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Abstract: The carbon emission trading markets represent an emerging domain within China. The
primary objective of this study is to explore whether carbon price volatility influences stock market
volatility among companies subject to these emission trading regulations. Employing daily returns
data from 293 publicly traded companies regulated by these emission trading markets, this study
encompasses the national carbon market and eight pilot regional carbon markets spanning from
August 2013 to October 2023. The results demonstrate that volatility in regional carbon prices
positively impacts the stock volatility of companies in the corresponding emission trading region,
indicating a volatility spillover effect. Moreover, this spillover effect is more pronounced in sectors
marked by lesser carbon intensity than those with greater carbon intensity. The volatility transmission
is more pronounced in coastal areas than in inland regions. However, no notable distinctions
in volatility transmission are discerned between the periods before and throughout the COVID-
19 pandemic. Vector autoregression analyses substantiate that lagged carbon price fluctuations
possess limited predictive capacity for contemporaneous equity market volatility and vice versa.
The robustness of these outcomes is fortified by applying the E-GARCH model, which accounts for
the volatility clustering phenomenon. As the first investigation into the volatility spillover effect
between China’s emission trading market and corresponding stock markets, this study offers valuable
insights into the investment strategies of retail investors, the formulation of carbon regulations by
policymakers, and the carbon emission strategies of corporate managers.

Keywords: carbon emission trading; stock volatility; volatility spillover; vector autoregression;
E-GARCH; China

JEL Classification: G12; G17; Q56; Q58

1. Introduction

Climate change ranks among the foremost global concerns. Emissions from power
generation and energy consumption surpass those from all other human activities, serving
as the primary catalyst of global warming (Terhaar et al. 2022). Excessive carbon emissions
drive global warming, an essential facet of climate change, necessitating accelerated and
substantial emission cuts to rectify the energy equilibrium and avert potential calamities
(Pacala and Socolow 2004). In the report by the International Energy Agency (2022),
global energy-associated carbon dioxide emissions escalated to 36.8 gigatonnes, with the
predominant emitter, China, contributing 12.1 gigatonnes (33%), followed by the United
States, accounting for 4.7 gigatonnes (13%). In pursuit of sustaining the global climate
and curbing greenhouse gas emissions, nations worldwide inked the United Nations
Framework Convention on Climate Change in 1992, an initiative that subsequently led to
the signing of the Kyoto Protocol in 1997 (Depledge 2022).

Since then, nations worldwide have established carbon emission trading markets.
Specifically, China launched its emission trading scheme (ETS) and implemented multiple
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regional carbon trading pilots to stimulate emissions mitigation (Chai et al. 2022). As the
largest carbon dioxide emitter, China’s exports constitute approximately one-third of its
GDP, thereby encapsulating a considerable quantum of carbon dioxide emissions (Wu et al.
2022). As a pivotal developing country, China formalized its commitment to emission
mitigation at the 2009 Copenhagen Global Climate Conference, pledging an explicit 40% to
45% reduction in carbon emissions per GDP unit by 2020 relative to 2005 levels (Kong and
Wang 2022). In forecasts, China’s emission reductions are projected to exceed 23 gigatonnes
by 2030, surpassing the aggregate reductions of European countries (Zhang 2016). The
government’s resolute endeavor to institute a national carbon trading market and foster
international cooperation carries significant implications for global climate governance and
sustainable development.

To evaluate the ramifications of carbon emission trading, the extant literature predom-
inantly investigates the spillover of prices or returns in Chinese pilot ETS markets and
global ETS platforms. Yadav et al. (2023) identify a substantial association between carbon
emissions indices and equity indices within both the Chinese and European stock markets,
incorporating the variables of crude oil and natural gas indices. Aslan and Posch (2022)
utilize connectedness network analysis and ascertain that carbon emission allowance fu-
tures predominantly function as net recipients of volatility connectedness emanating from
European stock market sector indices. Li et al. (2023) examine volatility spillovers across
China’s eight regional ETS markets, employing a connectedness methodology grounded in
the quantile vector autoregression (VAR) framework. They observe that the Guangdong
Province and Shanghai pilots primarily act as volatility transmitters, while the Hubei
Province pilot has transitioned from a transmitter to a receiver in light of the COVID-19
pandemic. Our research addresses gaps in the carbon market literature by scrutinizing
volatility spillovers from China’s nine regional ETS markets to the respective individ-
ual stocks governed by these same regional ETS platforms. We additionally investigate
the moderating impact of varying carbon intensity across sectors and the influence of the
COVID-19 pandemic on volatility spillover effects, thereby enriching a more comprehensive
understanding of carbon market dynamics.

This investigation probes the impact of carbon price volatility on the stock volatility of
firms under the supervision of the same ETS market. From August 2013 to October 2023, our
sample encompasses 293 publicly traded companies and their daily equity returns in either
the national or eight pilot ETS markets. Utilizing an ordinary least squares (OLS) multivari-
ate framework, we establish that fluctuations in carbon prices positively influence stock
volatility among ETS-regulated firms. Moreover, this positive effect is more pronounced
in low-carbon-intensity industries than high-carbon-intensity ones and notably stronger
in coastal ETS markets than in their inland counterparts. However, the positive volatility
spillover effects exhibit no significant variation in the period surrounding the COVID-19
pandemic. VAR analysis suggests that lagged carbon price volatility possesses greater
explanatory power for its fluctuations than the corresponding stock volatility, signifying
a contemporaneous spillover effect. Lastly, our exponential generalized autoregressive
conditional heteroskedasticity (E-GARCH) model substantiates that the volatility spillover
from the carbon market to pertinent equities persists even after accounting for lagged
volatility and volatility clustering phenomena.

This study enhances the existing literature through five unique contributions. First, the
current study enriches the body of literature addressing the ramifications of carbon price
volatility. Prior work has primarily focused on the implications of carbon price volatility
for financial risk management (Sadorsky 2014), corporate innovation (Mo et al. 2016;
Zhu et al. 2022; Yu et al. 2022), trading of emissions permit options (Xu et al. 2016), and stock
price volatility of electricity companies in the European ETS market (Tian et al. 2016). Our
research explores a neglected aspect: the volatility spillover from carbon pricing to pertinent
individual stock volatility. Additionally, it merits attention that antecedent research on
the influence of carbon volatility has been predominantly sector-specific (Hassan 2022;
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Tian et al. 2016). In contrast, our inquiry centers on the stock volatility of ETS-regulated
firms spanning multiple industries.

Secondly, the present study augments the extant literature focusing on the determi-
nants of stock volatility. Previous work has explored macroeconomic drivers such as infla-
tion (Thampanya et al. 2020; Aliyu 2012), business cycles (Corradi et al. 2013; Officer 1973),
and exchange rates (Olweny and Omondi 2011; Kennedy and Nourzad 2016). Concur-
rently, the literature has also examined microeconomic factors influencing stock volatility,
including stock trading volume (Sutrisno 2020; Narayan et al. 2013), firm sizes (Mazzucato
and Semmler 2002), dividend policies (Baskin 1989; Hashemijoo et al. 2012; Hooi et al.
2015), and capital structure (Christie 1982). The current research enriches this domain by
rigorously analyzing the cross-market impacts of carbon ETS markets on stock volatility.

Thirdly, the current investigation extends the scholarly discourse on volatility spillover
phenomena. Such spillovers manifest geographically, evidenced by interactions between
Chinese and global equity markets (Zhou et al. 2012), within North America (Singh et al.
2010), across regional Asian equity markets (Abbas et al. 2013), across G7 financial markets
(Liow 2015), and in global financial markets (BenSaïda et al. 2018), as well as between
Nigerian, South African, and global equity markets (Fowowe and Shuaibu 2016). Addi-
tionally, these volatility spillovers transpire across distinct financial asset classes, such as
the interaction between stock and oil markets (Syed and Bouri 2022), between equities
and foreign exchange markets (Jebran and Iqbal 2016), between oil and agricultural com-
modities (Yip et al. 2020), between crude oil and inflation (Rastogi and Kanoujiya 2022),
and between bitcoin and financial markets (Qarni et al. 2019). In the context of volatility
spillovers associated with carbon trading markets, prior research has probed into the volatil-
ity spillovers between carbon and energy markets (Gong et al. 2021; Ji et al. 2018; Song
et al. 2022) and among carbon prices, oil, and natural gas prices, and stock prices (Sadorsky
2014). Further studies have explored volatility spillovers across eight regional Chinese ETS
markets (Li et al. 2023) and between carbon prices and European electric equities (Tian
et al. 2016). The existing research on carbon market volatility spillover primarily focuses on
energy markets, the US markets, and Chinese regional carbon markets; however, none has
explored the connection between China’s carbon market and its stock market, particularly
at the individual stock level. Our study fills in this research gap, concentrating specifically
on the stocks of firms subjected to carbon emission quota controls rather than the entirety
of publicly traded stocks or stock indices.

Fourthly, the present research enriches our understanding of COVID-19′s impact
on the Chinese carbon market. Whereas prior analyses have focused on the pandemic-
induced volatility spillovers in China’s national and regional carbon markets (Mai et al.
2022), dynamic interactions among green bonds, renewable energy equities, and carbon
markets during the COVID-19 era (Tiwari et al. 2022), as well as time–frequency linkages
between metal, energy, and carbon markets both pre- and mid-pandemic (Jiang and Chen
2022), our inquiry furnishes unique insights by accentuating that the correlation between
carbon volatility and equity volatility remains essentially unchanged amid the COVID-
19 pandemic.

Finally, examining China’s ETS markets is imperative. As the world’s leading emitter
of greenhouse gases since 2006, China’s initiatives to curtail carbon emissions are integral
to global reduction strategies (Zhang et al. 2017). China’s ETS is the largest carbon market
globally in terms of emissions coverage. Annually, the Chinese ETS accounts for roughly
4.5 billion metric tons of carbon dioxide equivalent, rendering it nearly threefold the size of
the second largest ETS, the European ETS (World Bank 2024).

The remainder of this paper is structured as follows:

• Section 2 surveys the extant literature and formulates the research hypotheses.
• Section 3 elucidates the sample and methodologies employed.
• Section 4 furnishes and interprets the empirical findings.
• Section 5 concludes the paper.
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2. Literature Review and Hypothesis Development
2.1. Carbon Price Volatility

Lyu et al. (2020) discovered that volatility is more pronounced in the Chinese ETS
market than its European counterpart, underlining the imperative for enhancements in the
Chinese ETS market. Sun et al. (2020) further elucidated that the European ETS market
exhibits a heightened responsiveness to positive news, whereas the Chinese ETS market
demonstrates greater sensitivity to negative information. These observations substantiate
the premise that the Chinese ETS market remains in a nascent stage and has not successfully
incentivized a broader array of entities to engage in the carbon market (Wang et al. 2023).
Since the inauguration of the Chinese ETS pilot markets, frequent policy revisions impacting
allowance quantities have triggered unanticipated fluctuations in carbon equity valuations.
Simultaneously, increasing market turbulence in the emissions sector, coupled with the
complexity of the energy industry, has intensified the volatility of carbon pricing (Wang
et al. 2022a). Due to marked disparities and uneven development among the Chinese
pilot ETS regions, significant volatility continues to prevail, obstructing advancements
toward a unified national carbon market valuation (Zhou and Li 2019). Consequently,
disclosing carbon market information is indispensable for ensuring its functional efficiency
and market equilibrium (Zhao et al. 2016). Nevertheless, Song et al. (2022) asserted that the
Chinese carbon trading market utilizes free quota allocation, effectively diminishing the
inherent volatility of carbon price dynamics. Consistent with the observations of Zhang
et al. (2018), the Chinese carbon market witnessed substantial initial volatility upon the
advent of carbon trading and has since generally subsided.

Investigations into carbon price volatility have focused on delineating the intricate
nexus between carbon and energy markets, particularly emphasizing the power industry (Ji
et al. 2018). Research conducted by Feng et al. (2011) accentuates the importance of compre-
hending carbon volatility within the electricity sector. They identify a positive correlation
between carbon price levels and electricity volumes, noting that the influence of the carbon
market exhibits substantial variability depending on temporal factors and jurisdictional
context. Aatola et al. (2013) undertook an exhaustive assessment of the ramifications of
carbon pricing in the integrated European electricity market, illuminating the nuanced
impact of carbon costs on electricity expenditures. Additionally, Mo et al. (2016) showed
that carbon price volatility is a formidable deterrent to investment initiatives in wind energy
technologies, adversely influencing the expansion of low-carbon energy infrastructures in
China. These relationships exhibit bidirectionality; fluctuations in electricity prices recipro-
cally affect carbon price volatility, establishing a reverse causality between the two variables
(Ji et al. 2018). The stock returns of power companies are consistently and significantly
influenced by carbon price volatility, which signifies a direct relationship between carbon
volatility and power company stock valuations (Tian et al. 2016). Simultaneously, the ram-
ifications of carbon volatility exhibit geographical specificity; Wu et al. (2021) discerned
a significant long-term causal relationship, at a 5% threshold, between renewable energy
adoption and carbon price volatility, exclusively within the Vietnamese setting.

2.2. Determinants of Stock Volatility

Numerous scholars have rigorously examined the macro-level determinants of stock
market volatility, yielding invaluable frameworks for interpreting market behavior and
forecasting future volatility. Binder and Merges (2001) identify rational economic fac-
tors, including uncertainties surrounding price levels, risk-free interest rates, equity risk
premiums, and the ratio of expected profits to expected revenues, as pivotal drivers of
stock market volatility. These variables account for over 50% of the variation in market
volatility from 1929 to 1989, with coefficients exhibiting temporal variability elucidating
an additional 40%. Corradi et al. (2013) focus on business cycle factors, ascertaining their
notable impact on both the level and fluctuations in stock market volatility. Touny et al.
(2021) examine Middle Eastern countries, identifying inflation, corruption, stock market
capitalization, and stock turnover ratios as exerting a positive and significant influence on
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stock market volatility. Conversely, economic growth, financial freedom, and stock market
returns appear to negatively and substantially impact stock market volatility. Nikmanesh
and Nor (2016) concentrate on Malaysia and Indonesia, uncovering a substantial correlation
between stock market volatility and fluctuations in macroeconomic variables. The findings
suggest that macroeconomic instability and trade openness account for 81% of stock market
volatility in Malaysia and 75% in Indonesia.

Micro-level determinants also exert an influence on stock price volatility. Sutrisno
(2020) examines firms in the Jakarta Islamic Index and discerns a significant positive rela-
tionship between trading volume and stock price volatility, whereas firm size is inversely
correlated with volatility. Duffee (1995) observes a positive contemporaneous association
between firm-level stock returns and stock volatility, notably accentuated among smaller
firms and those with lower financial leverage. Intriguingly, this contemporaneous relation-
ship manifests an inverted sign at the aggregate level. Ahmad et al. (2018) demonstrate that
both dividend yield and dividend payout are negatively and significantly associated with
stock price volatility in the Amman Stock Exchange. Additionally, Hussainey et al. (2011)
provide insights into the relevance of firm characteristics, such as growth rate, debt level,
size, and earnings, in explaining stock price changes, further emphasizing the significance
of corporate dividend policy as a driving force behind price fluctuations. Zainudin et al.
(2018) corroborate that earnings volatility significantly accounts for stock price volatil-
ity in industrial product firms during the crisis period, while the dividend payout ratio
predominantly dictates volatility during pre- and post-crisis subperiods. Mazzucato and
Tancioni (2012) link innovation to stock return volatility using firm-level patent data in the
pharmaceutical industry. Their study establishes a positive and significant relationship
between stock return volatility, research and development intensity, and patent-related
measures, particularly for highly innovative firms.

2.3. Volatility Spillover

Firstly, volatility spillover transpires across distinct geographical regions. Ciarreta and
Zarraga (2015) document increasing price integration and noteworthy volatility spillover
among Spain, Portugal, Austria, Germany, Switzerland, and France within electricity spot
markets. Kearney (2000) delved into the determinants of stock market volatility and the
spillover impact among international markets, revealing that global stock market volatility
is predominantly instigated by fluctuations in the Japanese and US markets, subsequently
reverberating into the European market. Employing the frequency–domain causality
methodology, Özer et al. (2020) demonstrate that intra- and inter-regional volatility trans-
mission is evident between Southeast European equity markets and emerging and mature
markets globally, thereby suggesting limited diversification benefits for international port-
folios allocated to these markets. Liu and Pan’s (1997) empirical analysis, focusing on
the data spanning 1984 to 1991, indicates that the US market exerts a more significant
influence than the Japanese market in disseminating returns and volatilities across four
Asian markets: Hong Kong, Singapore, Taiwan, and Thailand.

Secondly, volatility spillover manifests across the temporal spectrum. Wang and Wang
(2019) contend that frequency spillover plays a pivotal role in predicting equity market
volatility, the dynamics of which between oil and equity markets are contingent upon distinct
temporal horizons, either short-term or long-term. Yadav et al. (2023) examine volatility
spillover from energy commodities to the Shanghai Stock Exchange and European equity
markets, identifying persistent volatility in the long-term but not in the short-term duration.
Liu et al. (2017) disclose that the volatility linkage between oil and the US equity market is
increasingly oriented towards short-term intervals, whereas the connection with the Russian
equity market is evolving across all temporal scales. Su and Liu (2021) assert that economic
policy uncertainty considerably impacts aggregate inter-sectoral volatility transmission
within the Chinese equity market, characterized by notable heterogeneity. Koutmos (2018)
investigates return and volatility shocks across 18 cryptocurrencies, revealing that volatility
spillovers progressively amplified as these currencies achieved high integration.
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Thirdly, cross-asset volatility spillover is observed. Nazlioglu et al. (2013) demonstrate
that volatility spillover was undetectable before the food price crisis between oil and agricul-
tural commodity markets. However, oil volatility was transmitted to the wheat, corn, and
soybean markets after the food price crisis. Gong et al. (2021) identify pronounced spillover
phenomena between the carbon and fossil energy markets, exhibiting both time-variant
and asymmetric characteristics in strength and direction. Green et al. (2018) ascertain
that positive news in gas and coal markets induces a substantially greater power variance
response than negative news. For the carbon market, the relevance of distinguishing be-
tween positive and negative news appears considerably less significant. Han et al. (2020)
explore volatility spillover dynamics across Australia’s regional spot electricity markets
and conclude that such spillover effects are markedly impacted by regional proximity
and interconnectors.

Fourthly, volatility propagation can manifest as unidirectional or bidirectional phe-
nomena. Morema and Bonga-Bonga (2020) ascertain that South African equity markets
predominantly experience unidirectional volatility transmissions from global commodity
markets, namely oil and gold, attributable to South Africa’s limited influence on interna-
tional commodity pricing. Vardar et al. (2018) delineate the primary trend in advanced
and emerging countries as the bidirectional volatility spillover effect between stock and
commodity returns. Notably, significant volatility spillovers between these asset classes
escalate during crisis and post-crisis intervals relative to pre-crisis epochs. Tsagkanos
et al. (2024) investigate the directional volatility spillover between the business confidence
index and equity market indices in Greece, concluding that the business confidence index
principally serves as the recipient of volatility transmissions. Wang et al. (2022b) assess the
dissemination of returns and volatility across the commodities spectrum amid the Ukraine
war. Silver, gold, copper, platinum, aluminum, and sugar emerge as net transmitters of
volatility transmission.

Dong et al. (2024) highlight prior research confirming risk correlations and spillover
effects between carbon and stock markets. Xu et al. (2022) identified positive cross-
correlations between carbon-intensive industry stock returns and carbon allowance price
returns in Shenzhen and Shanghai, contrasting with negative correlations in Beijing, Guang-
dong, and Hubei. Zhang and Zhang (2023) observed that carbon price returns adversely
impact firms’ stock returns within regional markets, notably in Shenzhen and Guangdong.
Dong et al. (2024) revealed that the Chinese carbon and stock markets exhibit significant,
asymmetric, and extreme-event-sensitive spillover effects, predominantly positioning the
carbon market as an information net recipient. Zhang et al. (2022) highlighted the nascent
interconnectivity between China’s carbon and stock markets. Dutta et al. (2018) demon-
strated a notable volatility linkage between emissions and European clean energy price
indices, a phenomenon not mirrored in the US market, indicating that emission return
and volatility shocks are distinct across countries or regions. Thus, the volatility spillover
between carbon and stock markets in China warrants further exploration.

In addition to the above empirical evidence, the conceptual foundation to link stock
price volatility and carbon price volatility is the mechanism of cap-and-trade systems,
where governments or regulatory bodies set a cap on the total amount of greenhouse
gases that can be emitted and then allow market forces to drive the trading of emission
allowances or credits. This market-based approach incentivizes companies to reduce their
carbon footprint through innovation and efficiency improvements, as emitting costs become
a tangible financial consideration. The transition risk associated with moving towards
a low-carbon economy can lead to significant volatility in the valuations of companies
not aligned with this transition, thus affecting their stock prices. Companies with high
carbon footprints may face increased costs due to higher carbon prices, which can squeeze
profit margins and lead to stock price volatility. Conversely, companies that are leaders in
reducing emissions or that produce carbon-reducing technologies may benefit from such a
transition, experiencing less volatility or even positive revaluations.
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A multi-theoretical approach offers profound insights into examining the volatility
transmission from carbon markets to stock markets. As articulated by King and Wadhwani
(1990), the financial contagion theory provides a foundational perspective on how volatility
can traverse between distinct markets. This theory posits that shocks in one market can lead
to increased volatility in another through cash flow connectedness, cross-market hedging
strategies, or liquidity constraints, suggesting that fluctuations in carbon prices might
similarly affect the stock market volatility of ETS-regulated companies. Complementing
this, the behavioral finance theory, explored by Shleifer and Summers (1990), delves into
the psychological aspects influencing market participants. This theory elucidates how
cognitive biases, overreactions, and underreactions to new information can lead to market
inefficiencies. In the context of carbon pricing, it implies that investor sentiment and percep-
tion regarding future regulatory changes or economic impacts can significantly influence
the volatility of related stocks. Lastly, the information signaling and asymmetry theory,
presented by Myers and Majluf (1984), examines the impact of information asymmetry
between corporate insiders and outside investors. This theory argues that companies
with access to insider information might make financing decisions that signal their private
knowledge to the market, affecting their stock prices. Regarding carbon pricing volatility,
the market could interpret changes in carbon prices as signals about the future profitability
or risk profile of ETS-covered firms, thereby influencing their stock price volatility. In light
of the preceding empirical and theoretical discussions, we formulate the first hypothesis
as follows:

Hypothesis 1. A positive spillover effect exists from carbon price volatility to the corresponding
ETS-covered stock price volatility.

2.4. Low- and High-Carbon-Intensity Industries

Aslan and Posch (2022) demonstrate that industries with high carbon intensity sig-
nificantly influence the volatility interconnections between the European equity market
and the emission allowance futures price. Zhang and Zhang (2023) demonstrate that the
adverse effects of carbon returns on stock returns are more pronounced in industries with
high carbon intensity than those with lower carbon intensity. Tian et al. (2016) elucidate an
inverse relationship between carbon price returns and electricity stock returns for producers
with high carbon intensity, while the converse relationship prevails for low-carbon-intensity
producers. Chapple et al. (2013) identify a negative linkage between corporate valuation
and carbon intensity, indicating heightened vulnerability for high-carbon-emitting firms
prior to the ETS initiation. Bolton and Kacperczyk (2021) find that stocks of firms with
higher total carbon dioxide emissions earn higher returns, controlling for size, book-to-
market, and other return predictors. Xie et al. (2023) corroborate that carbon emissions
trading within China’s pilot market can mitigate stock price volatility for high-carbon firms
and reduce the risk of stock price collapses resulting from carbon emission reductions.

The financial contagion theory (King and Wadhwani 1990) posits that industries with
high carbon intensity, due to their reliance on carbon allowances and emissions costs, are
inherently more interconnected with the carbon market. This connection renders them
more susceptible to the direct impacts of carbon price volatility, potentially leading to
significant financial and cash flow implications. Such susceptibility enhances the volatility
spillover from the carbon to the stock market within these sectors. Similarly, the behavioral
finance theory (Shleifer and Summers 1990) suggests that these industries are subject to
increased investor scrutiny, with fluctuations in carbon prices heavily influencing investor
perceptions and reactions, thereby amplifying stock price volatility through behavioral
overreactions or underreactions. Moreover, the information signaling and asymmetry
theory (Myers and Majluf 1984) indicates that volatility in carbon prices serves as a crucial
signal to the market regarding the future profitability and risk profiles of high-carbon-
intensity companies, exacerbating information asymmetry and, consequently, stock price
volatility. This interplay highlights a pronounced effect of carbon price volatility on the
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stock market volatility of ETS-covered firms in high-carbon-intensity industries. Given this
empirical evidence and theoretical analysis, we propose:

Hypothesis 2. The positive spillover effect from carbon price volatility to ETS-covered stock
price volatility is more pronounced for industries with high carbon intensity than those with low
carbon intensity.

2.5. Coastal versus Inland Companies

The financial contagion theory (King and Wadhwani 1990) posits that coastal compa-
nies often have operations more directly exposed to environmental and regulatory policies
affecting carbon markets, such as stricter emissions regulations or policies targeting mar-
itime and shipping industries. This direct exposure could mean that fluctuations in carbon
prices have a more immediate and significant impact on coastal companies’ cash flows and
hedging activities, leading to a heightened spillover of volatility from the carbon market to
their stock prices compared to inland companies. Similarly, the behavioral finance theory
(Shleifer and Summers 1990) suggests that coastal companies might be perceived as more
vulnerable to the impacts of carbon pricing due to their geographical location and the asso-
ciated risks of climate change, such as rising sea levels and more stringent environmental
regulations. This perception could lead to investor sentiment playing a more prominent role
in the volatility of these companies’ stocks. Investors may overreact to changes in carbon
prices, anticipating more significant regulatory and environmental challenges for coastal
companies, thereby amplifying the volatility spillover effect on their stock prices. Moreover,
the information signaling and asymmetry theory (Myers and Majluf 1984) indicate that
coastal companies on the front lines of environmental impact and regulation might see
carbon price volatility as a more critical signal regarding their prospects. This is especially
true for companies in areas directly affected by carbon pricing, such as shipping, oil and
gas, and coastal tourism. The market might interpret volatility in carbon prices as a more
significant indicator of future challenges and opportunities for coastal companies, leading
to more significant information asymmetry and, subsequently, more pronounced stock
price volatility for these firms. Based on the above theoretical analysis, we propose:

Hypothesis 3. The positive spillover effect from carbon price volatility to ETS-covered stock price
volatility is more pronounced for coastal companies than inland firms.

2.6. The Impact of COVID-19

During the COVID-19 pandemic, equity markets witnessed significant return declines
(Ashraf 2021). Concurrently, the proliferation of COVID-19 engendered heightened market
volatility (Zhang et al. 2020). Amidst the pandemic crisis, the nexus of heightened uncer-
tainty and associated economic contractions further intensified stock market fluctuations
(Chowdhury et al. 2022). Notably, no antecedent infectious disease event, not even the
Spanish Flu, has had a pronounced impact on stock markets as COVID-19 (Baker et al.
2020). Díaz et al. (2022) demonstrate that global equity market volatility exhibits height-
ened (attenuated) sensitivity to the COVID-19 reproductive number in states of high (low)
contagion. Intriguingly, the COVID-19 pandemic catalyzed increased participation of finan-
cial investors in cryptocurrency markets, thereby intensifying high-risk asset allocations,
magnifying herd tendencies in financial markets, and subsequently intensifying volatility
spillover effects (Özdemir 2022). Shahzad et al. (2021) investigate the uneven volatility
transmission across sectors of the Chinese stock market amid the COVID-19 pandemic.
Their findings reveal the asymmetric effects of good and bad volatilities, which exhibit
temporal fluctuations and heightened intensity throughout the COVID-19 era.

According to the financial contagion theory (King and Wadhwani 1990), the pandemic
may disrupt supply chains, affect cash flows, and lead to more pronounced liquidity
constraints. These factors may have amplified the mechanisms through which volatility
is transmitted from carbon markets to stock markets. The economic uncertainties and
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operational challenges faced by ETS-regulated companies during the pandemic could
make the stock market more reactive to changes in carbon prices, enhancing the spillover
effect. The COVID-19 era has been marked by significant uncertainty and changes in
investor behavior, potentially exacerbating cognitive biases and emotional reactions to
new information. According to Shleifer and Summers (1990), such conditions can lead
to overreactions or underreactions to carbon price volatility. The pandemic has likely
heightened concerns about the future economic landscape, regulatory responses to climate
change, and the financial health of companies. This increased sensitivity to news and
regulatory announcements related to carbon pricing could result in more pronounced
volatility spillovers to the stocks of ETS-regulated firms during the COVID-19 era. Myers
and Majluf (1984) discuss how information asymmetry influences stock prices by signaling
insider decisions. The COVID-19 pandemic has likely exacerbated information asymmetry
between insiders and the market due to the unpredictable economic environment and the
rapid changes in corporate prospects. Volatility in carbon prices during this period could be
a more potent signal to investors about the future profitability or risk profile of ETS-covered
firms. With companies and investors navigating an unprecedented landscape, the market
may interpret changes in carbon prices as more significant indicators of corporate resilience
or vulnerability, thus magnifying the spillover effect on stock price volatility. In light of the
preceding analysis, we formulate the subsequent hypothesis:

Hypothesis 4. The positive spillover effect from carbon price volatility to ETS-covered stock price
volatility is more pronounced in the COVID-19 era than in the pre-COVID period.

3. Data and Methodology
3.1. Data

This research employs two data sources: (1) the Wind Economic Database (Wind 2024),
which provides regional carbon prices, gold prices, oil prices, natural gas prices, coal prices,
and the Chicago Board Options Exchange Volatility Index (VIX); and (2) the China Stock
Market and Accounting Research Database (CSMAR 2024), encompassing individual stock
returns and company information.

In the initial step, we meticulously assembled a list of companies subject to regulation
under the national ETS framework as well as eight ETS pilot regions: Shenzhen, Shanghai,
Beijing, Guangdong Province, Tianjin, Hubei Province, Chongqing, and Fujian Province.
This compilation originates from the official websites of Municipal Ecology and Environ-
ment Bureaus within each respective region. The resultant dataset comprises 5526 firms
overseen by their respective ETS markets, with a preponderance being private compa-
nies. Subsequently, we executed manual queries via Google to cross-reference company
names against the roster of publicly traded firms in the CSMAR Database. This exhaustive
methodology culminated in the validation of 293 publicly listed entities out of the initial
5526 ETS-regulated firms, of which 179 emanate from the eight regional ETS markets, and
114 are affiliated with the national ETS market.

In the second step, we retrieve daily stock returns for the 293 publicly listed firms
from the CSMAR Database from August 2013 to October 2023. The National Development
and Reform Commission of China declared in October 2011 that carbon emission trading
would be piloted in eight regions (Zhang and Wang 2021). Shenzhen witnessed the debut
of China’s first ETS on 18 June 2013. A solitary data point exists from June 2013 until
5 August 2013; therefore, our sample starts in August 2013. Concurrently, we acquire
stock codes, stock names, and industry classifications. We segregate the 293 publicly listed
ETS-regulated entities into two divergent categories: firms with high carbon intensity and
those with low carbon intensity. Entities within the petrochemical, building materials, steel,
nonferrous metals, paper, electric power, aviation, glass manufacturing, and pharmaceutical
sectors are classified as high-carbon-intensity firms. Conversely, the industries of food and
beverages, education, sports, entertainment, general manufacturing, wholesale and retail,
hospitality, information technology, telecommunications and broadcasting, internet and
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software services, financial and insurance services, and real estate are deemed to be low-
carbon-intensity industries. The underlying rationale for this categorization stems from the
primary utilization of natural gas as feedstock in the chemical, electric power, metal, and
glass manufacturing industries. Additionally, synthesizing small- and medium-molecule
pharmaceuticals relies on chemical constituents derived from crude oil and fossil fuels.

In the third step, we procure daily carbon prices from the Wind Economic Database,
spanning the eight pilot regions and the national market. Simultaneously, we compile time-
series data for selected control variables from the same source. Daily gold prices (COMEX,
ticker code: GC.CMX), crude oil (NYMEX WTI, ticker code: CL.NYM), natural gas (NYMEX,
ticker code: NG.NYM), and coal price index (ticker code: JFI.WI) are retrieved. Including
these control variables stems from the direct link between fossil fuels (coal, oil, and natural
gas) and carbon emissions. The volatility in the prices of these commodities reflects changes
in their demand and supply, which, in turn, can impact carbon emissions. For instance, a
spike in oil prices might lead to a temporary shift towards more carbon-intensive fuels or
vice versa, affecting carbon prices. Hence, the literature extensively documents volatility
spillovers between carbon and energy markets (Liu et al. 2023; Song et al. 2022; Wang and
Guo 2018). Moreover, gold is traditionally seen as a hedge against currency devaluation
and a symbol of economic stability. Its price volatility can indicate broader economic trends
that might influence investment and consumption patterns, indirectly affecting carbon
emission levels and prices. Additionally, we integrate the VIX index, sourced from the
Chicago Board Options Exchange. The VIX represents the annualized implied volatility of
a hypothetical S&P 500 equity option with a 30-day expiry, thereby providing investors
with a forward-looking volatility forecast. The VIX index, often called the “fear index,”
measures market risk, sentiment, and stress. A high VIX suggests increased uncertainty
and risk aversion among investors, which can lead to broader market volatility. This
environment can affect the stock prices of companies, especially those heavily involved in
carbon-intensive industries, and by extension, influence carbon pricing mechanisms.

3.2. Methodology

In the initial step, we follow Chen et al. (2013) to quantify the monthly volatility
of securities, defined as the standard deviation of daily returns, encompassing stocks,
carbon, gold, oil, gas, and coal. Subsequently, in the second step, each ETS region’s unique
carbon price corresponds to several ETS-regulated stocks. We then compute the average
volatility of these stocks for each region and month. Considering that carbon price volatility
demonstrates marked variability and the occurrence of notable outliers, we further winsorize
the carbon volatility metrics at the upper and lower 1% levels. Our final sample encompasses
293 firms and 800 region–month observations from August 2013 to October 2023. Ideally, we
would anticipate 1080 (=120 × 9) region–month observations for the decade-long timeframe.
Nevertheless, due to the initiation of the national EST market in 2021, the commencement of
the Fujian ETS market in 2017, and the launch of the Hubei and Chongqing ETS markets in
2014, the sample size is diminished to 800 region–month observations.

In the third step, we utilize the OLS regression to elucidate the linear relationship
between carbon volatility and stock volatility while adjusting for variables that affect stock
volatility. The OLS multivariate regression model is delineated as follows:

StockVoli,t = β0 + β1CarbonVoli,t + β2GoldVolt + β3OilVolt + β4GasVolt
+β5CoalVolt + β6VIXt + εi,t

(1)

where StockVoli,t represents the ETS-covered stock volatility in month t and region i,
CarbonVoli,t represents the carbon price volatility in month t and region i, GoldVolt de-
notes gold price volatility in month t, OilVolt denotes crude oil price volatility in month t,
GasVolt denotes natural gas price volatility in month t, CoalVolt denotes coal price volatility
in month t, and VIXt signifies the Chicago Board Options Exchange Volatility Index in
month t. β is the regression coefficient, and εi,t represents a disturbance term with E(εi,t) = 0
and Var(εi,t) = σ2.
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We also employ the VAR model to examine the dynamic interactions among multiple
variables and their lagged values (Cummins 2013):

Xt = ϕ0 + ϕ1Xt−1 + εt (2)

Xt = (StockVolt CarbonVolt GoldVolt OilVolt GasVolt CoalVolt VIXt)
T (3)

where the superscript T transposes the row vector Xt to a column vector, ϕ0 is a column
vector of constants, and ϕ1 is a matrix of coefficients, and εt is a column vector of error terms.
StockVolt represents the mean volatility of StockVoli,t across nine regions for month t; CarbonVolt
denotes the mean volatility of CarbonVoli,t over the same nine regions during month t.

We also employ the E-GARCH model (Nelson 1991) to accommodate volatility cluster-
ing and asymmetric innovations as follows:

ln
(

σ2
t

)
= α0 + α1Zt−1 + α2[|Zt−1| − E(|Zt−1|)] + α3 ln

(
σ2

t−1

)
(4)

where σt
2 is the conditional variance of εt in Equation (1), Zt equals εt divided by σt and

represents the standardized error term. α0 serves as the ARCH constant, α1 corresponds to
L.EARCH and captures the asymmetric impact of previous shocks on current volatility, α2 is
identified as L.EARCH_A and gauges the symmetric influence of the absolute magnitude of
past shocks on current volatility, and α3, designated as L.EGARCH, signifies the persistence
of volatility over time.

During the preparation of this work, the authors used ChatGPT-4 for the purposes
of grammatical refinement and stylistic augmentation. After using this tool, the authors
reviewed and edited the content as needed and take full responsibility for the content of
the publication.

4. Results and Discussion
4.1. Descriptive Statistics

Table 1 presents the descriptive statistics for the variables under investigation. The
mean of stock volatility is 0.0250. In contrast, the mean for carbon price volatility is
0.0946. These observations suggest higher volatility in carbon prices compared to stock
volatility. These data are consistent with Xu et al.’s (2022) assertion that carbon markets
tend to be riskier, more volatile, and less efficient than stock markets. Contrary to previous
investigations in selected ETS pilot markets (Fu and Zheng 2020; Zhang et al. 2018), the
current study employs a comprehensive dataset, integrating a national market with all eight
pilot ETS markets. The mean volatility of gold prices is quantified at 0.0087, which is lower
than the mean volatility of crude oil, recorded at 0.0239. The mean volatility of natural
gas is documented at 0.0332, while that of coal prices is 0.0195. The average VIX measure
stands at 0.1850, the most elevated among all variables under analysis. The skewness of all
volatility measures is positive, indicating that a few exceptionally high volatility values
extend the distribution to the right.

Table 1. Description statistics.

Obs. Mean Std.Dev. Min P25 Median P75 Max Skew

StockVol 800 0.0250 0.0097 0.0101 0.0186 0.0229 0.0284 0.0760 1.9755
CarbonVol 800 0.0946 0.1389 0.0003 0.0232 0.0540 0.1068 0.9576 3.8414

GoldVol 800 0.0087 0.0031 0.0046 0.0068 0.0083 0.0100 0.0248 1.9125
OilVol 800 0.0239 0.0159 0.0056 0.0158 0.0209 0.0274 0.1455 4.6967
GasVol 800 0.0332 0.0179 0.0109 0.0198 0.0283 0.0417 0.1252 1.7494
CoalVol 800 0.0195 0.0087 0.0049 0.0134 0.0184 0.0246 0.0561 1.1150

VIX 800 0.1850 0.0690 0.1025 0.1371 0.1698 0.2217 0.5774 2.0956

Notes: This table reports descriptive statistics for 293 ETS-covered firms in eight pilot ETS markets and a national
ETS market from August 2013 to October 2023.
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Table 2 delineates the pairwise correlation coefficients among the variables. The corre-
lation coefficient between stock and carbon volatilities is 0.0775, significant at the 5% level,
indicating a strong positive relationship between stock and carbon volatilities. Regarding
control variables, gold price volatility, oil price volatility, and the VIX index demonstrate
positive correlation coefficients of 0.1291, 0.1518, and 0.1642 with stock volatility, respec-
tively, each significant at the 1% level. In contrast, the correlation coefficient between stock
volatility and coal price volatility is significantly negative at −0.1927.

Table 2. Pairwise correlations between variables.

StockVol CarbonVol GoldVol OilVol GasVol CoalVol VIX

StockVol 1
CarbonVol 0.0775 ** 1

(0.0284)
GoldVol 0.1291 *** −0.0315 1

(0.0003) (0.3731)
OilVol 0.1518 *** −0.0020 0.5164 *** 1

(0.0000) (0.9558) (0.0000)
GasVol −0.0491 −0.0382 0.2167 *** 0.2953 *** 1

(0.1652) (0.2808) (0.0000) (0.0000)
CoalVol −0.1927 *** 0.0518 −0.0889 ** −0.0151 0.1999 *** 1

(0.0000) (0.1434) (0.0119) (0.6706) (0.0000)
VIX 0.1642 *** 0.0239 0.5761 *** 0.6766 *** 0.4729 *** 0.0182 1

(0.0000) (0.5003) (0.0000) (0.0000) (0.0000) (0.6073)

Notes: This table shows the pairwise correlations between variables. The p-values are reported in parentheses be-
low the correlation coefficients. ***, **, and * denote statistical significance levels of 1%, 5%, and 10%, respectively.

4.2. Baseline Regressions

Table 3 presents the baseline OLS regression analyses utilizing Equation (1). The depen-
dent variable is the regional average volatility of the 293 ETS-covered stocks, observed at a
monthly frequency, and the independent variable is the regional carbon price volatility. The
coefficient associated with carbon price volatility is 0.0054, achieving statistical significance
at the 5% level. Upon the inclusion of control variables such as volatilities of gold, crude
oil, natural gas, and coal prices, along with the VIX index, the coefficient of carbon price
volatility persists at 0.0055 and maintains significance at the 5% level. Consequently, we
validate Hypothesis 1, positing that carbon price volatility positively influences the stock
volatility of ETS-covered firms. From an economic perspective, given that the coefficient is
0.0055, a one-standard-deviation variation in carbon volatility of 0.1389 would alter stock
volatility by approximately 0.00076, or about 3% of its mean value of 0.0250. Forecasting
volatility across markets proves challenging, as evidenced by minimal R2 values. Zhang and
Zhang (2023) disclosed R2 between 0.003 and 0.009 in their analysis linking individual stock
returns to carbon price returns. Likewise, Yang et al. (2023) presented an adjusted R2 of 0.037
when examining liquidity spillover from carbon to stock markets. Tian et al. (2016) reported
an R2 of 0.055 in their study correlating individual stock returns with European carbon
returns. Xie et al. (2023) identified an adjusted R2 of 0.022 in their regression of down-to-up
volatility against a set of control variables, including the volatility of abnormal returns.
Nevertheless, the studies above have primarily focused on the return spillover effects be-
tween stock and carbon markets, as opposed to the volatility spillover effect examined
here. For example, Xu et al. (2022) demonstrate that the stock returns of carbon-intensive
industries and carbon allowance price returns exhibited positive cross-correlation in the
Shenzhen and Shanghai pilot markets. Our empirical results are valuable in scenarios where
unforeseen variables influence stock performance, enabling investors to proactively evaluate
the situation through carbon market volatility, thus employing it as a predictive indicator.

The results in Table 3 are also aligned with theoretical predictions. Financial conta-
gion theory posits that carbon price volatility, as systemic risk, transmits uncertainty to
ETS-regulated stock markets, leading to heightened volatility. Behavioral finance theory
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suggests that investor reactions to carbon price fluctuations are amplified by psychological
biases, affecting stock market volatility as investors adjust to perceived risks and regulatory
impacts. Information signaling theory argues that changes in carbon prices serve as market
signals, informing investors about the future performance and risk profiles of ETS-covered
firms, thus influencing their stock volatility.

Table 3. Baseline regressions.

(1) (2)
StockVol StockVol

CarbonVol 0.0054 ** 0.0055 **
(0.0025) (0.0024)

GoldVol 0.0306
(0.1332)

OilVol 0.0374
(0.0288)

GasVol −0.0606 ***
(0.0214)

CoalVol −0.1948 ***
(0.0389)

VIX 0.0241 ***
(0.0075)

Constant 0.0244 *** 0.0246 ***
(0.0004) (0.0014)

Observations 800 800
Adj-R2 0.005 0.077

Notes: This table shows the baseline regressions of ETS-covered stock volatility on carbon price volatility and a
series of control variables. The standard errors are reported in parentheses below the estimated coefficients. ***, **,
and * denote statistical significance levels of 1%, 5%, and 10%, respectively.

4.3. Low- and High-Carbon-Intensity Industries

Table 4 delineates regression outputs for stock volatility across low- and high-carbon-
intensity sectors. In firms operating within low-carbon-intensity sectors, the coefficient
associated with CarbonVol registers at 0.0128 and achieves statistical significance at the 1% con-
fidence level. In contrast, within high-carbon-intensity sectors, the corresponding coefficient
is 0.0049, achieving significance at the 10% level. These empirical results underscore a more
marked positive association between carbon price volatility and stock volatility in sectors with
low carbon intensity relative to those with high carbon intensity, contradicting Hypothesis 2.

Per the financial contagion theory (King and Wadhwani 1990), industries with high
carbon intensity are closely linked to the carbon market, necessitating reliance on carbon
allowances and emissions costs. Consequently, such industries may implement advanced
hedging strategies or modify operational practices to mitigate carbon price volatility risks.
This proactive approach could attenuate the spillover impact of carbon price fluctuations
on their stock prices compared to lower carbon intensity sectors, which may be less adept at
navigating abrupt carbon pricing shifts. Similarly, following the behavioral finance theory
(Shleifer and Summers 1990), investors in high-carbon-intensity sectors likely forecast these
industries’ vulnerability to carbon price changes, influencing their investment decisions
and stock valuations. Thus, market responses to carbon price variations in these sectors may
be subdued, as such volatility is anticipated and potentially already accounted for in stock
prices. In the context of the information signaling and asymmetry theory (Myers and Majluf
1984), for high-carbon-intensity sectors, carbon price shifts may not significantly alert the
market to the firms’ future profitability or risk profiles, considering these outcomes are
presumed and predicted. Conversely, carbon price volatility in low-carbon-intensity sectors
could unveil novel insights or uncertainties about forthcoming regulatory expenses and
profitability, prompting a more pronounced stock price realignment as the market integrates
this fresh information. Overall, companies in high-carbon-intensity industries might
commence improvements to their infrastructures in response to increased demands for
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carbon emission reductions, thus becoming less prone to volatility shocks from the carbon
market. Tian et al. (2016) delineate a negative relationship between carbon price returns
and electricity stock returns in high-carbon-intensity firms, while an opposite relation
exists for low-carbon-intensity firms. Yang et al. (2019) suggest that when confronted with
rising business costs of environmental regulations, firms pursue a beneficial approach,
strengthening internal governance, boosting operational efficiency, and spurring innovation
rather than choosing the adverse option of cross-regional relocation. Cheng et al. (2019)
assert that the growth of the service industry can facilitate the transformation of high-
carbon-intensity regions into areas with lower carbon emissions, facilitating the realization
of environmentally sustainable and low-carbon economic growth.

Table 4. Low- and high-carbon-intensity industries.

(1) (2)
Low-Carbon-Intensity Industries High-Carbon-Intensity Industries

StockVol StockVol

CarbonVol 0.0128 *** 0.0049 *
(0.0032) (0.0028)

GoldVol −0.0440 0.0566
(0.1717) (0.1579)

OilVol 0.0337 0.0294
(0.0365) (0.0341)

GasVol −0.0588 ** −0.0815 ***
(0.0281) (0.0254)

CoalVol −0.2778 *** −0.0824 *
(0.0506) (0.0461)

VIX 0.0223 ** 0.0274 ***
(0.0097) (0.0089)

Constant 0.0269 *** 0.0231 ***
(0.0017) (0.0016)

Observations 617 800
Adj-R2 0.090 0.040

Notes: This table shows the regression of ETS-covered stock volatility on the carbon price volatility and a series
of control variables for two subsamples: the subsample firms in the low-carbon-intensity industries and the
subsample firms in high-carbon-intensity industries. The standard errors are reported in parentheses below the
estimated coefficients. ***, **, and * denote statistical significance levels of 1%, 5%, and 10%, respectively.

4.4. Subregional Markets

In Table 5, we partition ETS-covered stocks into two geographically delineated cat-
egories: coastal and inland ETS markets. The coastal ETS markets consist of Shenzhen,
Shanghai, Guangdong Province, Tianjin, Fujian Province, and the national market in Shang-
hai. Conversely, the inland ETS markets include Beijing, Hubei Province, and Chongqing.
Contrary to Felice et al. (2023), who distinguish between coastal and inland provinces, our
analysis incorporates singular city and assorted provincial markets. Column 1 of Table 5
indicates that the regression coefficient for carbon volatility in the coastal ETS markets
is 0.0051, attaining statistical significance at the 5% level. In contrast, the coefficient in
inland ETS markets does not achieve statistical significance. This evidence suggests that
the positive volatility spillover from carbon pricing to stock volatility is more accentuated
in coastal ETS environments than inland ETS landscapes, lending support to Hypothesis
3. The above observations align with the prediction of theoretical frameworks. Financial
contagion theory suggests coastal firms are more exposed to carbon market shifts due
to stringent environmental policies, potentially affecting their stock volatility more than
inland companies. Behavioral finance theory posits that perceptions of higher risk from
carbon pricing and climate change might amplify coastal firms’ stock volatility through
investor sentiment. Additionally, information signaling theory argues that carbon price
volatility is critical for coastal companies’ future prospects, influencing market perceptions
and possibly leading to greater stock price volatility due to information asymmetry.
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Table 5. Coastal versus inland markets.

(1) (2)
Coastal ETS Markets Inland ETS Markets

StockVol StockVol

CarbonVol 0.0051 ** 0.0117
(0.0025) (0.0103)

GoldVol 0.0775 −0.0796
(0.1655) (0.2262)

OilVol 0.0737 ** −0.0232
(0.0369) (0.0460)

GasVol −0.0818 *** −0.0211
(0.0269) (0.0355)

CoalVol −0.2102 *** −0.1728 ***
(0.0492) (0.0651)

VIX 0.0163 * 0.0388 ***
(0.0096) (0.0124)

Constant 0.0259 *** 0.0223 ***
(0.0017) (0.0022)

Observations 506 294
Adj-R2 0.090 0.061

Notes: This table shows the regression of ETS-covered stock volatility on the carbon price volatility and a series of
control variables for two categories of regional markets: coastal and inland ETS markets. The standard errors are
reported in parentheses below the estimated coefficients. ***, **, and * denotes statistical significance levels of 1%,
5%, and 10%, respectively.

4.5. Subperiod Analysis

Table 6 exhibits regression results spanning two subperiods: the pre-COVID-19 pan-
demic epoch (August 2013–November 2019) and amid the COVID-19 pandemic interval
(December 2019–October 2023). The coefficient associated with carbon price volatility is
0.0071, showing statistical significance at the 10% level in the pre-COVID-19 period, but it
shifts to 0.0056, reaching statistical significance at the 5% level during the pandemic.

Given the closeness of the numbers and significance levels, we conduct Chow’s
(1960) test to ascertain the presence of significant disparities in the coefficients of two
linear regressions among two subgroups. We assign the variable Covidt a value of one
for the months commencing from December 2019 onwards and zero for all preceding
months. Following this, Chow’s test is implemented through the incorporation of numerous
interactions with the Covidt dummy variable:

StockVoli,t = β0 + β1CarbonVoli,t + β2GoldVolt + β3OilVolt
+β4GasVolt + β5CoalVolt + β6VIXt
+θ0Covidt + θ1(Covidt × CarbonVoli,t) + θ2(Covidt × GoldVolt)
+θ3(Covidt × OilVolt) + θ4(Covidt × GasVolt)
+θ5(Covidt × CoalVolt) + θ6(Covidt × VIXt) + εi,t

(5)

Our analysis aims to elucidate the distinct effect of carbon volatility, assessing the null
hypothesis that θ1 is equal to zero. The obtained F-value is 0.11, and the p-value is 0.73,
suggesting the disparity between the two coefficients is insignificant.

These results fail to lend support to Hypothesis 4. Mai et al. (2022) investigated volatil-
ity spillovers between national and regional carbon markets, partitioning the temporal
subsegment into three phases: antecedent to, concurrent with, and after the COVID-19
pandemic. During the pandemic phase, the magnitudes of spillover effects were consid-
erably elevated. As Tan et al. (2022) point out, the COVID-19 pandemic constitutes a
substantial exogenous perturbation affecting the supply-side dimensions of economies on
both national and global scales. Financial contagion theory suggests that the pandemic
intensified systemic risks, leading to more extraordinary transmission of uncertainty from
carbon to stock markets. Behavioral finance theory indicates that COVID-19 heightened
investor sensitivities to carbon price fluctuations due to increased psychological biases
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towards perceived pandemic-related risks and regulatory changes. Information signaling
theory posits that during COVID-19, shifts in carbon prices were more significant as signals
to investors about the altered performance and risk profiles of ETS-covered firms, reflecting
the unique economic and regulatory landscape induced by the pandemic. Notwithstanding
the empirical evidence and theoretical predictions, our analysis reveals no substantial
variation in volatility spillover preceding and throughout the COVID-19 pandemic.

Table 6. Subperiod analysis.

(1) (2)
Pre-COVID During-COVID

StockVol StockVol

CarbonVol 0.0071 * 0.0056 **
(0.0037) (0.0025)

GoldVol −0.3316 0.0329
(0.2090) (0.1510)

OilVol 0.3951 *** −0.0549 **
(0.0764) (0.0264)

GasVol −0.1759 *** −0.0227
(0.0458) (0.0211)

CoalVol −0.4605 *** 0.1565 ***
(0.0616) (0.0436)

VIX 0.0487 *** 0.0390 ***
(0.0163) (0.0090)

Constant 0.0245 *** 0.0134 ***
(0.0029) (0.0020)

Observations 446 354
Adj-R2 0.285 0.096

Notes: This table shows the regression of ETS-covered stock volatility on the carbon price volatility and a series of
control variables during subperiods: before the COVID-19 pandemic (August 2013–November 2019) and during
the COVID-19 pandemic (December 2019–October 2023). The standard errors are reported in parentheses below
the estimated coefficients. ***, **, and * denotes statistical significance levels of 1%, 5%, and 10%, respectively.

The volatility coefficients for oil, gas, and coal exhibit variations from pre-COVID to
amid-COVID. Coal consumption in China has consistently increased during the COVID-19
pandemic, whereas oil consumption markedly decreased in 2022. As highlighted in a
CNBC news report, China has no choice but to rely on coal power for now (Cheng 2021).

4.6. VAR Analysis

This study computes the average volatility across 293 stocks from August 2013 to
October 2023 to construct a time series of stock volatility. Similarly, carbon volatility is
averaged across nine regions. The resulting dataset includes 123 monthly observations.
Table 7 presents the results of VAR following Equations (2) and (3). Empirical data reveals
strong positive auto-correlations in the volatilities of stock, carbon, gold, natural gas, coal,
and the VIX index, exhibiting coefficients of 0.7546, 0.4606, 0.2295, 0.4381, 0.6331, and
0.6933, respectively, each achieving statistical significance at the 1% or 5% level. In contrast,
lagged carbon price volatility exhibits negligible explanatory power for contemporaneous
stock volatility and vice versa. These insights suggest that volatility spillover mechanisms
are primarily contemporaneous rather than inter-temporal.

Figure 1 displays impulse response functions delineating the interrelations between
stock and carbon price volatility after executing VAR analysis. These graphical outcomes
corroborate the empirical evidence presented in Table 7. The impulse response func-
tion gradually decays when quantifying auto-correlation in carbon price volatility. Con-
versely, the impulse response function exhibits rapid attenuation when assessing the
cross-relationship explanatory power between carbon price volatility and equity volatility.
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Table 7. VAR analysis.

(1) (2) (3) (4) (5) (6) (7)
StockVol CarbonVol GoldVol OilVol GasVol CoalVol VIX

L.StockVol 0.7546 *** −0.2811 0.0568 * 0.3053 ** 0.0023 −0.0435 1.2166 **
(0.0584) (0.7430) (0.0311) (0.1278) (0.1448) (0.0700) (0.5050)

L.CarbonVol 0.0033 0.4606 *** −0.0061 * −0.0254 * −0.0121 0.0163 ** −0.0133
(0.0066) (0.0834) (0.0035) (0.0143) (0.0163) (0.0079) (0.0567)

L.GoldVol 0.0585 −0.1805 0.2295 ** 0.9079 ** 1.3727 *** 0.1969 0.1378
(0.1843) (2.3456) (0.0981) (0.4034) (0.4572) (0.2211) (1.5942)

L.OilVol 0.0039 0.2137 −0.0337 0.1269 −0.3034 *** −0.0688 −0.4337
(0.0418) (0.5314) (0.0222) (0.0914) (0.1036) (0.0501) (0.3612)

L.GasVol −0.0318 −0.4895 −0.0036 −0.1139 0.4381 *** 0.0419 0.5392 *
(0.0322) (0.4098) (0.0171) (0.0705) (0.0799) (0.0386) (0.2785)

L.CoalVol −0.1249 ** −0.0207 −0.0265 0.1017 0.2456 * 0.6331 *** −0.0597
(0.0582) (0.7402) (0.0310) (0.1273) (0.1443) (0.0698) (0.5031)

L.VIX −0.0102 0.1487 0.0168 *** 0.1121 *** 0.0804 *** 0.0024 0.6933 ***
(0.0111) (0.1412) (0.0059) (0.0243) (0.0275) (0.0133) (0.0960)

Constant 0.0105 *** 0.0495 0.0043 *** −0.0110 ** −0.0047 0.0045 0.0188
(0.0024) (0.0312) (0.0013) (0.0054) (0.0061) (0.0029) (0.0212)

Observations 122 122 122 122 122 122 122

Notes: This table shows the VAR analysis of ETS-covered stock volatility, carbon price volatility, a series of control
variable volatilities, and their one-month lagged values. The standard errors are reported in parentheses below
the estimated coefficients. ***, **, and * denotes statistical significance levels of 1%, 5%, and 10%, respectively.
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4.7. E-GARCH Analysis

Table 8 displays outcomes derived pursuant to Equation (4), wherein Nelson’s (1991)
E-GARCH model is utilized to integrate an innovation sign approach. Although well-
established, the E-GARCH model may not reflect the most recent developments in volatility
modeling. Our selection was driven by the model’s proficiency in detecting volatility
asymmetries, which is essential for the context of our study. It is noted that financial
time series data frequently present characteristics like volatility clustering, leverage effects,
and fat tails. As a preliminary test, we employed the E-GARCH model to mitigate the
effects of volatility clustering. Again, the time series dataset consolidates all nine regional
markets into a single composite of China’s ETS market from August 2013 to October
2023. As depicted in Table 8, the positive coefficient on L.EARCH suggests that positive
innovations (unexpected price increases) have a more significant destabilizing impact than
negative innovations. This effect is pronounced (0.5959) and surpasses the symmetric
effect (0.5568). In essence, the ramifications of favorable news surpass those of adverse
news. Our principal coefficient on carbon volatility persists at 0.0193 and 0.0139, attaining
statistical significance at the 5% and 1% thresholds, respectively, corroborating that our
baseline findings remain robust after accommodating for volatility clustering phenomena,
non-negligible volatility inclinations, and asymmetries in positive and negative shocks, as
embedded by the E-GARCH model.

Table 8. E-GARCH analysis.

(1) (2)
StockVol StockVol

CarbonVol 0.0193 ** 0.0139 ***
(0.0078) (0.0052)

GoldVol −0.0238
(0.1521)

OilVol −0.0591
(0.0472)

GasVol −0.0689 ***
(0.0249)

CoalVol 0.0749 *
(0.0446)

VIX 0.0539 ***
(0.0090)

Constant 0.0222 *** 0.0141 ***
(0.0010) (0.0014)

L. EARCH 0.0787 0.5959 ***
(0.0989) (0.1443)

L. EARCH_A 0.5140 *** 0.5568 **
(0.1679) (0.2363)

L. EGARCH 0.8080 *** 0.5727 ***
(0.0738) (0.0984)

ARCH Constant −1.9525 *** −4.5717 ***
(0.7571) (1.0263)

Observations 123 123
Notes: This table shows the E-GARCH result of ETS-covered stock volatility on carbon price volatility and a series
of control variables. The standard errors are reported in parentheses below the estimated coefficients. ***, **, and *
denote statistical significance levels of 1%, 5%, and 10%, respectively.

5. Conclusions

This study investigates the volatility spillover effects of carbon pricing on ETS-covered
equities in the Chinese market. We identify a statistically robust, positive spillover impact
from carbon price volatility onto corresponding equity volatility utilizing an exhaustive
dataset comprising 293 publicly traded, ETS-affected firms across nine distinct Chinese
markets from August 2013 to October 2023. Subsample scrutiny reveals that the positive
volatility spillover is more pronounced in low-carbon-intensity industries than in their
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high-carbon-intensity analogs. Geographical examination substantiates that the volatility
spillover effect is significantly more prevalent in coastal ETS markets than in inland ETS
markets, manifesting regional heterogeneity. Temporal bifurcation demonstrates that the
spillover impact remains predominantly unchanged during the COVID-19 era compared
to preceding periods. Vector autoregressive assessments affirm that volatility spillovers are
predominantly contemporaneous instead of inter-temporal. Our baseline findings remain
resilient when utilizing the E-GARCH model to control for volatility clustering phenomena.

This study provides several enrichments to the extant literature. First, it expands the
corpus of research dedicated to the evolution and efficacy of China’s carbon emissions
trading markets, delineating a direct mechanism by which policy impacts equity markets.
Second, introducing a novel inter-market spillover channel amplifies the discourse on
determinants of stock volatility. Finally, the present study advances the academic dialogue
on the volatility spillover effect within carbon ETS arenas. These spillovers are discernible
geographically, as demonstrated by volatility transfers among eight regional carbon ETS
markets in China (Li et al. 2023). Furthermore, such volatility spillovers extend across
various classes of financial assets, exemplified by the correlation between carbon pricing
and energy stocks (Tian et al. 2016; Gong et al. 2021; Ji et al. 2018; Song et al. 2022; Sadorsky
2014). Nevertheless, the volatility spillover between China’s carbon market and the equity
market remains unexplored, especially in the individual stock level. Our investigation
addresses this lacuna, focusing on the equities of companies under carbon emission quota
regulation. It furnishes novel empirical evidence on the cross-market volatility dynamics
between carbon and stock markets, thus bridging a significant gap in the literature.

Despite its contributions, this research is subject to several limitations that pave the way
for future inquiries. Primarily, the study’s dataset, confined to a timeframe commencing
with initiating ETS pilots in 2013, would benefit substantially from a longitudinal expansion.
An extended temporal analysis could yield more robust empirical findings as these markets
evolve, capturing the full spectrum of market dynamics over time. Moreover, future studies
should consider separating systematic volatility from idiosyncratic volatility to provide
a clearer understanding of the sources of volatility in ETS-regulated stock markets. This
distinction is critical for accurately attributing volatility to market-wide shocks versus
firm-specific events. Exploring beyond volatility impacts to examine alternative interaction
mechanisms between carbon and equity markets, such as regulatory announcements or
investor sentiment, could deepen insights into their complex relationship. Enhancing
the analysis with additional regional-level control variables alongside macroeconomic
indicators would offer a more nuanced perspective on the influence of external factors.
Additionally, investigating the effects of technological innovations and comparing different
ETS jurisdictions could highlight adaptive strategies and inform policy in emerging markets,
providing a holistic view of carbon trading’s economic implications globally.
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