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Abstract: Estimating the expected capital and its variability is a crucial objective for a non-life
insurance company, which enables the firm to develop effective management strategies. Many
studies have been devoted to this topic, with simulative approaches being especially employed for
solving the complexity of the interacting risks, not manageable through closed-form solutions. In this
paper, we present a realistic framework based on Solvency II for the definition of next-year capital
of a non-life insurer, including reinsurance treaties and counterparty default risk, in a multi-line of
business setting. We determine the mean and variance of the stochastic capital considering both quota
share and excess-of-loss reinsurance. We show how these closed-form results enable the analysis
of many different real-world strategies, granting the insurer the possibility of choosing the optimal
policy without the computational resources and time constraints required by simulative approaches.

Keywords: non-life insurance; reinsurance; counterparty default risk; closed-form solution; Solvency II

1. Introduction

The core business of a non-life insurance company is represented by its underwriting
activity, consisting in the offering of coverage against risks in exchange for the payment
of a premium. In practice, the company receives (in advance) the premiums from the
policyholders and pays the claims, in case of occurrence of the covered events. These
two items, premiums and claims, are the main elements determining the technical results
and, broadly, the future capital of the company. As a part of the management of a firm,
the insurer needs to assess the effect of its policies on the amount of premiums and the
associated risks that translates into claims. In this way, the insurer can estimate the expected
capital and the associated uncertainty, from which it can choose the policy resulting in the
optimal result according to its risk/return preferences.

In the actuarial literature, many studies have been devoted to the modelling of the
capital of a non-life insurer and more generally to the development of the so-called “risk
theory”, with Daykin et al. (1993) providing quite a detailed reference on this argument.
The main stochastic variable analysed in this context consists in the aggregate claim amount,
which represents the underwriting risk component of the business. In these studies, many
closed formulas for the main moments of the stochastic capital of a non-life insurer are
developed, typically based on some specific assumptions. In practice, however, the under-
writing risk is generally not the single risk for an insurance company. Indeed, in order to
balance the uncertain benefits of its activity with the associated risks, insurance companies
typically purchase risk-covering instruments like reinsurance treaties. These contracts can
be considered an insurance for insurers, since they consist in the transfer of a risk from
one party to another through the payment of a premium. Therefore, a more practical
and applicable model for real-world scenarios should take into account the possibility of
reinsurance treaties.

In the actuarial literature, the stochastic capital of an insurance company considering
the presence of reinsurance has been the object of studies typically connected to the topic
of optimal reinsurance, where Borch (1960) and Arrow (1963) can be considered seminal
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papers on this argument. Other results, based on closed formulas connected with optimal
reinsurance, have been obtained in Kaluszka (2001), where closed formulas are derived
for a quite general structure under mean and variance premium principles, and in Chi
and Zhou (2017), in which an optimisation criterion is used based on the minimisation of
a general two-dimensional function of the mean and variance of the insurer’s total risk
exposure. Optimal risk transfer in presence of multiple reinsurers is instead analysed
in Asimit et al. (2013), with closed-form solutions elaborated for some particular settings.

Relatively recently, also pushed by the development of the European framework of
Solvency II European Parliament and Council (2009), the actuarial literature shifted its
focus towards the analysis of the determination of the required capital for ensuring the
solvency of the firm. In this new emerging framework, Clemente et al. (2015) develop a
Partial Internal Model based on the Solvency II framework, which extends the classical
collective risk model to also include expense as a stochastic variable. Moreover, they also
analyse the presence of reinsurance treaties, both quota share (QS) and excess-of-loss (XL)
treaties, on the exact moments of the distribution of technical result and investigate the
effect of QS commission rates on the variability of distribution. Connected to the problem
of optimal non-life reinsurance and the Solvency II framework, Asimit et al. (2015) analyse
the optimal policy for an insurer whose objective is the minimisation of its risk exposure.
They formulate two optimal reinsurance models, depending on the approach used for
calculating the risk margin of reserve risk and prove that a two-layer reinsurance contract
is the optimal policy in the defined context. The problem of optimal reinsurance from
the insurer’s point of view is also analysed in Cai et al. (2014), in a framework consistent
with that of Solvency II, requiring a regulatory initial reserve and also accounting for
default risk. Optimal reinsurance strategies are derived for two “opposite” objectives:
maximising the expected utility of the insurer’s terminal wealth or minimising the value
at risk of the insurer’s total retained risk. Related to the consideration of the default of
the reinsurer, Boonen and Jiang (2023) analyse the problem of Pareto-optimal reinsurance
in presence of default risk. They show that the optimal indemnity function depends on
whether solvency regulation is taken into account or not.

Following the idea of a partial internal model, based on the Solvency II framework,
we extend the classic capital modelling of Clemente et al. (2015) also considering the
counterparty default risk, connected to the presence of reinsurance companies, as in Cai
et al. (2014). Hence, we propose a framework for the analysis of the insurance capital
from the existing literature considering a realistic setting with the presence of reinsurance,
potentially offered by multiple reinsurers and taking into account counterparty default risk.
The model that we define is an extension of Crisafulli (2023) and can potentially be used by
a non-life insurer as a partial internal model for premium and default risk, also accounting
for reinsurance. We derive the first two moments of the stochastic next-year capital in
a closed form and show how these results allow for the efficient frontier of reinsurance
strategies to be derived without the computational time and the approximation required
by simulative approaches. Finally, while the problem is specific to the actuarial context, it
helps to demonstrate the strength of closed-form solutions and their application to optimal
selection compared to simulative approaches, when the number of combinations to be
analysed is infeasible in terms of computational time and accuracy.

The following sections of this paper are organised as follows. In Section 2, we present
the modelling of the capital of a non-life insurance company in a one-year time horizon,
describing all its components, with a focus on reinsurance and counterparty risk. In
Section 3, we present a first extension of the risk reserve model by adding the possibility of
reinsurance and considering the associated counterparty risk. This preliminary extended
model serves to show the main additional elements of the complete case, but without
including the complexity of the multiple lines of business (LoBs) and reinsurers (with the
correlated default dynamics) yet. In Section 4, we present the “complete” extensions of the
classical risk reserve model, including multiple LoBs and multiple reinsurers with their
counterparty default risk. Closed-form results for the mean and variance are presented,
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with the algebraic details on their derivation reported in Appendix A. In Section 5, we
present various numerical applications of the closed formulas described in the previous
section. We show the advantage of having closed-form results for the evaluation of various
strategies, such as selecting the optimal limit or the optimal number of reinsurers and their
credit quality step (CQS) for an XL treaty in a risk/return framework. We also extend
the analysis to a more general objective, showing how these closed formulas can be used
for evaluating different strategies and derive an empirical efficient frontier, without the
computational burden coming from simulations. Finally, in Section 6, we conclude the
paper with comments on the innovations and potential future improvements.

2. Modelling of Risk Reserve in Non-Life Insurance
2.1. Risk Reserve Equation

In order to present the extended models developed in this article, it is first neces-
sary to provide a description of the general modelling of the risk reserve and the main
assumptions used.

Following classical risk theory approach, also similarly employed in the context of
full/partial internal models under the Solvency II framework, in (1), we define the stochastic
capital1 of an insurance company in a one-year time horizon as

Ũt+1 = Ut(1 + jt+1) +
[
Bt+1 − X̃t+1 − Et+1

]
(1 + jt+1)

1/2 , (1)

which can be considered the “base” equation of this stochastic process, considering only the
randomness deriving from claims and not including the presence of reinsurance treaties.

In this modelling, the risk reserve at the end of year t + 1 depends on two components:
the initial risk reserve (risk reserve at the end of year t) and the total “technical result” of
the year. The first component is defined as the initial capital Ut invested at the deterministic
rate jt+1 for one year. The second component is defined as the difference between earned
premiums Bt+1 and claims X̃t+1 and expenses Et+1 (both paid and reserved), invested at
deterministic rate jt+1 for half a year. The underlying assumption of the application of
interest rate for half a year is that the earning of premium, payment of claims, and expenses
are uniformly distributed during the year, resulting in an average impact in the middle
of the year. In practice, other assumptions, such as those assuming that they occur at the
beginning or at the end of the year, are also possible. However, this does not change the
main structure of the model, but only the exponent of the (1 + jt+1) term.

The only random variable present in this equation is the stochastic aggregate amount
of claims. This means that, as shown, for instance, in Daykin et al. (1993) or Savelli (2002),
in this initial model (where we are implicitly assuming that the insurance company operates
in a single segment), we can obtain the moments of Ũt+1 from the corresponding moments
of X̃t+1.

More specifically, the mean, variance, and skewness of the risk reserve at time t + 1
are reported in (2):

E
[
Ũt+1

]
= Ut(1 + jt+1) +

[(
Bt+1 −E

[
X̃t+1

]
− Et+1

)]
(1 + jt+1)

1/2

Var
[
Ũt+1

]
= Var

[
X̃t+1

]
(1 + jt+1)

γ
[
Ũt+1

]
= −γ

[
X̃t+1

]
.

(2)

2.2. Collective Risk Model for Aggregate Claim Amount

Random variable2 X̃ is defined by means of a collective risk model. This model
assumes that the aggregate claim amount can be described according to (3) (see, for in-
stance, Daykin et al. (1993) for details),

X̃ =
K̃

∑
k=1

Z̃k , (3)
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where K̃ and Z̃ represent the stochastic number of claims and the stochastic claim size and
is based on the following assumptions:

1. The claim sizes are independent of each other: Z̃i ⊥ Z̃j∀i, j.

2. The claim sizes are identically distributed: F(Z̃i)
d
=F(Z̃)∀i.

3. The number of claims and the claim sizes are independent: K̃ ⊥ Z̃i.

Under these hypotheses, it is possible to derive the moments of the aggregate claim
amount as described below. The first moment (i.e., the expected value) of this random
variable, corresponding to the fair premium, is defined in (4) as the product of the expected
number of claims and the expected claim size:

E
[
X̃
]
= E

[
K̃
]
E
[
Z̃
]

. (4)

Variance and skewness are reported in (5) and (6):

Var
[
X̃
]
= E

[
K̃
]
Var

[
Z̃
]
+ Var

[
K̃
]
E
[
Z̃
]2 , (5)

γ
[
X̃
]
=

E
[
K̃
]
Var

[
Z̃
]3/2

γ
[
Z̃
]
+ 3Var

[
K̃
]
E
[
Z̃
]
Var

[
Z̃
]
+ Var

[
K̃
]3/2

γ
[
K̃
]
E
[
Z̃
]3

Var
[
X̃
]3/2 . (6)

From these results, it is possible to notice that we only need to know the first three
moments of the random variable number of claims and claim sizes in order to derive the
expected value, variance, and skewness of the overall risk reserve.

2.3. Reinsurance Treaties

The technical result of an insurance company can also be affected by the presence of
risk-covering instruments, aimed at transferring part of the risk to another party. Among
these instruments, the most widely used in the insurance sector are reinsurance treaties.
They work like an insurance for insurers and represent a way of ceding underwriting risks
to another party, the reinsurance company, according to specific contractual characteristics.

In case we allow for the possibility of purchasing reinsurance treaties, the equation
described in (1) is complicated by the presence of an additional random variable, X̃re

t+1,
which represents the aggregate claim amount ceded to the reinsurer. In (7), this extended
model is reported:

Ũt+1 = Ut(1 + jt+1)

+
[(

Bt+1 − X̃t+1 − Et+1
)
−
(

Bre
t+1 − X̃re

t+1 − Cre
t+1
)]
(1 + jt+1)

1/2 ,
(7)

where the new term Bre
t+1 − X̃re

t+1 − Cre
t+1 can be interpreted as the “technical result” of

the reinsurer, corresponding to the profit ceded by the insurance company. The elements
determining this term, Bre

t+1, X̃re
t+1 and Cre

t+1, represent ceded premium, ceded claims, and
ceded commission, respectively.

In the reinsurance market, there are many different types of treaties, which are typically
divided between proportional and non-proportional, depending on their characteristics.
The former consist in contracts under which the reinsurer undertakes to reimburse the
insurer a percentage of the cost of claim, equal to the percentage of risk transferred. The
latter, on the other hand, consist in contracts under which the reinsurer undertakes to
reimburse the insurer for losses over a certain amount and up to a certain limit, according
to the conditions defined in the contract.

Under proportional reinsurance, the most relevant treaty employed in the market
consists in QS reinsurance. It is a contract through which the insurance company cedes to
the reinsurer a constant percentage, represented by cession rate (1− α) ∈ [0, 1], of premiums
and losses for each of its risks. Hence, given α, the quota of risk retained by the insurer,
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and (1 − α), the cession rate, the amount of gross premium ceded from the insurer to the
reinsurer is obtained according to (8),

Bqs = (1 − α)B , (8)

where B denotes the gross earned premium of the insurer.
Similarly, the amount of ceded claims, or equivalently the aggregate claim amount

borne by the reinsurer, is obtained by means of (9),

X̃qs = (1 − α)X̃ , (9)

where X̃ denotes the stochastic amount of claims borne by the insurer.
Finally, the last element of a QS treaty is represented by the ceded commission, which

represents a quota of premium returned by the reinsurer to the insurer. The theoretical
rationale for this element is that the ceded premium also includes the insurer’s loading for
expenses, in particular those arising from the acquisition of the contracts that the reinsurer
should not be entitled to receive, since it does not bear such costs. Hence, ceded commission
represents a fundamental element in the pricing of proportional reinsurance, as it is the only
element for differentiate QS treaties with the same retention quota. In practice, there are
many different approaches for the definition of the ceded commission, with deterministic
ceded commission representing the simplest case. Indeed, under this approach, assuming
a deterministic ceded commission rate cqs, in (10), their formulation is reported:

Cqs = Bqscqs = (1 − α)Bcqs . (10)

Mean, variance, and skewness of this random variable are reported in (11), (12), and
(13), respectively:

E
[
X̃qs] = (1 − α)E

[
X̃
]
, (11)

Var
[
X̃qs] = (1 − α)2Var

[
X̃
]
, (12)

γ
[
X̃qs] = γ

[
X̃
]

. (13)

Interestingly, if we assume that QS reinsurance is the only applicable treaty, the mean,
variance, and skewness of (7) can be easily derived as in (1). Indeed, thanks to the propor-
tional rule of the QS treaty, the risk reserve equation simply becomes (14), where the only
random variable remains the aggregate claim amount X̃t+1,

Ũt+1 = Ut(1 + jt+1)

+
[
αt+1

(
Bt+1 − X̃t+1

)
−
(
Et+1 + αt+1Bt+1cre

t+1
)]
(1 + jt+1)

1/2 .
(14)

Under non-proportional reinsurance, XL reinsurance can be considered the most
relevant treaty employed in the market. In this treaty, the insurer cedes a portion of its risks
according to a non-proportional rule. In particular, the layer function3 is commonly used
for defining the application of the XL treaty. Given random loss Z̃, layer function L(·) with
deductible d and limit l is defined as

Ld,l
(
Z̃
)
= Z̃d,l = min

(
max

(
Z̃ − d, 0

)
, l
)
= min

(
Z̃, d + l

)
− min

(
Z̃, d

)
.

Hence, in (15), the aggregate claim amount borne by the reinsurer for an XL treaty is
reported:

X̃xl =
K̃

∑
k=1

Z̃xl =
K̃

∑
k=1

min
(
max

(
Z̃k − d, 0

)
, l
)

, (15)
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with a d deductible, an l limit and where Z̃xl is distributed according to

Z̃xl = Ld,l
(
Z̃
)
=


0 Z̃ ≤ d
Z̃ − d d < Z̃ ≤ d + l
l Z̃ > d + l .

Regarding the ceded premium in the case of XL reinsurance, it is typically determined
by means of experience or exposure rating. Assuming that the reinsurance company
employs experience pricing and that it calibrates safety loading by means of the standard
deviation premium principle, the gross premium can be derived by means of (16),

Bxl = E
[

X̃xl
]
+ βxlσ

[
X̃xl
]

. (16)

Mean, variance, and skewness of the aggregate claim amount of the XL reinsurer are
reported in (17), (18), and (19), respectively:

E
[

X̃xl
]
= E

[
K̃

∑
k=1

Z̃k,d,l

]
= E

[
K̃
]
E
[
Z̃d,l
]

, (17)

where E
[
Z̃d,l
]

is equal to (20):

Var
[

X̃xl
]
= Var

[
K̃

∑
k=1

Z̃k,d,l

]
= E

[
K̃
]
Var

[
Z̃d,l
]
+ Var

[
K̃
]
E
[
Z̃d,l
]2 , (18)

where E
[
Z̃d,l
]

is equal to (20) and Var
[
Z̃d,l
]

to (22).

γ
[

X̃xl
]

=
E
[
K̃
]
Var

[
Z̃d,l
]3/2

γ
[
Z̃d,l
]
+ 3Var

[
K̃
]
E
[
Z̃d,l
]
Var

[
Z̃d,l
]
+ Var

[
K̃
]3/2

γ
[
K̃
]
E
[
Z̃d,l
]3

Var
[
X̃xl
]3/2 .

(19)

In order to derive the moments of the random variable describing the aggregate claim
amount of the XL reinsurer in a closed-form solution, it is typically necessary to make
a distributional assumption on the claim size. A common assumption is that claim size
distribution is LogNormal. Indeed, for instance, Benckert (1962) shows that, for some
LoBs, the LogNormal assumption is empirically adequate for modelling the claim size
distribution, justifying its application. However, it should be noted that this assumption
may not always hold true or may only be valid to a portion of the entire claim size
distribution. Hence, it is common practice to divide the claim size distribution between
small and large claims and employ different distributions for each part.

In this paper, we assume that claim size can be adequately modelled by means of a
single distribution, specifically a LogNormal distribution, as it permits us to derive the
moments of Z̃xl in a closed form. However, it should be noted that even if we divide
the claim size distribution between small and large claims, we can still determine the
moments of Z̃xl in a closed form provided that we assume that large claims are LogNormal-
distributed. This is because, under this assumption, large claims belong to the part of
distribution described by LogNormal. Finally, the results are also valid for other families of
distributions, as long as they allow the closed-form derivation of the moments of Z̃xl .
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Assuming a LogNormal distribution for Z̃, the mean of Z̃xl is equal to

E
[
Z̃d,l
]
=
∫ d+l

d
(z − d) fZ(z)dz + l

∫ ∞

d+l
fZ(z)dz

=
∫ d+l

d
z fZ(z)dz − d

∫ d+l

d
fZ(z)dz + l

∫ ∞

d+l
fZ(z)dz

= eµ+ σ2
2

[
Φµ+σ2,σ2(ln(d + l))− Φµ+σ2,σ2(ln(d))

]
− d
[
Φµ,σ2(ln(d + l))− Φµ,σ2(ln(d))

]
+ l
[
1 − Φµ,σ2(ln(d + l))

]
,

(20)

where fZ(z) represents the probability density function of the claim size random variable
and Φµ,σ2(·) is the cumulative distribution function (c.d.f.) of a Normal distribution with
mean µ and variance σ2.

As a general result, it is possible to prove that the k-mean of Z̃xl (i.e., the kth moment
about the origin) can be expressed as reported in (21),

E
[(

Z̃d,l
)k
]
=
∫ d+l

d
(z − d)k fZ(z)dz + lk

∫ ∞

d+l
fZ(z)dz

=
∫ d+l

d

k

∑
i=0

(
k
i

)
zidk−i fZ(z)dz + lk

∫ ∞

d+l
fZ(z)dz

=
k

∑
i=0

(
k
i

)(
eiµ+ (iσ)2

2 − d(k−i)
)[

Φµ+(iσ)2,σ2(ln(d + l))− Φµ+(iσ)2,σ2(ln(d))
]

+ l
[
1 − Φµ,σ2(ln(d + l))

]
.

(21)

Consequently, we can derive the formula of the variance of a single claim amount
borne by the reinsurer as

Var
[
Z̃d,l
]
= E

[(
Z̃d,l
)2
]
−
(
E
[
Z̃d,l
])2 , (22)

and eventually all the other moments.

2.4. Counterparty Default Risk

When an agent enters into a contractual agreement, it is exposed to the risk that
the other party will not fulfil their contractual obligations. In a more economic context,
this situation usually arises when the agent is exposed to a “monetary” risk, such as a
receivable, a bond, a loan, etc., and consequently the breach of the deal or the default of
the counterparty generates a loss to the agent. In the insurance context, a typical situation
in which an insurance company is exposed to counterparty risk is when it purchases a
reinsurance coverage. Indeed, the insurer cedes part of its premium to the reinsurer and is
indemnified for the potential losses in the scope, thus exposing itself to the risk of default
of the reinsurer.

A general formula for describing expected loss L related to counterparty default is
reported in (23), presenting the three main elements of this risk:

L = X (1 − q) p = LGD p , (23)

where X represents the expected exposure at default, p the probability of default and q
the expected recovery rate (in the case of default). Sometimes, instead of using the first
equality, the second formulation is directly used, which considers together the exposure at
default and the percentage not recovered in the loss given default (LGD) term.

As anticipated, the starting point of counterparty risk consists in a monetary exposition
against another party, which could default on its obligations. In practice, we are not
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interested in the general exposure, but only on the one at default, which represents the
credit that the agent holds against the other party at the moment of default.

In the insurance context, the exposure is represented by the credit that the insurer
holds against the reinsurer, which in turn for the premium received, indemnifies the insurer
for claims in the scope of the reinsurance treaty4. The probability of default, indicated with
p, can generally be defined as the probability that the borrower or debtor defaults on its
payment obligations. Finally, the recovery rate denotes the quota of the exposure that it is
expected to be recovered in the event of counterparty default.

Regarding the modelling of the counterparty default in the insurance context, a great
part of the literature derives from the works developed in the different Quantitative Impact
Studies (QISs) for the definition of the structure of Solvency II. Here, coherently with the
model already chosen in QIS5 and with some modifications in the final version of the
Standard Formula of Solvency II, we present the common shock approach, based on the
seminal work of ter Berg (2008).

The common shock approach assumes that there is a common shock affecting the
probability of default of the reinsurers and that, being common to the whole market, it
creates a correlation in the default events of different firms. More formally, we describe
the common shock as a random variable distributed according to a distribution with
domain from zero to one. Hence, the approach suggested in ter Berg (2008) is to model the
common shock variable as a special case of Beta distribution with monotone decreasing
probabilities, with the implicit assumption that shocks of increasing size are less and less
likely. Mathematically, this is expressed by the probability density function reported in (24),

f (s) = αsα−1 0 < s < 1 0 < α < 1 . (24)

The practical meaning of this formulation is, as anticipated, that small shocks have
(a certain) high probability, which declines for shocks of greater intensity. Parameter α
governs the speed of decay of probability.

Having defined the common shock as an element affecting all reinsurers, the effect is
that the probability of default of each reinsurer is driven by the common shock, creating,
in this way, a dependence between reinsurers. In order to formally define this connection,
in ter Berg (2008), authors propose to assume that each insurer has a “baseline” probability
of default (connected with its characteristics) and that the common shock influences the
“shock-modified default probability” according to the modelling defined in (25),

p(s) = b + (1 − b)sτ/b 0 < b < 1 τ > 0 , (25)

where b represents the baseline probability of default, specific to the given reinsurer,
and τ is a shape parameter governing the intensity of the shock impact, common to all
the reinsurers.

It is possible to notice that, under this modelling approach, the shock effect depends
on b. In particular, the lower the b, the lower the shock. Moreover, the ratio α/τ determines
the difference between the observed and the baseline probability of default, increasing the
difference for higher ratios.

At this point, it is possible to calculate the expected probability of default as the
expected value of the “shock-modified probability of default” over the shock sizes:

p = E
[
p(S̃)

]
=
∫ 1

0
p(s) f (s)ds =

(τ + α)b
τ + αb

=
(α/τ + 1)b
1 + α/τb

,

where S̃ is the random variable defining the shock size, with probability density function
defined in (24).
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The idea at this point is that the value of p can be obtained from external rating
agencies, and consequently, the baseline default probability is derived as follows:

b =
τp

α(1 − p) + τ
=

τ/αp
(1 − p) + τ/α

. (26)

In (26), it is shown that, under these modelling assumptions, the baseline default
probability of a firm depends on three elements: the observable (from rating agencies)
probability and two parameters governing the intensity of the impact of shocks, α and τ.
Consequently, they are the elements that also affect the variability of the loss in a multiple
reinsurance case. Moreover, related to the case of multiple counterparties, as reported in
(27), an interesting element that it is possible to derive in a closed form consists in the
covariance of the stochastic default event between two different reinsurers:

Cov
[

Ĩ(r), Ĩ(s)
]
=

α
(

1 − b(r)
)(

1 − b(s)
)

α + τ
(
b(r)
)−1

+ τ
(
b(s)
)−1 −

(
p(r) − b(r)

)(
p(s) − b(s)

)
, (27)

where Ĩ is an indicator function for the default event while superscripts (r) and (s) represent
the specific reinsurer.

In practice, rather than the expected loss, we are interested in modelling directly the
stochastic loss due to counterparty risk. In (28), we report its formulation:

L̃ = (1 − q)X̃ Ĩ =

{
0 1 − p
(1 − q)X̃ p ,

(28)

where L̃ represents the stochastic loss related to the counterparty risk, X̃ is the stochastic
exposure at default, Ĩ is an indicator function for the default event, and (1 − q) is the
portion of exposure not recovered in the case of default. Equivalently, it is possible to
interpret (1 − q)X̃ as a (stochastic) loss given default.

An alternative formulation, which is useful for our analysis of the risk reserve equation,
is to model the stochastic recovered exposure, defined as follows in (29):

X̃d = X̃ − L̃ = X̃ − (1 − q)X̃ Ĩ =

{
X̃ 1 − p
X̃q p ,

(29)

where we indicate this random variable with X̃d, defined as the difference between the
stochastic exposure and the stochastic loss from the default event.

In (30), the expected value of this random variable is reported,

E
[

X̃d
]
= E

[
X̃
](

1 −E
[
Ĩ
]
(1 − q)

)
, (30)

while in (31), its variance is reported:

Var
[

X̃d
]
= Var

[
X̃
]

+ (1 − q)2
(
E
[
X̃
]2Var

[
Ĩ
]
+ Var

[
X̃
]
E
[

Ĩ2
])

− 2(1 − q)Var
[
X̃
]
E
[
Ĩ
]

.
(31)

Finally, (32) describes the formula for the skewness of X̃d:

γ
[

X̃d
]
=

E
[(

X̃d
)3
]
− 3E

[
X̃d
]
Var

[
X̃d
]
−E

[
X̃d
]3

Var
[
X̃d
]3/2 , (32)
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where mean and variance of X̃d are reported in (30) and (31), while the third moment about
the origin is reported in (33):

E
[(

X̃d
)3
]
= E

[
X̃3
](

1 + 3(1 − q)E
[
Ĩ
]
+ 3(1 − q)2E

[
Ĩ2
]
+ (1 − q)3E

[
Ĩ3
])

. (33)

3. A Preliminary Extension of the Risk Reserve Model

In this section, we present a more adequate model for analysing the evolution of the
capital of a non-life insurer in a one-year time horizon. In practice, although (1) represents
a good starting point for analysing the risk reserve of an insurance company, it does not
consider some relevant elements such as reinsurance treaties and default risk. In particular,
this second element represents the risk, from the insurance company point of view, that
the reinsurer defaults on its obligations and does not return the amounts corresponding to
the ceded claims. Hence, in (34), we define a new equation for the risk reserve considering
these elements:

Ũt+1 = Ut(1 + jt+1)

+
[(

Bt+1 − X̃t+1 − Et+1
)
−
(

Bre
t+1 − X̃re,d

t+1 − Cre
t+1

)]
(1 + jt+1)

1/2

= Ut(1 + jt+1)

+
[(

Bt+1 − Bre
t+1
)
−
(

X̃t+1 − X̃re,d
t+1

)
−
(
Et+1 − Cre

t+1
)]
(1 + jt+1)

1/2 ,

(34)

where the term X̃re,d
t+1 indicates the stochastic aggregate claim amount recovered by the

insurer from the reinsurer, accounting for the potential default event of the counterparty.
In particular, recalling the structure of the loss due to counterparty default risk described
in Section 2.4, this term is exactly equal to (29), where we simply substitute the generic
exposure X̃ with the stochastic aggregate claim amount returned by the reinsurer to the
insurer X̃re. In practice, with this term, we extend the base formula by considering the
presence of reinsurance and allowing for their potential default. It is observed that the term
Cre

t+1 is not adjusted for the default risk of the reinsurer, since we assume that the ceded
commission is paid back to the insurance company directly when the reinsurance contract
is issued. Indeed, this approach is justified by the assumption of a deterministic ceded
commission in (10), which does not require the knowledge of any stochastic element and
can then be settled directly at the inception of the contract.

An important assumption that we make in this context is that we assume independence
between the default event and the aggregate claim amount borne by the reinsurer. The
rationale for this choice is that the aggregate claim amount borne by the reinsurer deriving
by the specific insurance company represents only a portion of its whole exposure. Hence,
we assume that the effect of the single insurance company is negligible compared to the
size of the portfolio of the reinsurer, and then there is independence between the two
random variables.

It should be noted that, from the assumptions we made regarding the collective risk
model for describing the aggregate claim amount, we are able to compute these moments
for both QS and XL cases. Indeed, we only need to replace the generic Xre random variable
with the corresponding one for the two reinsurance cases for which we already reported
the main moments in the previous section.

From this extended model, we can already describe two possible extreme situations.
They are represented by the case in which the reinsurance company has a probability of
default equal to zero and when it has probability of default equal to one and no recovery
is expected. It is possible to observe that, in the first situation, we return to the same
modelling of (7). On the other hand, in the second situation, we can observe that the
variance of capital at the end of time t+ 1 is exactly equal to the gross of the reinsurance case.
However, the expected capital is lower due to the payment of reinsurance premium, leading,
consequently, to an overall worse situation compared to the gross of reinsurance case.
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Aside from these two extreme situations, in the following, we describe the mean and
variance of the risk reserve equation defined in (34). Specifically, in (35), we report the
mean of this random variable:

E
[
Ũt+1

]
= Ut(1 + j) +

[
(B − Bre)−

(
E
[
X̃
]
−E

[
X̃re,d

])
− (E − Cre)

]
(1 + j)1/2

= Ut(1 + j) +
[
B − Bre −E

[
X̃
]
+E

[
X̃re](1 −E

[
Ĩ
]
(1 − q)

)
− E + Cre](1 + j)1/2 .

(35)

As expected, the mean of this equation differs from (7) only due to the presence
of a term that accounts for the potential non-payment by the reinsurer in the event of
default. Indeed, the expected claims borne by the reinsurer are multiplied by one minus
the expected probability of default multiplied by the eventual non-recovered quota.

In (36), the variance of this risk reserve is reported,

Var
[
Ũt+1

]
= Var

[
Ut(1 + j) +

[
(B − Bre)−

(
X̃ − X̃re,d

)
− (E − Cre)

]
(1 + j)1/2

]
=
(

Var
[
X̃
]
+ Var

[
X̃re,d

]
− 2Cov

[
X̃, X̃re,d

])
(1 + j) ,

(36)

where by simply applying the properties of the variance, we decompose it as the sum of
three components (then multiplied by a constant factor (1 + j)): variance of the aggregate
claim amount, variance of the aggregate claim amount paid back by the (defaultable)
reinsurer and minus 2 times the covariance between the aggregate claim amount and the
aggregate claim amount paid back by the (defaultable) reinsurer.

We now need to analyse these three components in order to determine the overall
variance in a closed form. Regarding the first two terms, Var

[
X̃
]

and Var
[

X̃re,d
]
, we already

derived their decompositions in (5) and (31). Hence, the only term that we still have to
analyse is Cov

[
X̃, X̃re,d

]
, which we report in the following:

Cov
[

X̃, X̃re,d
]
=
(
1 −E

[
Ĩ
]
(1 − q)

)
Cov

[
X̃, X̃re] , (37)

where the covariance between X̃ and X̃re depends on whether we assume a QS or an XL
reinsurance treaty.

In the first case, the expectation reduces simply to (38):

Cov
[
X̃, X̃qs] = (1 − α)Var

[
X̃
]

. (38)

In the case of XL, instead, we have to take into account the non-proportional structure
of the reinsurance treaty and the dependence between random variables. Hence, in this
case, the expectation is reported in (39):

Cov
[

X̃, X̃xl
]
= E

[
X̃X̃xl

]
−E

[
X̃
]
E
[

X̃xl
]

= E
[
K̃
]
E
[
Z̃iZ̃re

i
]
+
(
Var

[
K̃
]
−E

[
K̃
])
E
[
Z̃
]
E
[
Z̃re] ,

(39)

where, in order to derive a closed-form solution of the term E
[
Z̃iZ̃re

i
]
, we have to make an

additional assumption. In practice, assuming that the distribution of the claim amount is
LogNormal, we can still derive a closed expression of this expectation (dependent on the
c.d.f. of the standard normal distribution), as reported in the following formula:

E
[
Z̃iZ̃re

i
]
= e2µ+2σ2

[
Φµ+2σ2,σ2(ln(d + l))− Φµ+2σ2,σ2(ln(d))

]
− deµ+ σ2

2

[
Φµ+σ2,σ2(ln(d + l))− Φµ+σ2,σ2(ln(d))

]
+ leµ+ σ2

2

[
1 − Φµ+σ2,σ2(ln(d + l))

]
.

(40)
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4. An Extension of the Risk Reserve Model Considering Multiple LoBs, Reinsurance,
and Default Risk

At this point, having shown the main additional elements of the extended model, we
now present the “complete” case. In practice, we model the risk reserve equation taking
into account three components: underwriting, reinsurance, and counterparty default. For
the underwriting component, we allow for the fact that the insurance company underwrites
business in multiple LoBs. For the reinsurance component, we allow for the underwriting of
reinsurance treaties, potentially offered by multiple reinsurers. Finally, for the counterparty
default component, we consider the existence of a default risk for all the counterparties,
each with a potentially different CQS. This last element represents a standardised indicator
of credit risk used in the context of Solvency II to define the credit quality of counterparties
against which the insurance company holds an exposure. It ranges from zero to six,
with zero indicating the highest credit quality (i.e., the lowest credit risk from the insurance
company’s perspective) and six being the lowest credit quality. Moreover, since there is a
connection between CQS and probabilities of default, the model can also be defined based
on the latter. Indicating with L the number of LoBs and with R the number of reinsurers,
the extended model is then reported in (41):

Ũt+1 = Ut(1 + j) +
L

∑
l=1

R

∑
r=1

[(
Bl − X̃l − El

)
−
(

Bre
l − X̃re,d(r)

l − Cre(r)
l

)]
(1 + j)1/2

= Ut(1 + j)

+

[
(B − Bre)−

L

∑
l=1

(
X̃l −

R

∑
r=1

X̃re,d(r)
l

)
−

L

∑
l=1

(
El −

R

∑
r=1

Cre(r)
l

)]
(1 + j)1/2 ,

(41)

where B and Bre represent the sum, over the L LoBs, of gross premium and ceded gross
premium, respectively. The term X̃re,d(r)

l represents, instead, the “aggregate claim amount
recovered by the insurer from the (defaultable) reinsurer r for the LoB l”. Finally, the term
Cre(r)

l represents the “ceded commission recovered by the insurer from the (defaultable)
reinsurer r for the LoB l”.

In (42), the expected value of the stochastic risk reserve model described in (41) at time
t + 1 is reported:

E
[
Ũt+1

]
= Ut(1 + j) +

[
(B − Bre)−

L

∑
l=1

(
E
[
X̃l
]
−

R

∑
r=1

E
[

X̃re,d(r)
l

])

−
L

∑
l=1

(
El −

R

∑
r=1

Cre(r)
l

)]
(1 + j)1/2 ,

(42)

where we simply apply the expectation to the stochastic elements.
In (43), the variance of the stochastic risk reserve model described in (41) at time t + 1

is reported:

Var
[
Ũt+1

]
=

(
Var

[
L

∑
l=1

X̃l

]
+ Var

[
L

∑
l=1

R

∑
r=1

X̃re,d(r)
l

]

− 2Cov

[
L

∑
l=1

X̃l ,
L

∑
l=1

R

∑
r=1

X̃re,d(r)
l

])
(1 + j) ,

(43)

which consists of the sum of three elements (multiplied by (1 + j)). Here, we briefly report
the components of these 3 terms, while the detailed derivation is reported in Appendix A.
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The first term consists in the variance of the sum (over the L LoBs) of the aggregate
claim amount and is developed as reported in the following:

Var

[
L

∑
l=1

X̃l

]
=

L

∑
l=1

Var
[
X̃l
]
+

L

∑
l=1

L

∑
m=1,m ̸=l

Cov
[
X̃l , X̃m

]
=

L

∑
l=1

Var
[
X̃l
]
+

L

∑
l=1

L

∑
m=1,m ̸=l

ρ
[
X̃l , X̃m

]
σ
[
X̃l
]
σ
[
X̃m
]

,

(44)

where the first element of (44) represents the sum (over the L LoBs) of the variances of the
aggregate claim amount and the second one the sum (over the L(L − 1) combinations) of
the covariances of the aggregate claim amount between different LoBs.

The second term consists in the variance of the sum (over the L LoBs and the R
reinsurers) of the aggregate claim amount recovered from the reinsurers and is developed
as reported in the following:

Var

[
L

∑
l=1

R

∑
r=1

X̃re,d(r)
l

]
=

L

∑
l=1

R

∑
r=1

Var
[

X̃re,d(r)
l

]
+

L

∑
l=1

R

∑
r=1

L

∑
m=1

R

∑
s=1

m ̸=l and s ̸=r

Cov
[

X̃re,d(r)
l , X̃re,d(s)

m

]
,

(45)

where the first element of (45) consists in the sum (over the L LoBs and the R reinsurers) of
the variance of the aggregate claim amount recovered by the insurer from the reinsurers
and the second one the sum (over the (L2R2 − LR) = (LR(LR − 1)) combinations) of the
covariance between the aggregate claim amount recovered from the reinsurers.

The third term consists in minus two times the covariance between the sum (over the L
LoBs) of the aggregate claim amount and the sum (over the L LoBs and the R reinsurers) of
the aggregate claim amount recovered from the reinsurers, and it is developed as reported
in (46) (not including the −2 term):

Cov

[
L

∑
l=1

X̃l ,
L

∑
l=1

R

∑
r=1

X̃re,d(r)
l

]
=

L

∑
l=1

L

∑
m=1

Cov

[
X̃l ,

R

∑
r=1

X̃re,d(r)
m

]

=

 L

∑
l=1

Cov

[
X̃l ,

R

∑
r=1

X̃re,d(r)
l

]
+

L

∑
l=1

L

∑
m=1
m ̸=l

Cov

[
X̃l ,

R

∑
r=1

X̃re,d(r)
m

] .

(46)

5. Numerical Application

In this section, we present some numerical applications to show how these closed-form
results can represent a useful instrument for insurance companies in different aspects of
their business.

In the following, we define the underlying dynamics of the different elements of risk
reserve equation reported in (41). In particular, we describe the stochastic aggregate claim
amount, the approaches used by the insurer and the reinsurers to determine the premium,
and the dynamics of default events and recovery rates. For the first element, we assume
the classic structure already described in Section 2.2, consisting in the collective risk theory
approach for the aggregate claim amount. From this modelling structure, we simply specify
the distributional assumptions for the stochastic random variable number of claims and
claim amount.

In particular, as reported in (47), we assume that the random variable number of
claims is distributed as an over-dispersed Poisson with specific parameters for each LoB l:

K̃l ∼ Poisson
(
nlQ̃l

)
, (47)
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where nl represents the expected number of claims and Q̃l is the perturbation parameter.
This last random variable, as reported in (48), is assumed to be distributed as a Gamma of
equal parameters:

Q̃l ∼ Gamma(hl , hl) . (48)

This assumption implies that the expected number of claims does not change, since
E
[
Q̃l
]
= 1, but it creates a “non-diversifiable variability” σ

[
Q̃l
]
.

Regarding the random variable “cost of single claim”, assuming a different LogNormal
distribution for each LoB l, we obtain the formula reported in (49),

Z̃l ∼ LogNormal
(
µZl , σZl

)
, (49)

where µZl and σZl represent the parameters of the LogNormal distribution.
The last point consists in the definition of the potential dependence between the

aggregate claim amount of different random variables. Regarding this point, we follow the
assumptions present in the Solvency II directive and define a dependence structure among
the losses of the different LoBs by means of the correlation matrix defined in the delegated
acts of Solvency II. From a modelling perspective, we create this dependence by means of a
Gaussian copula function, as reported in (50):

CΣ(u) = ΦΣ

(
Φ−1(F1(u1)), Φ−1(F2(u2)), . . . , Φ−1(FL(uL))

)
, (50)

where Fl represents the c.d.f. of LoB l losses, Φ(u) is a standard normal distribution, and
ΦΣ is a multivariate Normal distribution with zero mean and correlation matrix Σ.

Regarding the premium loading approach of the insurance company, as reported in
(51), we assume that the safety loading is defined by means of the expected value premium
principle:

πev
(
X̃
)
= (1 + λev)E

[
X̃
]
, (51)

where parameter λev represents the safety loading coefficient.
For the sake of simplicity, we instead assume that the loading for expenses is exactly

equal to the actual expense. Hence, in (52), we derive the gross premium of the insurance
company as

Bl = E
[
X̃l
]
(1 + λl) + cl Bl = E

[
K̃l
]
E
[
Z̃l
] (1 + λl)

(1 − cl)
, (52)

where cl represents the expense loading coefficient.
Regarding the pricing approach from the reinsurer perspective, we need to distin-

guish between the cases where we assume a QS and an XL treaty. In QS, as described in
Section 2.3, the main element for pricing the treaty is represented by the ceded commission.
In particular, we assume a deterministic ceded commission, expressed as a percentage of
the gross written premium, as already presented in (10).

Regarding the pricing of XL reinsurance, we assume that the reinsurer calibrates
its premium by means of experience pricing and according to a traditional “premium
principle” approach. In particular, we assume that the reinsurance company knows the
underlying distribution of claims of the insurer and then calibrates its premium by means
of the standard deviation premium principle, as reported in (16).

The last element that we should consider in the pricing of reinsurance consists in the
CQS of the firm. Indeed, the higher the CQS of the reinsurer, the higher its risk from an
insurance company perspective, which also has to allocate more capital for this risk. Hence,
in order to compensate for this fact, we assume that the premium asked by the reinsurer
scales with its risk. In practice, we create a connection between the CQS of the reinsurer (or
equivalently its probability of default) with the discount applied in pricing.

There are many possible ways for defining a discount factor as a function of the
probability of default/rating of the counterparty. In our model, we choose to link this factor
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with the CQS of the reinsurance company in order to be consistent with the metric used
in the Standard Formula of Solvency II. In particular, as reported in (53), the function we
choose for linking these elements is described as

δpd = f (CQS) = (1 − (CQS + 1)Q)D , (53)

where δpd represents the discount factor, Q ∈ (0, 1) is the discount quota, and D > 0 is a
power function for modelling the strength of the increase in discount for an increase in
CQS. For D = 1, we have a linear decrease in the discount factor. For D > 1, we have a
decrease of δpd more than proportional to the increase in CQS, while the opposite holds for
D < 1. Hence, we can set parameters Q and D in order to create the most coherent effect
from a market perspective.

In this way, in case of an XL treaty, the pricing is determined by means of (54), using the
specific CQS (or the probability of default) of reinsurer CQS(r) for calibrating δpd

(
CQS(r)

)
:

Bxl
l =

E
[

X̃xl
l

]
+ βlσ

[
X̃xl

l

]
p = 0

E
[

X̃xl
l

]
+ δpdβlσ

[
X̃xl

l

]
p ∈ (0, 1) ,

(54)

where p represents the probability of the default of the reinsurance company and δ ∈
(0, 1) the “discount factor” for compensating for the probability of default. In practice,
as anticipated, we assume that in the case the XL reinsurer has a probability of default
greater than 0, then the loading component is decreased accordingly.

Similarly, in the case of a QS treaty, rather than directly using commission rate cre, we
calculate the ceded commission to return to insurer in order to satisfy the required margin,
according to (55):

cre
l =

{
cre p = 0
cre − δpdcre p ∈ (0, 1) .

(55)

Related to the risk of default, there is still one last point that we have to cover, which
consists in the approach underlying the dynamics of the default events and recovery rates.
For these elements, we follow the so-called “common shock approach”, extending the
approach described in Hendrych and Cipra (2019). In particular, we model the default
event by means of a Bernoulli distribution with probability of default dependent on the
common shock, while for the recovery rate we assume a Beta distribution, dependent on
the CQS of the reinsurance company.

In practice, given b, the baseline probability of default, we simulate the common shock
variable using distribution function f (c) = αcα−1. Hence, we calculate the probability
of default of the rth reinsurer under common shock variable c by means of p(c)(r) =

b(r) + (1 − b(r))cτ/b(r) and can then simulate the default event as Ĩ(r) ∼ Bernoulli
(

p(c)(r)
)

.
At this point, similarly to the “discount factor”, we create a functional (negative)

dependence between the mean of recovery rate and the probability of default/CQS of the
reinsurance company, as reported in (56),

δq = f (CQS) = baseq(1 − (CQS + 1)Q)D, (56)

where δq represents the “shocked” recovery rate, baseq is the base value of recovery rate
that we assume for a firm with CQS = 0, Q ∈ (0, 1) is the discount quota, and D > 0 is a
power function for modelling the strength of the decrease in recovery rate for an increase
in CQS.

Applying Formula (56) to the CQS (or the probability of default) of the reinsurer,
we can determine the expected value parameter of its recovery rate distribution. At this
point, the parameters of the Beta distribution are calibrated in order to have a mean
equal to the expected recovery rate and a fixed standard deviation, regardless of the
rating of the counterparty, in line with the findings reported in Altman and Kishore (1996)
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and Bruche and González-Aguado (2010). In this way, we can simulate the recovery rate of
the corresponding default event according to (57),

q̃ ∼ Beta
(

βα, ββ

)
, (57)

where βα and ββ represents the parameters of the Beta distribution.

5.1. Parameters

In order to analyse the closed-form results for the mean and variance of the risk reserve
equation that we presented in the previous section, we need to define the parameters of the
elements of (41). In Table 1, the parameters of the LoBs in which the insurance company
carries out its activity are reported. These parameters are derived from ANIA (2022),
a report of the Italian association of insurance companies (ANIA) assuming an average
insurance company operating in Italy and following the assumptions used in other works
on the same subject (see, for instance, Clemente et al. (2015) and Zanotto and Clemente
(2022)) for the elements not directly available in the ANIA report (i.e., the coefficient of
variation of the severity random variable CoV

[
Z̃l
]

and the policy limit pll).

Table 1. Parameters of the lines of business.

LoBs E
[
K̃l
]

σ
[
Q̃l
]

E
[
Z̃l
]

CoV
[
Z̃l
]

pll ERl LRl CRl

MTPL 50,000 7.47% 4500 6 10,000,000 21.4% 77.7% 99.1%
MOD 25,000 7.01% 1500 2 1,000,000 31.6% 61.9% 93.5%
GTPL 15,000 15.39% 6000 10 10,000,000 32.7% 59.6% 92.3%

As described in the specific section, the results are general enough to be applied
to the case of an insurer pursuing its activities in all the 12 LoBs. However, in order to
keep the focus of our numerical analyses on the specific problem, we assume an insurer
operating in only three segments. In particular, as reported in the table, we assume a
non-life insurer operating in the motor third-party liability (MTPL), motor own damage
(MOD), and general third-party liability (GTPL) LoBs.

Regarding the dependence structure between LoBs, we assume that it is determined
by means of a Gaussian copula whose parameters match the correlation matrix of Solvency
II Standard Formula, as reported in Table 2.

Table 2. Correlation matrix between lines of business.

Corr MTPL MOD GTPL

MTPL 1.00
MOD 0.50 1.00
GTPL 0.50 0.25 1.00

Finally, as reported in Table 3, we assume a positive safety loading for all the three
LoBs, in line with the market information from ANIA (2022). For expense loading, instead,
we assume a value equal to the actual realisation.

Table 3. Parameters of the insurance company.

LoBs Pl λl cl Bl

MTPL 225,000,000 1.10% 21.4% 289,408,397
MOD 37,500,000 10.5% 31.6% 60,581,140
GTPL 90,000,000 12.9% 32.7% 150,980,681

Similar to what we did for the insurance company, we define the characteristics of
the potential reinsurance counterparties. In particular, in the context of the proposed
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framework, the parameters of the reinsurers are a function of their CQS. In Table 4, we
report these parameters, where the discount factors are obtained by means of (53) with
Q = 1/8 and D = 1. Similarly, the recovery rates are obtained by means of (56) with
baseq = 60%, Q = 1/8 and D = 1. Regarding the standard deviation of the recovery rate,
we assume a fixed value regardless of the CQS and equal to 25%. It should be observed
that the assumed parameters imply quite a strong effect and are chosen in this way in order
to better show their impact on the risk reserve.

Table 4. Parameters of the reinsurance company for different credit quality steps.

CQSs Probability of Default Discount Factor Recovery Rate

0 0.002% 87.5% 60.0%
1 0.01% 75.0% 51.4%
2 0.05% 62.5% 42.9%
3 0.24% 50.0% 34.3%
4 1.2% 37.5% 25.7%
5 4.2% 25.0% 17.1%
6 4.2% 12.5% 0.1%

Finally, we define the underlying default event dynamics and their relationship with
the CQS of the reinsurers. We follow the approach described in Section 2.4 and set the
parameters of the common shock variables α and τ equal to 0.8 and 0.2, respectively,
as suggested in the QIS5 Committee of European Insurance and Occupational Pensions
Supervisors (CEIOPS) (2009) in order to derive the corresponding “baseline probability”.

5.2. Case of Single LoB and Single Reinsurer

In this section, we present the application of the model to the case where we assume
a non-life insurance company carrying out its activity in one LoB and ceding its risks to
a single reinsurer. Regarding the LoB, we assume that it is the GTPL segment and that
the parameters of its underlying claim dynamic are those reported in Table 1. The other
parameters needed to calculate the risk reserve are instead reported in Table 3. From this
information, we can determine that this LoB has quite a high volatility of a single claim
amount (CoV(Z̃) = 10) and provides, on average, a positive technical result, with an
average loss ratio below 60%. The characteristics of this LoB are well suited for the use of
XL reinsurance. Indeed, the expected loss ratio is quite low, but the insurance company
is exposed to a strong variability in the single claim amount, which could be reduced by
means of a non-proportional reinsurance. As for the remaining parameters of the case
study, we assume an initial capital of the insurer equal to 10% of the gross written premium
of the year, Ut = 10%Bt+1, and an annual interest rate equal to j = 1%.

Finally, in Table 4, the parameters of reinsurer are reported for different values of
the CQS. In particular, in order to present more distinct results, we assume quite a strong
discount in the safety loading and a strong impact on the recovery rate for worse values
of the CQS. In practice, however, the insurance company should use the actual available
information for the price offered by the reinsurers of different ratings and its expectation
for the recovery rate.

One of the possible applications of the closed-form results for mean and variance of
the risk reserve that we now present consists in their use for the comparison of different
reinsurance strategies and the choice of the optimal one, in a much shorter computational
time and with a higher accuracy compared to a simulative approach. In Figure 1, the mean
and coefficient of variation (CoV) of the risk reserve are reported for different values of
limit l, all the other parameters fixed, including the deductible set equal to d = 1,000,000.
Moreover, we compare these metrics for different ratings of the reinsurance company.

We can observe that, for all the values of CQS, there is a decreasing trend in the
expected capital at year end for increasing limit. Indeed, the explanation is straightforward:
for a fixed deductible, a higher limit implies a higher expected cost for the reinsurance
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company, which leads to an increase in the price of the XL treaty, reducing the insurance
technical result. Comparing the expected risk reserve for different reinsurer CQSs, we can
observe that the worse the reinsurer rating, the higher the insurer result. This is in line with
the theoretical expectation, since a reinsurer with a worse rating should offer a lower price,
on the same conditions, for compensating its higher probability of default. In Figure 1, this
effect is quite strong due to the specific assumptions on the reinsurer parameters, reported
in Table 4.

Analysing the CoV of the risk reserve for the different values of l, we can observe
that the general effect is a decrease in the relative variability for an increase in the limit.
However, just for the case of a reinsurer with CQS equal to 0, the reduction in the CoV of
the insurance company is limited to a certain value of limit after which there is an increase.
This is a rather peculiar dynamic, which we analyse in more detail below.

A final interesting result that we can derive from this analysis is that, under the specific
assumptions that we made, the optimal choice of reinsurance strategy for the insurance
company consists in ceding the risk to a reinsurer with a CQS equal to 6. Indeed, because of
the strong discount that we assume, compared to the relative low probability of default,
the reinsurer with the worst CQS leads to the highest expected risk reserve and lowest CoV
for the insurance company compared to the other possible reinsurers. The choice of the
optimal limit for this reinsurer instead does not determine a unique value but an efficient
frontier where the insurance company should choose the value that better describes its
risk/return trade-off preference.
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Figure 1. Expected value and coefficient of variation of the risk reserve for different values of XL
limit. The colours represent the value of CQS of the reinsurance company, ranging from green for a
CQS of 0 to red for a CQS of 6.

Figure 2 reports the CoV of the risk reserve for different values of limit l and for each
CQS of the reinsurance company. If we are interested in a single objective optimisation
consisting, for instance, in choosing the limit that minimises the CoV of the risk reserve
(fixed CQS of the reinsurance company), we could analyse these figures. We observe
that in the case we cede the risks to a reinsurer with a probability of default equal to 0
(CQS = −1), the optimal limit corresponds to 1,000,000. After this value, the CoV starts to
increase, even more than the gross of reinsurance case5. The reason is that, assuming these
parameters, the reduction in premium deriving from the purchase of reinsurance is less
than compensated by the corresponding reduction in the standard deviation. A similar
situation occurs for the case of reinsurance company with CQS equal to 0, for which the
insurer reaches the minimum value of CoV for a limit of 2,500,000. For all the other CQS,
there is a decreasing trend in the CoV for increasing limit; it means that for these cases, the
optimal value of the limit is reached at its maximum, which corresponds to the difference
between the contractual limit of the policy and the deductible.
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Figure 2. Coefficient of variation of the risk reserve for different values of XL limit for each credit
quality step. Credit quality step of −1 indicates the theoretical reinsurer with probability of default
equal to 0.

5.3. Case of Single LoB and Multiple Reinsurers

As another step for showing the potentiality of the proposed result, we show the
application of the closed formulas for mean and variance, applied for the selection of
the optimal number of reinsurance counterparties for a given XL treaty. In particular,
for simplicity, we consider an insurance company carrying out its activity in just one LoB
and having to choose the number of reinsurers to which to cede its risks, keeping the overall
deductible and limit for which it requires coverage fixed. Regarding the parameters, we
assume the same characteristics of the previous numerical analysis reported in Table 1 for
the GTPL LoB, while the other necessary parameters for calculating the risk reserve are
instead reported in Table 5. Here, as anticipated, we also define the value of the reinsurance
limit, because for this model we analyse the number of reinsurance companies as the
variable for optimisation.

Table 5. Parameters of the insurance company, market interest rate, and reinsurance deductible and
limit (amounts in k).

P λ c B U j d l

90,000 12.9% 32.7% 150,980.7 15,098.1 1% 1000 2000

Figure 3 reports mean and CoV of the risk reserve for different values of the number
of reinsurers R, having all the other parameters are fixed. We compare these metrics for
different ratings of the reinsurance company.

We can observe that, for all the values of CQS, there is a decreasing trend in the
expected capital at year-end for an increasing number of reinsurance companies. Indeed,
for this analysis, we assume that the reinsurance companies use the standard deviation
premium principle for calibrating the premium to charge to the insurer. Hence, we know
that segmenting the same layer into multiple sub-layers (as in this case with multiple
reinsurers) leads to an increase in the premium. In line with the theoretical expectation,
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comparing the expected risk reserve for different values of the CQS, it is possible to observe
that a worse rating implies a higher result.

Analysing the CoV of the risk reserve for different numbers of reinsurers, we can
observe an interesting dynamic. There is a decrease in the relative variability when we
move from the gross of reinsurance case to the scenario with one reinsurer. After then, in-
creasing the number of reinsurers also produces an increase in the CoV, in some cases/even
higher than the gross case. This result means that, under the specific parameter assump-
tions that we made, the diversification of risk produced by the increase in the number of
counterparties is more than offset by the reduction in the expected value.

Also in this case, since we used the same parameters as in the previous section,
the optimal choice of reinsurance strategy for the insurance company consists in ceding the
risk to a reinsurer with a CQS equal to 6. In particular, in Figure 4 we show the frontier of
reinsurance strategies for the different CQSs according to the expected value and the CoV
of the risk reserve. Here, it is possible to observe that, as anticipated, the reinsurer with a
CQS equal to 6 is the optimal choice in all the cases. Moreover, the reinsurance strategy
that minimises the CoV is reached with a single reinsurer with a CQS equal to 6, and the
value obtained is 0.54.
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Figure 3. Expected value and coefficient of variation of the risk reserve for different numbers of
reinsurance companies. The colours represent the value of CQS of the reinsurance company, ranging
from green for a CQS of 0 to red for a CQS of 6.
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Figure 4. Combinations of expected value and coefficient of variation of the risk reserve for different
reinsurance strategies. The colours represent the value of CQS of the reinsurance company, ranging
from green for a CQS of 0 to red for a CQS of 6.
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Finally, in order to present the importance of considering the actual counterparty
default risk and how the specific assumptions affects the choice of reinsurance strategies,
in Figure 5 we report the same analysis of Figure 3, but under the assumption that the
reinsurance companies offer the same price, regardless of their rating. Under this setting,
the reinsurer with a CQS equal to 0 is clearly preferred since it provides the highest expected
capital and the lowest relative variability to the insurance company.
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Figure 5. Expected value and coefficient of variation of the risk reserve for different values of XL
limit. The colours represent the value of CQS of the reinsurance company, ranging from green for a
CQS of 0 to red for a CQS of 6.

5.4. Case of Multiple LoBs and Single Reinsurer

Continuing the presentation of the different applications of closed-form solutions,
we consider a scenario where the insurance company carries out its activity in the 3 LoBs
reported in Table 1, with their characteristics, and aims at determining the optimal limit of
the XL treaty of one LoB, keeping the others fixed.

Figure 6 reports the mean and CoV of the risk reserve for various values of the XL
limit of the GTPL segment, keeping all the other parameters fixed. Moreover, we compare
these metrics for different ratings of the reinsurance company. In the figure on the left-
hand side, we can observe that the expected value of the risk reserve decreases when we
increase the XL limit. The reason is that the increasing coverage that the insurer requires
costs proportionally more, since the reinsurer calibrates the premium with the standard
deviation approach. Regarding the comparison between different CQSs, driven by the
assumption of higher discount by reinsurers with higher CQSs, we can observe that the
reinsurer with the worst CQS should be preferred since it always guarantees the highest
expected risk reserve. However, in order to better determine the optimal choice, we also
need to take into account a risk measure, which in this case consists in the CoV, reported
in the right-hand side figure. For this metric, we can observe quite different dynamics
depending on the CQS of the reinsurance company. Indeed, for reinsurers with a high
rating (e.g., CQS = 1), we observe an increasing trend in the CoV for higher values of the
XL limit, meaning that, despite covering a higher portion of risk, the reduction in premium
leads to a higher relative volatility compared to the gross scenario. A different dynamic is
instead observed in case the risk is ceded to reinsurers with a low rating (e.g., CQS = 6),
showing a decreasing trend of the CoV for higher values of the XL limit. Moreover, looking
jointly at the two graphs of Figure 6, we can determine that, given the specific parametric
assumptions that we made, the reinsurer with the highest CQS should be chosen, since it
always provides the highest expectation and the lowest CoV.

Figure 7 shows the detail of CoV of the risk reserve for different limits of the XL
reinsurance for the GTPL segment. This analysis can be used in case we are interested,
for instance, in the optimisation of this single metric for each CQS. Interestingly, we can
observe different dynamics according to the specific rating of the reinsurance company.
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For CQSs from −1 to 3, there is an increase in the CoV from the minimum for the gross
of reinsurance case to the maximum, reached at the maximum possible XL limit. Moving
from a reinsurer with CQS = −1 to a reinsurer with CQS = 3, we can observe that the
shape of this increasing trend becomes less concave and more linear. For CQS equal to
4 and 5, instead, there is a decrease in the CoV to a minimum followed by a subsequent
increase. Finally, for CQS equal to 6, the decrease in CoV as a function of the limit reaches
its minimum at the extreme value of l. Hence, we determine that for CQSs from −1 to 3,
the minimum CoV is reached for the minimum value of the limit (i.e., no reinsurance), for a
CQS equal to 4 and 5, the minimum CoV corresponds to a limit of 700,000 and 3,600,000,
while for a CQS of 6, the minimum CoV corresponds to the maximum value of the limit
(i.e., difference between the policy limit and the deductible).
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Figure 6. Expected value and coefficient of variation of the risk reserve for different values of XL limit
for the GTPL line of business. The colours represent the value of CQS of the reinsurance company,
ranging from green for a CQS of 0 to red for a CQS of 6.
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Figure 7. Coefficient of variation of the risk reserve for different values of XL limit for the GTPL line
of business, for each credit quality step. Credit quality step of −1 indicates the theoretical reinsurer
with probability of default equal to 0.
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5.5. Complete Case: Multiple LoBs and Multiple Reinsurers

Finally, in this last section, we present the application of the closed-form results for the
mean and variance of the complete model in the most common and realistic problem for an
insurance company: the selection of the optimal reinsurance strategy. As we anticipated,
an insurance company should choose a policy which produces the optimal result according
to its preference structure. In practice, a typical case consists in choosing the optimal
reinsurance strategy, consisting in determining the number of reinsurers, their rating, their
deductible and limit for each of its LoBs, which leads to the best result, typically defined in
terms of a risk and return metric.

In this context, we can take advantage of the closed-form results described in the
previous section for determining mean and variance of different reinsurance strategies in
a really short computational time, which would probably require weeks of computation
using a simulative approach. In practice, we consider the case of an insurance company
which carries out its activity in the 3 LoBs reported in Table 1 and aims at determining
the reinsurance strategies that constitute the efficient frontier in a risk/return framework,
using CoV and expected value of the risk reserve as measures of risk and return, respec-
tively. Regarding the reinsurance strategy, it is constituted by the choice of the number of
reinsurance counterparties, the rating of each of them and the values of deductible and
limit for each of the LoBs.

In order to perform this analysis, we assume the following characteristics for the
determination of a reinsurance strategy:

• 7 different levels of CQS, from 0 to 6, as reported in Table 4;
• 10 reinsurers for each CQS, for a total of 70 reinsurers from which the insurer can

choose those to cede its risks, for each LoB;
• Minimum deductible of Dmin = 1,000,000 for MTPL and GTPL and Dmin = 500,000 for

MOD;
• Maximum deductible of Dmax = 5,000,000 for MTPL and GTPL and Dmax = 1,000,000

for MOD.

Hence, we simulate 100,000 different scenarios of reinsurance strategies according to
the characteristics reported above. For each of these scenarios, we calculate the mean and
variance of the risk reserve by means of (42) and (43). In this way, we are able to determine
the efficient frontier of the reinsurance strategies which lead to the optimal mean/CoV
trade-off, as reported in Figure 8.
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Figure 8. Scatterplot of the combinations of expected value and coefficient of variation of the risk
reserve at time t + 1. In black are the reported results according to 100,000 combinations of different
strategies, while the red line represents the efficient frontier.
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As expected, we can observe that there is a high concentration of strategies in the
central part of the risk/return plot, representing inefficient results. The efficient strategies,
indicated in red, represent instead just a limited portion of the overall analysed scenarios.
They represent the optimal strategies in the sense that, for each point in the efficient
frontier, it is not possible to find another point with a higher mean and a lower CoV.
However, it is not possible to determine a single optimal strategy between strategies on the
efficient frontier according to the already used risk and return metrics. In practice, indeed,
an insurance company chooses the optimal strategy between those on the efficient frontier
according to its preference structure, typically represented by a utility function. Two
extreme cases that do not require any additional elements are those where the insurance
company wants to maximise the expected capital or minimise the CoV of the capital.
In these cases, among the combinations on the efficient frontier, the choice should be
the reinsurance strategy with the highest expected value or the lowest CoV.

In Tables 6–8, we report the characteristics of the reinsurance companies of an effi-
cient strategy.

Table 6. Characteristics of the chosen reinsurers (ID, CQS, deductible, and limit) for the MTPL
segment of an efficient strategy.

ID CQS Deductible Limit

36 3 2,516,769 109,567.9
38 3 2,626,337 109,567.9
62 6 2,735,905 109,567.9
17 1 2,845,473 109,567.9
45 4 2,955,041 109,567.9
32 3 3,064,609 109,567.9
9 0 3,174,177 109,567.9
33 3 3,283,745 109,567.9
64 6 3,393,313 109,567.9
39 3 3,502,881 109,567.9

Table 7. Characteristics of the chosen reinsurers (ID, CQS, deductible, and limit) for the GTPL
segment of an efficient strategy.

ID CQS Deductible Limit

61 6 4,837,945 2,165,221
69 6 7,003,166 2,165,221

Table 8. Characteristics of the chosen reinsurers (ID, CQS, deductible, and limit) for the MOD segment
of an efficient strategy.

ID CQS Deductible Limit

68 6 1,148,139 2,670,520
70 6 3,818,659 2,670,520

We can observe that for the MTPL segment there is the highest number of reinsurance
companies, 10, while the other 2 LoBs account for just 2 reinsurers. Moreover, as already
expected from the results of a previous numerical analysis, we notice a high presence
of reinsurers with a CQS equal to 6. Indeed, under the parametric assumptions that we
assumed, they typically lead to the highest improvement in the relative volatility of the
result. Finally, we can also notice that the insurance company chooses different reinsurers
for each LoB, avoiding a concentration of risks in a single counterparty.

6. Conclusions

This paper proposes an extension of the classical risk reserve equation considering
the possibility of purchasing reinsurance treaties and accounting for the counterparty
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default risk of the reinsurance companies. A closed-form solution for mean and variance
is presented in the general case, which considers an insurance company carrying out its
underwriting activity in multiple LoBs and ceding risk to multiple reinsurers with different
CQSs exposed to default risk. In this way, we enriched the existing literature on the
modelling of the capital of non-life insurance companies, obtaining a closed-form result of
the first two moments for a framework in line with Solvency II and a real-world scenario.

The advantage of deriving mean and variance in a closed form is that they can be
considered as the two main elements used to evaluate the business of a company. Indeed,
from the expected capital, it is possible to derive return measures such as the Return
on Equity, while the standard deviation (square root of the variance) or the CoV (ratio
between standard deviation and expected value) can be interpreted as risk measures. Hence,
from these two elements, we are already able to evaluate different potential strategies for
the firm without requiring any simulation.

In the numerical section, we showed different applications of these closed-form results
for selecting the optimal elements of a reinsurance strategy. Furthermore, we demonstrated
the capability to compare a large number of complex strategies and derive the efficient
frontier almost directly, as opposed to the potentially weeks of computation required by a
simulation-based approach to achieve the same level of accuracy.

This extension of the risk reserve equation, with the closed-form solutions for the
first two moments, should not be considered as a definitive conclusion to the problem,
since it also comes with the limitation of not providing a solution for the higher moments
or the quantiles. Indeed, at the moment, the main limitation of this result consists in the
absence of an accurate estimation of the quantiles of the distribution, which are typically
employed for determining the required capital of the company for solvency purposes.
Hence, a potential area of improvement consists in the derivation of a closed-form solution
for the skewness, which would allow the application of more accurate approximation
methods for the quantiles of the distribution such as Normal power or Wilson–Hilferty.

Funding: This research received no external funding.
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the models and parameters are provided in the Numerical Application section.
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Appendix A. Variance of the Risk Reserve

In (A1), the formula of the variance of the risk reserve at time t + 1 is reported in the
most general case where we consider an insurance company carrying out its activities in
multiple LoBs and ceding risk to multiple reinsurers (with potential different ratings).

Var
[
Ũt+1

]
= Var

[
L

∑
l=1

(
X̃l −

R

∑
r=1

X̃re,d(r)
l

)]
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[
L

∑
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X̃l −
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∑
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r=1

X̃re,d(r)
l

]

= Var

[
L

∑
l=1

X̃l

]
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[
L

∑
l=1

R

∑
r=1

X̃re,d(r)
l

]
− 2Cov

[
L

∑
l=1

X̃l ,
L

∑
l=1

R

∑
r=1

X̃re,d(r)
l

]
.

(A1)

By means of algebra and applying the properties of variance, we decompose the
variance in three components which we analyse separately below. These components
represent, namely, the variance of the sum (over the L LoBs) of the aggregate claim amount,
the variance of the sum (over the L LoBs and the R reinsurers) of the aggregate claim
amount recovered from the reinsurers and minus 2 times the covariance between the sum
(over the L LoBs) of the aggregate claim amount, and the sum (over the L LoBs and the R
reinsurers) of the aggregate claim amount recovered from the reinsurers.
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Appendix A.1. Variance of the Sum of the Aggregate Claim Amount

This first component can be re-expressed as reported in (A2),

Var

[
L

∑
l=1

X̃l

]
=

L

∑
l=1

Var
[
X̃l
]
+

L

∑
l=1

L

∑
m=1,m ̸=l

Cov
[
X̃l , X̃m

]
, (A2)

where the first term represents the sum (over the L LoBs) of the variances of the aggre-
gate claim amount and the second one the sum (over the L(L − 1) combinations) of the
covariances of the aggregate claim amount between different LoBs.

Regarding the first element, we do not need to take any additional steps since we
already know them from (5). Also, for the second element, we can simply write the
covariance as follows:

Cov
[
X̃l , X̃m

]
= ρ

[
X̃l , X̃m

]
σ
[
X̃l
]
σ
[
X̃m
]

, (A3)

since we already know all these elements.
Regarding the term ρ

[
X̃l , X̃m

]
, representing the correlation at aggregate claim amount

level between LoB l and m, we should make some additional considerations which are
useful for other steps of the proof. Moreover, we also need to add an additional assumption
on the correlation between LoBs. The base hypothesis used for modelling the correlation
between different segments is that there exists a dependence at an aggregate claim amount
level. In particular, in line with the assumption of Solvency II, we use a correlation matrix
for aggregating the LoBs at the aggregate claim amount level. In practice, for two generic
LoBs LoBi and LoBj, we have ρ

(
X̃LoBi , X̃LoBj

)
= c. However, with this approach, we do

not know the implicit correlation that exists at the number of claims and claim size levels.
Hence, to subsequently decompose these dependencies, we should propose an additional
hypothesis on these elements. In particular, we assume that there is independence in the
severity of different LoBs, which means Z̃LoBi ⊥ Z̃LoBj . In this way, we implicitly assume
that there is a dependence in the number of claims of different LoBs (in order to preserve
the dependence at aggregate claims level), which means ρ

(
K̃LoBi , K̃LoBj

)
= k.

An important consequence of this additional assumption is that now the correlations
at the number level and at the aggregate claim amount level are strictly dependent on each
other, since all the other terms are “fixed”. Hence, it is possible to explicit the correlation at
the aggregate claim level (for instance, using the correlation structure of Solvency II) and
obtain the connected correlation at the number level.

In this way, we can develop the element Cov
(
X̃l , X̃m

)
as reported below:
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(A4)
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Hence, we can observe that if we know the correlation between LoBs at the aggregate
claim amount level (as it is in case we assume Solvency II dependence structure), we can
derive the covariance and correlation between LoBs at the number of claims level, and vice
versa, as reported in (A5),

Cov
[
K̃l , K̃m

]
= ρ

(
X̃l , X̃m

) σ
[
X̃l
]
σ
[
X̃m
]

E
[
Z̃l
]
E
[
Z̃m
] . (A5)

Appendix A.2. Variance of the Sum of the Aggregate Claim Amount Recovered From Reinsurers

This second component can be re-expressed as reported in (A6),

Var

[
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m

]
,

(A6)

where the first term consists in the sum (over the L LoBs and the R reinsurers) of the
variance of the aggregate claim amount recovered by the insurer from the reinsurers and
the second one the sum (over the (L2R2 − LR) = (LR(LR − 1)) combinations) of the
covariance between the aggregate claim amount recovered from the reinsurers.

Regarding the first element, we do not need to take any additional steps since we
already know them from (31), differently from the second element, which instead requires
a more elaborated analysis.

This element can be rewritten as the sum of three terms as reported in (A7),
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(A7)

representing three different cases of covariances to analyse. In particular, the first term
consists in the case of the same LoB and different reinsurers (l = m and s ̸= r), the second
term is the case of different LoBs and the same reinsurer (l ̸= m and s = r), and the last one
is the case of different LoBs and different reinsurers (l ̸= m and s ̸= r).

We start from the first covariance term and, as reported in (A8), we decompose it
according to its four components:
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l Ĩ(s)
]

= Cov
[

X̃re(r)
l , X̃re(s)

l

](
1 −

(
1 − q(s)

)
E
[
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(A8)

where we simply apply the property of linearity of covariance and rearrange the elements.
At this point, we have to focus on the last covariance term, which we develop as

follows:
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]
E
[

X̃re(s) Ĩ(s)
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Hence, combining (A8) and (A9) together, we obtain
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Ĩ(r) Ĩ(s)
]

+
(

1 − q(r)
)(

1 − q(s)
)

Cov
[

Ĩ(r), Ĩ(s)
]
E
[

X̃re(r)
]
E
[

X̃re(s)
]

.

(A10)

In (A10), there are the last two elements that we need to develop: Cov
[

X̃re(r), X̃re(s)
]

and E
[

Ĩ(r) Ĩ(s)
]
. For the second one, since we already know the covariance term from (27),

we just need to rewrite the formula as E
[

Ĩ(r) Ĩ(s)
]
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[
Ĩ(r), Ĩ(s)

]
+E

[
Ĩ(r)
]
E
[
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]
.

For Cov
[

X̃re(r), X̃re(s)
]
, we need to study the term for the expectation of the prod-

uct between the two random variables. The steps are a bit more elaborate and are
reported below.
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(A11)

Hence, we analyse the first expectation of (A11) assuming that the layer of the sth
reinsurer is above the rth. In particular, we assume that the reinsurer r covers the claims in
layer (d1, d1 + l1) and the reinsurer s in layer (d2, d2 + l2), with d2 ≥ d1 + l1.
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Consequently, we have the following result:
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For the second covariance term of (A7), we start by developing the terms applying the
property of linearity of covariance, as reported below.
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Ĩ(r)
)

, X̃re(r)
m

(
1 −

(
1 − q(r)

)
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At this point, the only element that we still need to develop consists in the covariance between
the ceded aggregate claim amount for two different LoBs and the same reinsurer.
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where we use the result on covariances and correlations described in the previous
Appendix A.

For the third covariance term of (A7), we start by developing the terms applying the property
of linearity of covariance as reported below.
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Ĩ(r) Ĩ(s)
]

+
(

1 − q(r)
)(

1 − q(s)
)

Cov
[
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At this point, the last element that we need to analyse consists in the covariance between the
ceded aggregate claim amount to different reinsurers of different LoBs, which is reported below:
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Appendix A.3. Covariance between the Sum of the Aggregate Claim Amount and the Sum of the Aggregate
Claim Amount Recovered from the Reinsurers

The third component of (A1) can be re-expressed as reported in (A18) (not reporting in the
following the −2 term for simplicity).
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This element can be further developed, splitting between the case where m = l and m ̸= l,
as follows:
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The first term, representing the case m = l, has the following expression:
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From this result, we need to further develop the covariance between the aggregate claim amount
and the loss term, as reported below.

Cov
[

X̃l , X̃re(r)
l Ĩ(r)
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Hence, putting everything together, we have
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where the term Cov
[

X̃l , X̃re(r)
l

]
is already known from (37).

In case m ̸= l, we have the following expression:
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where, focusing on the covariance term, we have
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which ends the derivation of the closed-form solution.

Notes

1 We use the terms capital and risk reserve interchangeably.
2 Here and where necessary, we remove the time reference in order to lighten the notation.
3 It simply represents a way of summarising the case of modification of random variables, where lower and upper limits are

imposed.
4 In this context, we limit our analysis to the main counterparty risk for a non-life insurance company. Clearly, an insurer holds

a credit and then also a counterparty risk against other subjects, such as agents or other providers, but these are typically less
relevant.

5 It should be noted that the difference between the lowest and the highest values of the CoV is less than 0.6%.
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