1	(Low Incor	ne)		Q2			Q3		Q4 (High Inco	me)
	Coeff	t-Stat	p-Value	Coeff	t-Stat	p-Value	Coeff	t-Stat	p-Value	Coeff	t-Stat	p-Value
Intercept AbFintech Population Inflation GDP growth YD1 YD2	$\begin{array}{r} 2.28 \\ 0.03 \\ -0.26 \\ 0.01 \\ 0.08 \\ -0.38 \\ -0.38 \end{array}$	$\begin{array}{r} 4.37\\ 2.77\\ -2.13\\ 1.35\\ 2.59\\ -1.02\\ -0.98\end{array}$	$\begin{array}{c} 0.00\\ 0.01\\ 0.04\\ 0.18\\ 0.01\\ 0.31\\ 0.33\end{array}$	$\begin{array}{c} 0.77 \\ 0.00 \\ -0.01 \\ 0.00 \\ 0.08 \\ 0.44 \\ 0.07 \end{array}$	$ \begin{array}{r} 1.82\\ 0.26\\ -0.10\\ 0.19\\ 1.41\\ 1.12\\ 0.13\\ \end{array} $	$\begin{array}{c} 0.07 \\ 0.79 \\ 0.92 \\ 0.85 \\ 0.16 \\ 0.27 \\ 0.89 \end{array}$	$\begin{array}{r} 0.10 \\ -0.01 \\ -0.01 \\ 0.09 \\ 0.06 \\ 0.31 \\ -0.18 \end{array}$	$\begin{array}{r} 0.33 \\ -0.93 \\ -0.09 \\ 4.10 \\ 1.34 \\ 1.06 \\ -0.47 \end{array}$	$\begin{array}{c} 0.74 \\ 0.36 \\ 0.93 \\ 0.00 \\ 0.18 \\ 0.29 \\ 0.64 \end{array}$	$\begin{array}{r} 0.48 \\ -0.01 \\ -0.05 \\ 0.04 \\ 0.10 \\ 0.12 \\ -0.27 \end{array}$	$\begin{array}{r} 3.32 \\ -1.96 \\ -1.49 \\ 2.46 \\ 3.52 \\ 1.22 \\ -1.91 \end{array}$	$\begin{array}{c} 0.00 \\ 0.06 \\ 0.14 \\ 0.02 \\ 0.00 \\ 0.23 \\ 0.06 \end{array}$
Adi R ²		0.217			-0.032			0.226			0.328	
						(B)						
	Q1	(Low Incor	ne)		Q2			Q3		Q4 (High Inco	me)
-	Coeff	t-Stat	<i>p</i> -Value	Coeff	t-Stat	p-Value	Coeff	t-Stat	p-Value	Coeff	t-Stat	p-Value
Intercept AbFintech Population Inflation GDP growth YD1 YD2	$\begin{array}{c} 8.91 \\ 0.08 \\ -0.91 \\ 0.06 \\ 0.09 \\ -0.69 \\ -1.96 \end{array}$	$10.01 \\ 5.19 \\ -4.42 \\ 3.65 \\ 1.87 \\ -1.09 \\ -3.00$	0.00 0.00 0.00 0.00 0.07 0.28 0.00	$\begin{array}{r} 4.21 \\ -0.01 \\ -0.11 \\ 0.06 \\ 0.20 \\ 0.15 \\ -1.50 \end{array}$	$\begin{array}{r} 6.62 \\ -0.51 \\ -0.79 \\ 1.85 \\ 2.44 \\ 0.26 \\ -2.02 \end{array}$	$\begin{array}{c} 0.00\\ 0.61\\ 0.43\\ 0.07\\ 0.02\\ 0.80\\ 0.05 \end{array}$	$\begin{array}{c} 2.79 \\ -0.05 \\ -0.10 \\ 0.11 \\ -0.04 \\ 0.39 \\ -0.24 \end{array}$	$\begin{array}{r} 8.46 \\ -4.84 \\ -1.15 \\ 4.92 \\ -0.70 \\ 1.24 \\ -0.56 \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.25\\ 0.00\\ 0.48\\ 0.22\\ 0.57\end{array}$	$\begin{array}{c} 0.57 \\ -0.03 \\ 0.17 \\ 0.07 \\ 0.17 \\ -0.01 \\ -0.70 \end{array}$	$\begin{array}{r} 2.17 \\ -2.57 \\ 2.80 \\ 2.39 \\ 3.15 \\ -0.05 \\ -2.72 \end{array}$	$\begin{array}{c} 0.03\\ 0.01\\ 0.01\\ 0.02\\ 0.00\\ 0.96\\ 0.01\\ \end{array}$
Adj R ²		0.543			0.101			0.558			0.263	
						(C)						
	Q1 ((Low Incor	ne)		Q2			Q3		Q4 (High Inco	me)
	Coeff	t-Stat	<i>p</i> -Value	Coeff	t-Stat	p-Value	Coeff	t-Stat	p-Value	Coeff	t-Stat	<i>p</i> -Value
Intercept AbFintech Population Inflation GDP growth YD1 YD2	$\begin{array}{r} 39.53 \\ 0.10 \\ -0.41 \\ 0.12 \\ -0.60 \\ -0.61 \\ -3.79 \end{array}$	$7.38 \\ 1.06 \\ -0.33 \\ 1.19 \\ -1.98 \\ -0.16 \\ -0.96$	$\begin{array}{c} 0.00 \\ 0.29 \\ 0.74 \\ 0.24 \\ 0.05 \\ 0.87 \\ 0.34 \end{array}$	$\begin{array}{c} 37.00 \\ -0.02 \\ -0.48 \\ 0.46 \\ -1.16 \\ -0.56 \\ 1.69 \end{array}$	$\begin{array}{c} 10.21 \\ -0.21 \\ -0.60 \\ 2.54 \\ -2.52 \\ -0.17 \\ 0.40 \end{array}$	$\begin{array}{c} 0.00 \\ 0.83 \\ 0.55 \\ 0.01 \\ 0.01 \\ 0.87 \\ 0.69 \end{array}$	$\begin{array}{c} 35.93 \\ 0.19 \\ -0.60 \\ 0.51 \\ -0.22 \\ 2.77 \\ 2.39 \end{array}$	$\begin{array}{c} 8.59 \\ 1.61 \\ -0.57 \\ 1.72 \\ -0.34 \\ 0.69 \\ 0.44 \end{array}$	$\begin{array}{c} 0.00\\ 0.11\\ 0.57\\ 0.09\\ 0.74\\ 0.49\\ 0.66\end{array}$	$\begin{array}{r} 45.79 \\ -0.40 \\ -0.66 \\ -1.32 \\ -1.04 \\ 8.12 \\ 13.06 \end{array}$	$7.36 \\ -1.31 \\ -0.46 \\ -1.90 \\ -0.83 \\ 1.90 \\ 2.13$	$\begin{array}{c} 0.00\\ 0.19\\ 0.65\\ 0.06\\ 0.41\\ 0.06\\ 0.04 \end{array}$
Adj R ²		0.026			0.084			0.015			0.013	
						(D)						
	Q1	(Low incor	ne)		Q2			Q3		Q4 (High inco	ne)
	Coeff	t-Stat	<i>p</i> -Value	Coeff	t-Stat	p-Value	Coeff	t-Stat	p-Value	Coeff	t-Stat	<i>p</i> -Value
Intercept AbFintech Population Inflation GDP growth YD1 YD2 Adi R ²	$\begin{array}{c} 68.34 \\ 0.05 \\ -2.70 \\ -0.11 \\ -0.26 \\ 0.62 \\ -3.63 \end{array}$	$ \begin{array}{r} 15.97\\ 0.68\\ -2.73\\ -1.33\\ -1.07\\ 0.20\\ -1.16\\ \hline 0.097\\ \end{array} $	$\begin{array}{c} 0.00\\ 0.50\\ 0.01\\ 0.19\\ 0.29\\ 0.84\\ 0.25 \end{array}$	$55.93 \\ -0.10 \\ -1.48 \\ 0.18 \\ -0.04 \\ -0.89 \\ 0.96$	$\begin{array}{r} 14.34 \\ -1.08 \\ -1.72 \\ 0.94 \\ -0.09 \\ -0.24 \\ 0.21 \end{array}$	$\begin{array}{c} 0.00 \\ 0.28 \\ 0.09 \\ 0.35 \\ 0.93 \\ 0.81 \\ 0.83 \end{array}$	$\begin{array}{c} 60.46 \\ -0.10 \\ -1.38 \\ -0.07 \\ -0.55 \\ 0.96 \\ 4.07 \end{array}$	$ \begin{array}{r} 15.93 \\ -0.92 \\ -1.44 \\ -0.26 \\ -0.95 \\ 0.26 \\ 0.83 \\ \hline -0.045 \end{array} $	$\begin{array}{c} 0.00 \\ 0.36 \\ 0.16 \\ 0.80 \\ 0.35 \\ 0.79 \\ 0.41 \end{array}$	$54.71 \\ 0.12 \\ 3.62 \\ -1.60 \\ -1.65 \\ -1.53 \\ 7.43$	$ \begin{array}{r} 10.00 \\ 0.44 \\ 2.86 \\ -2.62 \\ -1.51 \\ -0.41 \\ 1.38 \\ \hline 0.229 \end{array} $	$\begin{array}{c} 0.00\\ 0.66\\ 0.01\\ 0.01\\ 0.14\\ 0.69\\ 0.17\end{array}$
лијк		0.077			0.015			0.040			0.22)	

6. Implications and Limitations

Fintech significantly affects traditional banks in terms of competition, customer service, banking costs, and security of financial transactions. First, fintech increases competition as fintech startups enter the financial services market, offering new and innovative services that challenge traditional banking models. Incumbent banks have to adapt and develop their technological solutions to remain competitive. Second, fintech makes it easier for customers to access financial services and complete transactions online, leading to greater convenience and satisfaction. Incumbent banks must improve their digital offerings to keep pace with customer expectations. Third, fintech improves the speed and accuracy of financial transactions, reducing banks' costs and improving overall performance. Lastly, fintech brings new security measures, such as authentication and blockchain technology, which are used to safeguard transactions. In sum, fintech potentially contributes to banks' performance by enabling banks to broaden services and improve efficiency.

Our study makes methodological contributions to the literature by introducing the abnormal fintech metric. As shown in Table 3, the simple correlation coefficients potentially

falsely indicate that fintech negatively affects bank performance since GDP per capita is not considered. Therefore, we may reach invalid conclusions if we do not use the abnormal fintech measure. *AbFintech* can be applied in future research to assess fintech's differential effects on bank performance worldwide. We elaborate on the need for using *AbFintech* by noting multicollinearity issues with using many interrelated variables, such as GDP per capita and legal and cultural variables, as control variables in a global setting. For example, GDP per capita highly correlates with variables such as rule of law, regulatory quality, control of corruption, transparency, government effectiveness, industry composition, and, most importantly, fintech levels. So, the use of *AbFintech* is not just to measure the information content of fintech but also to overcome multicollinearity issues in comparative studies involving many countries.

In addressing fintech's impact on global bank performance, we used World Bank data, which has been publicly available since 2014. We show that the World Bank's financial development variables can be a valuable data source for analyzing differences in global banking industries and possible policy implications for individual countries. We are unaware of other studies using World Bank data for global bank performance analyses.

Our study provides a policy implication that banks in less developed countries benefit most from investing in fintech innovation. It is because fintech provides a broader customer base, including formerly unbanked or underbanked customers, with more convenient services at affordable costs.

Our study has some limitations. First, fintech must have affected bank performance in developed countries earlier. However, we did not investigate fintech's impact on bank performance before the World Bank started providing fintech development indices. Second, we did not address the security issues brought by fintech developments since we only focused on fintech's impact on bank performance. Hence, fintech's impact on banking security measures is left for future studies. Lastly, the proxy for fintech in our study (Made or received a digital payment, %, age 15+) is one of many possible proxies. However, we believe it is a reasonable proxy for fintech because the largest number of fintech firms is in the payments category (Stulz 2022).

7. Conclusions and Future Research

We examine how fintech development affects bank performance using the data of 91 countries collected from the World Bank Database for 2014, 2017, and 2021. Unlike the existing literature, we segment our sample into quartiles based on GDP per capita and investigate the effect of interaction between fintech and country income levels on bank performance. We devise a new measure of fintech development, i.e., abnormal fintech (*AbFintech*) generated by regressing fintech levels on GDP per capita. We predict the marginal contribution from fintech innovations is greater in underdeveloped countries than in developed countries.

Consistent with our prediction, we find that *AbFintech* significantly positively affects bank performance, primarily in underdeveloped countries. Specifically, *AbFintech* significantly increases ROA in the least developed countries and significantly increases net interest margin in 75th percentile countries. Also, the coefficient and significance of *AbFintech* declines as income levels rise from the first, second, and third quartile countries, indicating that the marginal benefit from adopting fintech innovation wears out as the fintech application setting moves to richer countries. Compatible with these results, *AbFintech* significantly decreases the cost-to-income ratio (i.e., improves bank efficiency) in less wealthy countries, while significantly increasing the ratio (i.e., worsening bank efficiency) in the richest countries. We contribute to the existing literature by (1) inventing a new measure of fintech development, i.e., abnormal fintech (*AbFintech*), and (2) investigating abnormal fintech's interaction effects with the country's income category by segmenting the sample into quartiles of income levels.

For subsequent research, we can investigate how fintech affects financial deepening and, in turn, influences economic growth. Economists have been debating the role of finance in economic development for decades. Earlier studies show that financial deepening fosters economic growth (King and Levine 1993; Levine and Zervos 1998; Levine et al. 2000; Beck et al. 2000). However, some of the more recent studies report there is a nonlinear relationship between financial development and economic growth, suggesting there can be too much finance (Cecchetti and Kharroubi 2012; Arcand et al. 2015; Sahay et al. 2015). These studies provide evidence that once financial depth exceeds an optimal level, additional financial deepening reduces rather than increases growth.

Author Contributions: Conceptualization, S.S.Y., H.L. and I.O.; methodology, S.S.Y., H.L. and I.O.; validation S.S.Y., H.L. and I.O.; formal analysis, S.S.Y., H.L. and I.O.; resources, S.S.Y., H.L. and I.O.; data curation S.S.Y.; writing—original draft preparation, S.S.Y. and H.L.; writing—review and editing, S.S.Y., H.L. and I.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data that support this study are available from the author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Series Name	Series Code	Definition
Bank return on assets (%, after tax)	GFDD.EI.05	Commercial banks' after-tax net income to yearly averaged total assets.
Bank net interest margin (%)	GFDD.EI.01	Accounting value of bank's net interest revenue as a share of its average interest-bearing (total earning) assets.
Bank noninterest income to total income (%)	GFDD.EI.03	Bank's income that has been generated via noninterest-related activities as a percentage of total income (net-interest income plus noninterest income). Noninterest-related income includes net gains on trading and derivatives, net gains on other securities, net fees and commissions and other operating income.
Bank cost-to-income ratio (%)	GFDD.EI.07	Operating expenses of a bank as a share of the sum of net-interest revenue and other operating income.
Made or received a digital payment (%, age 15+)	g20.t.d	The percentage of respondents who report using mobile money, a debit or credit card, or a mobile phone to make a payment from an account—or report using the internet to pay bills or to buy something online or in a store—in the past year.
Population, total	SP.POP.TOTL	We transformed the variable by taking the natural logarithm of millions of people.
Inflation, GDP deflator (annual %)	NY.GDP.DEFL.KD.ZG	We use the variable provided by the World Bank.
GDP growth (annual %)	NY.GDP.MKTP.KD.ZG	We use the variable provided by the World Bank.
GDP per capita (current USD)	NY.GDP.PCAP.CD	We transformed the series by taking a natural logarithm.

Appendix A. Variables and Definitions

Source: The World Bank Databank.

Q1 (Low Income)	Q2 (Lower-Middle)	Q3 (Upper-Middle)	Q4 (High Income)
Afghanistan	Albania	Argentina	Australia
Bangladesh	Argentina	Brazil	Austria
Bolivia	Armenia	Bulgaria	Belgium
Cambodia	Bolivia	Chile	Canada
Cote d'Ivoire	Bosnia and Herzegovina	China	Denmark
Egypt, Arab Rep.	Brazil	Costa Rica	Finland
Ghana	Bulgaria	Croatia	France
Honduras	China	Cyprus	Germany
India	Dominican Republic	Estonia	Hong Kong SAR
Kenya	Ecuador	Greece	Israel
Kyrgyz Republic	El Salvador	Hungary	Italy
Malawi	Georgia	Kazakhstan	Japan
Myanmar	Indonesia	Korea, Rep.	Korea, Rep.
Nepal	Iraq	Latvia	Netherlands
Nicaragua	Jordan	Lithuania	New Zealand
Nigeria	Kazakhstan	Malaysia	Norway
Pakistan	Mauritius	Malta	Singapore
Philippines	Moldova	Mauritius	Spain
Tanzania	Namibia	Panama	Śweden
Uganda	Nigeria	Poland	Switzerland
Ukraine	North Macedonia	Portugal	United Arab Emirates
Uzbekistan	Peru	Romania	United Kingdom
Zambia	Romania	Russian Federation	United States
Zimbabwe	Serbia	Saudi Arabia	
	South Africa	Slovak Republic	
	Sri Lanka	Slovenia	
	Thailand	Spain	
	Ukraine	-	

Appendix B. Countries by Income Group Based on the Current Year's GDP Per Capita

Note: Some countries are classified into different income groups in different years due to classification by the current year's GDP per capita.

Notes

- Another important research question related to fintech, more broadly financial deepening, is how fintech-induced financial development affects economic growth. The effects of financial development on economic growth have been examined by researchers for decades (King and Levine 1993; Levine et al. 2000; Cecchetti and Kharroubi 2012; Sahay et al. 2015). Fintech can help the economy grow by facilitating faster and cost-effective financial transactions, enhancing efficiency in distributing financial resources, encouraging innovation and entrepreneurship, and expanding financial access for individuals and businesses. These benefits potentially lead to increased trade and investment, resulting in economic growth. Recently, studies on the nexus of fintech, green finance, and sustainable growth are emerging (Deng et al. 2019; Yang et al. 2021; Zhou et al. 2022; Awais et al. 2023).
- ² They use total factor productivity (TFP) as a proxy for commercial banks' competitiveness. To assess TFP, they use banks' labor costs and registered capital as inputs and loans, profits, and deposits as outputs.
- ³ The database is located at https://www.worldbank.org/en/publication/globalfindex/Data#sec1 (accessed on 14 January 2023).
- ⁴ Other fintech variables have serious issues, such as missing values, many zero values, or data unavailable in the entire three years of our sample period. Despite the problems in the other data, we attempted to create a new fintech proxy by taking a simple average of our original fintech measure ('Made or received a digital payment') and a variable with relatively fewer problems ('Made a utility payment: using a mobile phone'). Then, we estimated *AbFintech* (namely, *AbFintech*2) through regressing the fintech proxy on GDP per capita and government effectiveness and replicated the analyses. We obtained qualitatively similar results using *AbFintech* in Equation (1).
- ⁵ The literature on bank performance determinants considers other variables besides those we use (Dietrich and Wanzenried 2011, 2014; Trujillo-Ponce 2013; Köster and Pelster 2017). However, we could not include those variables due to data unavailability in the World Bank Database.

⁶ In addition to GDP per capita, we also examined governance indicators for the *AbFintech* derivation, including government effectiveness, control of corruption, regulatory quality, and rule of law. These variables correlate highly with fintech levels and GDP per capita, with correlation coefficients ranging from 0.79 to 0.95. Furthermore, when we derived an alternative *AbFintech* (namely, *AbFintech3*) considering both GDP per capita and government effectiveness and examined how bank performance is affected by *AbFintech3*, we obtained qualitatively similar results using *AbFintech* in Equation (1).

References

Adner, Ron. 2012. The Wide Lens: A New Strategy for Innovation. London: Penguin.

Aghion, Philippe, and Rachel Griffith. 2005. Competition and Growth: Reconciling Theory and Evidence. Cambridge: MIT Press.

- Aghion, Philippe, Christopher Harris, Peter Howitt, and John Vickers. 2001. Competition, imitation and growth with step-by-step innovation. *Review of Economic Studies* 68: 467–92. [CrossRef]
- Alliance for Financial Inclusion. 2018. *Fintech for Financial Inclusion: A Framework for Digital Financial Transformation*. AFI Special Report. Kuala Lumpur: Alliance for Financial Inclusion.
- Andersson, Martin, and Tobias Axelsson. 2016. *Diverse Development Paths and Structural Transformation in the Escape from Poverty*. Oxford: Oxford University Press.
- Arcand, Jean Louis, Enrico Berkes, and Ugo Panizza. 2015. Too much finance? Journal of Economic Growth 20: 105–48. [CrossRef]
- Arner, Douglas W., Ross P. Buckley, Dirk A. Zetzsche, and Robin Veidt. 2020. Sustainability, FinTech and financial inclusion. European

Business Organization Law Review 21: 7–35. [CrossRef]

- Athanasoglou, Panayiotis P., Sophocles N. Brissimis, and Matthaios D. Delis. 2008. Bank-specific, industry-specific and macroeconomic determinants of bank profitability. *Journal of International Financial Markets, Institutions and Money* 18: 121–36. [CrossRef]
- Awais, Minahial, Ayesha Afzal, Saba Firdousi, and Amir Hasnaoui. 2023. Is fintech the new path to sustainable resource utilisation and economic development? *Resources Policy* 81: 103309. [CrossRef]
- Barsby, Steven L. 1969. Economic backwardness and the characteristics of development. *The Journal of Economic History* 29: 449–72. [CrossRef]
- Beck, Thorsten. 2020. *Fintech and Financial Inclusion: Opportunities and Pitfalls*. ADBI Working Paper 1165. Tokyo: Asian Development Bank Institute. Available online: https://www.adb.org/publications/fintech-financial-inclusion-opportunities-pitfalls (accessed on 4 June 2023).
- Beck, Thorsten, Ross Levine, and Norman Loayza. 2000. Finance and the sources of growth. *Journal of Financial Economics* 58: 261–300. [CrossRef]
- Bofondi, Marcello, and Giorgio Gobbi. 2017. The big promise of fintech. *European Economy–Banks, Regulation, and the Real Sector* 3: 107–19.
- Cecchetti, Stephen G., and Enisse Kharroubi. 2012. *Reassessing the Impact of Finance on Growth*. BIS Working Paper No. 381 (July 1). Basel: Bank for International Settlement. Available online: https://ssrn.com/abstract=2117753 (accessed on 4 June 2023).
- Chen, Han, and Soon Suk Yoon. 2022. Does technology innovation in finance alleviate financing constraints and reduce debt-financing costs? Evidence from China. *Asia Pacific Business Review* 28: 467–92. [CrossRef]
- Chen, Mark A., Qinxi Wu, and Baozhong Yang. 2019. How valuable is FinTech innovation? *Review of Financial Studies* 32: 2062–106. [CrossRef]
- Christensen, Clayton M. 1997. The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail. Boston: Harvard Business School Press.
- Dasgupta, Partha, and Joseph Stiglitz. 1980. Industrial structure and the nature of innovative activity. *The Economic Journal* 90: 266–93. [CrossRef]
- Demirgüç-Kunt, Ash, and Harry Huizinga. 1999. Determinants of Commercial Bank Interest Margins and Profitability: Some International Evidence. *The World Bank Economic Review* 13: 379–408. [CrossRef]
- Deng, Xiang, Zhi Huang, and Xiang Cheng. 2019. FinTech and sustainable development: Evidence from China based on P2P data. *Sustainability* 11: 6434. [CrossRef]
- Dietrich, Andreas, and Gabrielle Wanzenried. 2011. Determinants of bank profitability before and during the crisis: Evidence from Switzerland. *Journal of International Financial Markets, Institutions & Money* 21: 307–27. [CrossRef]
- Dietrich, Andreas, and Gabrielle Wanzenried. 2014. The determinants of commercial banking profitability in low-, middle-, and high-income countries. *The Quarterly Review of Economics and Finance* 54: 337–54. [CrossRef]
- Financial Stability Board. 2017. Financial Stability Implications from Fintech: Supervisory and Regulatory Issues that Merit Authorities' Attentions. Available online: http://www.fsb.org/wpcontent/uploads/R270617.pdf (accessed on 3 March 2023).
- Gilbert, Richard J., and David M. G. Newbery. 1982. Preemptive patenting and the persistence of monopoly. *The American Economic Review* 72: 514–26. Available online: https://www.jstor.org/stable/1831552 (accessed on 10 March 2023).
- Haddad, Christian, and Lars Hornuf. 2021. The Impact of Fintech Startups on Financial Institutions' Performance and Default Risk, CESifo Working Paper No. 9050. Munich: Ludwigs-Maximilians University's Center for Economic Studies and the ifo Institute. [CrossRef]
- Henderson, Rebecca, and Iain Cockburn. 1996. Scale, scope, and spillovers: The determinants of research productivity in drug discovery. *The RAND Journal of Economics* 27: 32–59. [CrossRef]
- Hollanders, Marc. 2020. FinTech and financial inclusion: Opportunities and challenges. *Journal of Payments Strategy & Systems* 14: 315–25.

[CrossRef]

- Katsiampa, Paraskevi, Paul B. McGuinness, Jean-Philippe Serbera, and Kun Zhao. 2022. The financial and prudential performance of Chinese banks and fintech lenders in the era of digitalization. *Review of Quantitative Finance and Accounting* 58: 1451–503. [CrossRef]
- King, Robert G., and Ross Levine. 1993. Finance and growth: Schumpeter might be right. *The Quarterly Journal of Economics* 108: 717–37. [CrossRef]
- Köster, Hannes, and Matthias Pelster. 2017. Financial penalties and bank performance. *Journal of Banking and Finance* 79: 57–73. [CrossRef]
- Ky, Serge Stéphane, Clovis Rugemintwari, and Alain Sauviat. 2019. Is fintech good for bank performance? *The case of mobile money in the East African Community*. [CrossRef]
- Levine, Ross, and Sara Zervos. 1998. Stock markets, banks, and economic growth. *American Economic Review* 88: 537–58. Available online: https://www.jstor.org/stable/116848 (accessed on 10 March 2023).
- Levine, Ross, Norman Loayza, and Thorsten Beck. 2000. Financial intermediation and growth: Causality and causes. *Journal of Monetary Economics* 46: 31–77. [CrossRef]
- Li, Qian, Rongcheng Zhu, and Wenjun Qin. 2022. Does the fintech create value? A textual analysis of commercial banks in China. *Technology Analysis & Strategic Management*, 1–16. [CrossRef]
- Li, Yinqiao, Renée Spigt, and Laurens Swinkels. 2017. The impact of FinTech startups on incumbent retail banks' share prices. *Financial Innovation* 3: 1–16. [CrossRef]
- Lieberman, Marvin B., and David B. Montgomery. 1988. First-mover advantages. *Strategic Management Journal* 9: 41–58. [CrossRef] Makina, Daniel. 2019. *Extending Financial Inclusion in Africa*. London: Academic Press.
- Misati, Roseline Nyakerario, Anne Kamau, Leonard Kipyegon, and Lewis Wandaka. 2020. *Is the Evolution of Fintech Complementary to Bank Performance in Kenya*? KBA Centre for Research on Financial Markets and Policy Working Paper Series No. 46. Nairobi: Kenya Bankers Association (KBA).
- Navaretti, Giorgio Barba, Giacomo Calzolari, and Alberto Franco Pozzolo. 2017. FinTech and banks: Friends or foes? *European Economy–Banks, Regulation, and the Real Sector* 3: 9–30.
- Nguyen, Liem, Son Tran, and Tin Ho. 2022. Fintech credit, bank regulations and bank performance: A cross-country analysis. *Asia-Pacific Journal of Business Administration* 14: 445–66. [CrossRef]
- Pasiouras, Fotios, and Kyriaki Kosmidou. 2007. Factors influencing the profitability of domestic and foreign commercial banks in the European Union. *Research in International Business and Finance* 21: 222–37. [CrossRef]
- Phan, Dinh Hoang Bach, Paresh Kumar Narayan, R. Eki Rahman, and Akhis R. Hutabarat. 2020. Do financial technology firms influence bank performance? *Pacific-Basin Finance Journal* 62: 101210. [CrossRef]
- Sahay, Ratna, Martin Čihák, Papa N'Diaye, Adolfo Barajas, Ran Bi, Diana Ayala, Yuan Gao, Annette Kyobe, Lam Nguyen, Christian Saborowski, and et al. 2015. *Rethinking Financial Deepening: Stability and Growth in Emerging Markets*. IMF Staff Discussion Note No. SDN/15/08. Washington: International Monetary Fund.
- Sahay, Ratna, Ulric Eriksson von Allmen, Amina Lahreche, Purva Khera, Sumiko Ogawa, Majid Bazarbash, and Kimberly Beaton. 2022. The promise of fintech: Financial inclusion in the post-COVID-19 era. In *Fintech and COVID-19: Impacts, Challenges, and Policy Priorities for Asia (Part II. 6: 129–75).* Tokyo: Asian Development Bank Institute.
- Shaban, Mohamed, and Gregory A. James. 2018. The effects of ownership change on bank performance and risk exposure: Evidence from Indonesia. *Journal of Banking and Finance* 88: 483–97. [CrossRef]
- Stulz, René M. 2022. FinTech, BigTech, and the future of banks. Journal of Applied Corporate Finance 34: 106–17. [CrossRef]
- Tang, Huan. 2019. Peer-to-peer lenders versus banks: Substitutes or complements. *Review of Financial Studies* 32: 1900–38. [CrossRef] Trujillo-Ponce, Antonio. 2013. What determines the profitability of banks? Evidence from Spain. *Accounting and Finance* 53: 561–86.
- Vives, Xavier. 2017. The impact of fintech on banking. European Economy–Banks, Regulation, and the Real Sector 3: 97–105.
- Wang, Yang, Sui Xiuping, and Qi Zhang. 2021. Can fintech improve the efficiency of commercial banks?—An analysis based on big data. *Research in International Business and Finance* 55: 101338. [CrossRef]
- Yang, Yuxue, Xiang Su, and Shuangliang Yao. 2021. Nexus between green finance, fintech, and high-quality economic development: Empirical evidence from China. *Resources Policy* 74: 102445. [CrossRef]
- Zhao, Jinsong, Xinghao Li, Chin-Hsien Yu, Shi Chen, and Chi-Chuan Lee. 2022. Riding the FinTech innovation wave: FinTech, patents and bank performance. *Journal of International Money and Finance* 122: 102552. [CrossRef]
- Zhou, Guanyou, Jieyu Zhu, and Sumei Luo. 2022. The impact of fintech innovation on green growth in China: Mediating effect of green finance. *Ecological Economics* 193: 107308. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.