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Abstract: Bharath and Shumway (2008) provide evidence that shows that it is the 
functional form of Merton’s (1974) distance to default (DD) model that makes it useful and 
important for predicting defaults. In this paper, we investigate whether the default 
predictability of the Merton DD model would be affected by taking investors’ ambiguity 
aversion into consideration. The Cox proportional hazard model is used to compare the 
forecasting power of Bharath and Shumway’s naive model, which retains the functional 
form of the Merton DD model and computes the default probability in a naive way, with 
our new model, which treats investors’ ambiguity aversion as additional information. We 
provide evidence to show that our new model performs better than Bharath and 
Shumway’s naive model. In addition, our empirical results show that the statistical 
significance of Bharath and Shumway’s naive default probability is retained in the credit 
default swap (CDS) spread regressions, though the sign of the coefficient is changed. 
However, both the sign and the statistical significance of our model are retained in the 
CDS spread regressions. 

Keywords: Merton’s distance to default model; naive model; default probability; 
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1. Introduction 

Default can happen if the value of the issuer’s total assets is less than the value of the debt 
obligations should the issuer be unable to make the required payments. There are many different 
approaches to evaluate default probabilities. The structural model and reduced-form model are the 
main measures of default probabilities. In the structural model, or the Merton distance to default (DD) 
model, which is inspired by Merton’s [1] bond pricing model, a default-triggering event is explicitly 
defined as a firm’s failure to pay debt obligations by means of modeling the equity value of the firm as 
a call option on the firm’s value, with the firm’s face value of the debt as a strike price. On the other 
hand, for the reduced-form model, a default-triggering event is defined as an unexpected event that is 
governed by an exogenous default-intensity process. 

The Merton model is widely used to measure the distance to default by Moody’s KMV (Kealhofer, 
McQuown and Vasicek). This was used previously to provide quantitative credit analysis tools to 
creditors and investors until the acquisition in 2002 by Moody’s Analytics and is now part of Moody’s 
Analytics Enterprise Risk Solutions. However, the original formula is complicated. Campbell, Hilscher 
and Szilagyi [2] concluded that the strong predictive power of the Merton DD model came from the 
functional form imposed by the Merton model. Bharath and Shumway [3] also provide evidence to 
show that it is the functional form of the Merton DD model that makes it useful and important for 
predicting defaults. Rather than simultaneously solving two nonlinear equations or implementing a 
complicated iterative procedure, as suggested by Crosbie and Bohn [4] and Vassalou and Xing [5] to 
obtain default probabilities, they proposed a naive default forecasting model, which retains the 
structure of the Merton DD model, but with a simpler and easier calculation procedure.  

It is recognized that simplicity does not mean simplistic. Recently, significant works in the 
literature have focused on the issue of ambiguity aversion. However, the discussion of ambiguity 
aversion is not a novel issue, but has a long history. We use the following example, which was adapted 
from Ellsberg’s [6] famous experiment, to illustrate the meaning of ambiguity aversion. The 
experiment subjects are provided with two urns, each of which contains several red and white balls. 
There is no difference in the total number of balls in each urn. The balls in one urn are half red and 
half white. However, the ratio in the other urn is unobservable to the subjects. The rule is that $1 will 
be awarded when a red ball is drawn. Although the two urns promise the same expected return, an 
ambiguity-averse subject will be reluctant to draw a ball from the latter, because of a tendency to think 
pessimistically, leading to an expectation that the other urn contains lower odds.  

Ambiguity aversion, or uncertainty aversion, is a wholly different concept from risk aversion. Risk 
aversion is an attitude that penalizes the expected return of a risky investment. Consider the following 
experiment. The experiment subjects are provided with two potential investments. One investment pays 
off either $1 or $0 with equal probability. Another guarantees $0.5 for sure. Although the two 
investments offer the same expected return, a risk-averse investor will resist investing in the former. 
Ambiguity aversion, however, represents a lack of confidence in probability estimates. According to 
Bewley ([7], p. 1134), “… an increase in uncertainty aversion increases the size of the set of subjective 
distributions. An uncertainty-neutral decision maker has only one subjective distribution and so is 
Bayesian.” 
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Generally speaking, the approaches of addressing ambiguity aversion may be divided roughly into 
two categories. One approach is called the recursive multi-priors utility approach, which addresses 
ambiguity aversion through the multi-prior expected utility (for example, [8–11]). Gilboa and 
Schmeidler [12] contribute to this field by initially establishing a well-defined max-min expected 
utility with multiple priors. They are famous for developing a useful axiomatic theory in this field. 
Following the approach of Gilboa and Schmeidler [12], Easley and O’Hara [13] discussed 
microstructure and ambiguity and showed that ambiguity could reduce participation by both investors 
and issuers. The incomplete preferences of Bewley [14], the smooth ambiguity model of Klibanoff, 
Marinacci, and Mukerji [15] and the variational preferences of Maccheroni, Marinacci and Rustinchini 
[16] are interesting extensions to this approach. 

This paper uses the other approach, called the robust control approach, to depict investors’ 
ambiguity aversion. This describes ambiguity through a set of priors and introduces the penalty 
function to a general utility function in order to capture investors’ ambiguity aversion (for example, 
[17–21]). Theoretically, economic agents are assumed to possess perfect knowledge of the data 
generating process and to know the underlying probability law exactly. However, we cannot ignore the 
fact that investors are not certain of the correctness of the model. Investors with higher ambiguity 
aversion worry about a worst-case scenario. Therefore, the investor will choose alternative models that 
are further from the reference model. Hence, the robust control approach assigns a smaller penalty to 
more distant perturbations. However, if ambiguity aversion is low, the investor will choose alternative 
models that are similar to the reference model. As a result, the robust model assigns a greater penalty 
to more distant perturbations. That is, the penalty is inversely related to the investor’s degree of 
ambiguity aversion.  

There have been numerous studies investigating ambiguity issues in asset prices and equity premia 
(for example, [22–24] for a literature review on ambiguity in asset pricing and portfolio choice). By 
using the robust control technique, So [25] derives an adjusted Black–Scholes pricing formula, which 
maintains the functional form of the original Black–Scholes formula, but adds an additional parameter 
depicting uncertainty aversion to compute the risk-free interest rate and dividend yield.  
We find that managers’ uncertainty aversion about the project value raises his subjective evaluation of 
the real options. If we compare the firm value and the equity value to the project value and the real 
options in that paper, we can infer that investors’ ambiguity about the firm’s value will change the 
valuation of the equity. In addition, since the risk-free interest rate has been adjusted, it is possible that 
the default rate of the fixed income debt will also be modified. This paper could be treated as an 
extension of [25] from the theoretical real options analysis to the applied risk management field. The 
purpose of this paper is to develop a structural credit pricing model with ambiguity aversion as 
additional information and to derive a risk-neutral default probability under uncertainty about the 
firm’s value. In addition, we use the new model to examine the validation of Merton’s DD model 
under ambiguity. To the best of our knowledge, ambiguity aversion has not been applied to examine 
the default prediction issue addressed here. 

As in risk aversion, investors’ ambiguity aversion is a subjective parameter, so one cannot easily 
observe its aggregate value or assign it a reasonable value. The Consumer Confidence Index (CCI), 
however, is an observed indicator, which is defined as the degree of optimism on the state of the 
economy that consumers are expressing through their activities surrounding saving and spending. In 
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the USA, the CCI is issued monthly by the Conference Board, which was started in 1967 and is 
benchmarked to 1985. Ait-Sahalia and Brandt [26] also mentioned that the CCI and other economic 
indexes are suitable to capture market uncertainty. Buraschi and Jiltsov [27] believe that the CCI has 
an important link with market conditions, so they used the CCI to control uncertainty and added it to 
construct the model and investigate option markets.  

Following the literature, we use the CCI in our empirical study as an inverse proxy to the level of 
ambiguity aversion. We modify Bharath and Shumway’s naive model with the CCI and focus on how 
accurate the default predictability of our new model is compared with the original model.  

The organization of the remainder of the paper is as follows. The models are presented in Section 2. 
The data are described in Section 3. The empirical results are analyzed in Section 4, and the 
conclusions are given in the final section.  

2. Models 

2.1. Naive Merton DD Model 

In this section, we use several equations and the notation used in Bharath and Shumway’s [3] naive 
Merton DD model to enable comparisons to be made.  

Merton’s model [1], which is regarded as a structural model, considers that the firm’s equity is 
treated as a call option on the underlying value of the firm’s assets, with a strike price equal to the face 
value of a firm’s zero-coupon bond debt maturing in T. The firm’s value, V, is assumed by following 
the geometric Brownian motion, with an expected return of µand volatility of σV : 

µ σV
dV dt dB
V

= + . (1) 

Merton’s model comprises two nonlinear simultaneous equations, one being the Black–Scholes formula:  

1 2

2

1

2 1

( ) ( )

σln
2

σ

σ

rT

V

V

V

E VN d Fe N d

V r T
F

d
T

d d T

−= −

⎛ ⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠=

= −

 (2) 

where V is the asset of the firm, Vσ  is the volatility of the firm’s asset, E is the market value of the 
firm’s equity, F is the face value of the firm’s debt, r is the risk-free rate and N(·) is the cumulative 
standard normal distribution. 

The other equation is from Ito’s Lemma: 

( )1σ σ σE V V
EE V N d V
V
∂

= =
∂

 (3) 

where σE  is the volatility of equity.  

After solving these equations, we can obtain the distance to default and the default probability as:  

( ) ( )2π  Merton N d N Merton DD= − = −  (4) 
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where Merton DD is the distance to default and equals d2. 
Rather than solving these two nonlinear simultaneous equations to obtain the value and the 

volatility of the firm’s asset, Bharath and Shumway [3] directly assign:  

FEV +=  (5) 

and use an approximation to estimate the volatilities:  

D E σ 0.05 0.25 σnaive = + ×  (6) 

where D σnaive  means the volatility of the firm’s debt in the naive model. Hence, the firm’s 
asset volatility in the naive model, called V σnaive , can be represented as: 

( )

E

E

 σ σ  σ

              σ 0.05 0.25 σ

V D

E

E Fnaive naive
E F E F
E F

E F E F

= +
+ +

= + + ×
+ +

 (7) 

In addition, they replace the risk-free rate in the original model with naive µ, which is the firm’s equity 
return over the previous year. Finally, the naive distance to default is given as follows: 

( ) ( )

( )

2ln  µ 0.5  σ  
 

 σ

V

V

E F
naive naive T

F
Naive DD

naive T

⎡ ⎤+
+ − ×⎢ ⎥

⎣ ⎦=  (8) 

Therefore, we obtain the naive default probability as: 

( )π  naive N Naive DD= −  (9) 

2.2. Merton’s DD Model under Ambiguity 

So [25] derived an adjusted Black–Scholes pricing formula to filter uncertainty from risk in real 
options analysis by using the robust control technique. If we compare the firm value to the project 
value in that paper, a similar framework could be applied to solve the problem considered here. In this 
section, we briefly summarize the theoretical model mentioned in [25]. To save space and concentrate 
our focus, we omit mentioning proofs here. We recommend that interested readers could refer to [25] 
for the more technical parts. 

In our model, it is assumed that the risk-free interest rate is r, a constant, and the firm’s value, V, 
follows a geometric Brownian motion with an expected return µ, dividend yield q and volatility Vσ : 

( )µ σV
dV q dt dB
V

= − +  (10) 

When an investor is under ambiguity and is not confident about probability estimates, a 
misspecification problem may arise. We use the robust control technique to depict the investor’s 
ambiguity aversion. The investor would consider an alternative model, ξQ , which is not the same as 
the reference model, Q. Following Uppal and Wang [18], we treat the investor as an expected 
utility-maximizer facing a three-security portfolio (containing the firm, the equity and riskless asset) 
allocation problem. The Bellman equation is as follows: 
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 (11) 

where J refers to the expected utility in continuous time. The investor has to choose consumption, C, 
and asset allocation, ω, to his wealth, W, to maximize his utility. The first term in the second line arises 
from the change in measure from Q to ξQ , and the term δ adjusts the drift term. The second term in the 
second line is related to the penalty function, where Θ(J) converts the penalty to units of utility. In 
addition, we use φ, the penalty parameter, to depict the investor’s confidence about the reference 
model.  

When the investor is under ambiguity, the tendency is to worry about a worst-case scenario. The 
investor tends to choose alternative models that are more distant from the reference model. Therefore, 
the robust control approach specifies a lower penalty to more distant perturbations. On the other hand, 
when the level of the investor’s uncertainty is low, there is a greater likelihood of choosing alternative 
models that are similar to the reference model. Therefore, the robust control approach specifies a 
higher penalty to more distant perturbations. The higher is the level of the investor’s ambiguity 
aversion, the lower is the value of φ. Therefore, the penalty is inversely relative to the investor’s 
ambiguity aversion, and the reciprocal of φ can be used to describe the investor’s ambiguity aversion.  

We assume that the investor has a power utility of 
1 γ

( )
1 γ
s

s
Cu C

−

=
−

 and that the value function takes  

the form:  
1 γ

( ) κ
1 γ
WJ W

−

=
−

 (12) 

where κ  is a constant depending on the parameter of the whole environment. According to 

Maenhout [20] and Uppal and Wang [18], it is assumed that 
1 γ1 γ( ) ( ) κ.

γ γ
WJ J W

−−
Θ = =  After taking 

derivatives of Equation (11) with respect to ω and some computation, we obtain the optimal 
investment in the firm for the ambiguity-averse investor: 

*
2

(µ )ω
1 γσV

rφ
φ

⎛ ⎞ −
= ⎜ ⎟+⎝ ⎠

 (13) 

The investor’s ambiguity aversion causes a slight downgrade in the risk premium for the firm. 
Hence, the optimal investment in the firm would be lower than a situation where the data generating 
process of the firm’s value was known exactly.  

By using Ito’s Lemma, we can derive the dynamic process of the investor’s subjective stochastic 
discount factor under ambiguity for the evaluation of the equity value (that is, the call price): 
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where ξdB  is a Brownian motion under the new measure, ξ .Q  By applying 
1 γ

( ) κ
1 γ
WJ W

−

=
−

, the 

dynamic process of the investor’s marginal utility function can be shown to be: 
*
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By substituting the optimal values of ω*, δ*, and C* we can derive the dynamic process of the 
investor’s stochastic discount factor under ambiguity as: 

2
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We then derive the equity value, E(V,t), under ambiguity. Applying the martingale approach,  
we have: 

[ ]
ξ
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By using Equations (16) and (18), this can be rearranged as: 
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The partial differential equation is given as:  

2 2 * * *
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Equation (20) can be treated as a typical Black–Scholes partial differential equation with an 
adjusted risk-free interest rate, r*, and an adjusted dividend yield, q*. Therefore, the equity value under 
ambiguity can be shown immediately as: 

* ** *
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2.3. Default Probability under Ambiguity  

From Equation (21), the default probability under ambiguity is * *
2π ( )N d= − , where 
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The information of the risk-neutral default probability is critical for pricing newly issued debt or 
other credit risk derivatives. However, it is not a trivial matter to obtain the risk-neutral default 
probability when debt is newly issued and only limited market data are available. It is suggested in the 
literature that the risk-neutral default rate can be implied from the actual default probability by using 
the mapping: 1

2
ˆπ̂ ( ) (π) ηN d N N T−⎡ ⎤= − = +⎣ ⎦ , where π̂  is the risk-neutral default probability, and 

2π ( )N d= −  is the actual default probability (refer to [28–30] for more information of survival 

analysis). As the default probability under ambiguity is difficult to explore, we applied this approach to 
imply the default probability under ambiguity from the actual default probability, as follows. The 
mapping between the two default probabilities is: 

* * 1 *
2π ( ) (π) ηN d N N T−⎡ ⎤= − = +⎣ ⎦  (22) 

By setting 1 * 1 *(π ) (π) ηN N T− −= + , we find that * µη
σ 1
r φ

φ
⎛ ⎞−⎛ ⎞= ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

, where ϕ is the penalty 

parameter, used to depict the investor’s confidence about the reference model.  
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As mentioned before, investors’ ambiguity aversion is a subjective parameter, so one cannot easily 
observe its aggregate value or assign it a reasonable value. Following the literature, we use CCI in our 
empirical study as a proxy for the penalty parameter, that is: 

µη
σ 1

CCI r CCI
CCI

−⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
 (23) 

By treating the naive default probability as the actual default probability and using CCI as the value 
of the penalty parameter, the default probability under ambiguity can be constructed as follows: 

1π (π ) ηCCI naive CCIN N T−⎡ ⎤= +⎣ ⎦  (24) 

2.4. Cox Proportional Hazard Model 

Hazard models are widely used regression models in a range of survival analyses. Survival analysis 
focuses on the time period it takes for a specific event to occur. Most importantly, in the literature, 
such survival models attempt to examine the correlation of survival, or death, with its predictors 
(called covariates). By definition, the hazard rate is the instantaneous risk of demise at time t. It is also 
known as the conditional default probability, for example: 

0

Pr ( )
λ( ) lim

t

t T t t T t
t

tΔ →

⎡ ⎤≤ < +Δ ≥⎣ ⎦=
Δ

 (25) 

where T is referred to as a random survival time. In order to examine the relationship between survival 
and its covariates, the Cox proportional hazard model assigns a linear-form for the log hazard, as follows 
(see [28–30] for further information about survival analysis):  

1 1 2 2logλ ( ) α( ) β β ... βi i i k ikt t x x x= + + + +  (26) 

where i is used to identify different individuals, and x’s are the covariates. α(t) = log λ0(t) is referred to 
as the log-baseline hazard, as it is the value of the log-hazard when all covariates have no effect and 
are common to all individuals. This model is also useful for an individual-to-individual comparison. 
The hazard ratio between individual i and j can be defined as: 

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

β β ... β β β ... β
0

β β ... β β β ... β
0

λ ( ) λ ( )
λ ( ) λ ( )

i i k ik i i k ik

j j k jk j j k jk

x x x x x x
i

x x x x x x
j

t t e e
t t e e

+ + + + + +

+ + + + + += =  (27) 

It should be noted that the covariates may vary over time, and the log-hazard with time-dependent 
covariates is modified as:  

1 1 2 2logλ ( ) α( ) β ( ) β ( ) ... β ( )i i i k ikt t x t x t x t= + + + +  (28) 

In order to compare the predictability of πnaive  with πCCI , we use a Cox proportional hazard model 
in our analysis. We want to show that there may be a possible variable other than πnaive  in a hazard 
model that is a statistically significant covariate, so that πnaive  is not sufficient for forecasting default. 
In addition, we have to find evidence to show that πCCI  performs better in a hazard model than πnaive . 
Such findings would support our suggestion that πCCI  should be taken into account in forecasting 
default. As both Campbell, Hilscher and Szilagyi [2] and Bharath and Shumway [3] have emphasized 
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that the functional form of the Merton DD model is useful, we also attempt to show that either πnaive  or 
πCCI should retain their statistical significance in a hazard model together with all the variables used to 
calculate these quantities.  

2.5. Credit Default Swap Spread Regression 

We also use a market-based default probability variable as a robust test to support the results from 
the hazard model. A credit default swap (CDS) is a contract to protect bond holders if a default 
situation occurs. The higher is the probability of default, the higher are the insurance fees payable. 
Hence, the CDS spread can be considered as a measure of default probability. In this paper, we run 
regressions of log-CDS spread on log- πnaive  or log- πCCI  to highlight that πCCI  has superior default 
predictive power. 

3. Data 

The sample is from 2000 to 2011, giving 144 monthly observations, and December, 2007, to 2011 
in terms of the CDS spread regression to match the CDS contract. The sample of observed firms was 
based on an article in CFO Magazine that was published in November, 2003, “Ranking America’s top 
debt issuers by Moody’s KMV Expected Default Frequency.” We choose 52 firms with complete data 
as the non-default sample and added 5 firms entering bankruptcy between 2000 and 2011. 

Table 1. Summary statistics.  
Panel A. Variables in the Merton distance to default (DD) model and hazard models. 

Variable 
Quantiles 

Mean SD Min 0.25 Median 0.75 Max 
E 59,213.18 74,361.40 0.45 13,575.92 28,167.40 74,009.42 519,044.42 
F 41,562.61 57,808.95 684.97 17,509.28 23,839.00 38,574.00 761,203.00 

r (%) 2.29 2.00 −0.02 0.21 1.72 4.04 6.39 
CCI 86.94 28.22 25.30 61.40 92.95 106.13 144.70 

r spread (%) 0.77 10.45 −69.01 −4.58 0.80 6.48 89.40 
1/σE 1.91 0.44 0.52 1.58 1.92 2.24 3.13 

naive σv (%) 37.00 10.03 17.92 29.84 35.38 42.43 76.44 
πnaive  (%) 6.43 9.53 0.00 0.23 2.58 8.20 54.21 
πCCI  (%) 6.59 9.36 0.00 0.33 2.81 8.59 53.56 

Panel B. Correlation. 

Corr( πnaive , πCCI ) = 0.994 
Note: The observation period is from 2000 to 2011. There are 52 non-default firms with 7,488 firm-month 
observations and 5 default firms with 418 firm-month observations. E and F are the market equity and book 
debt in millions of dollars, respectively. r is the 3-month risk free rate, and CCI is the Consumer Confidence 
Index report from the U.S. Conference Board. In addition, 1/σE is the inverse of equity volatility, and r spread 
is the difference between stock return over the last day of the previous month and the risk-free rate over the 
last day of the current month. Naive σv is the volatility of firms’ assets calculated by the naive model 
approach; πnaive  is calculated via the naive model, and πCCI  is the default probability with CCI. 
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We obtained much of the data from the Bloomberg Database, including the 3-month risk-free rate, 
daily stock prices and shares outstanding. We then calculated the value of firms, the volatility of 
equity, and stock returns of firms in the USA. Following Bharath and Shumway [3], we assume that 
the debts in firms have a one-year horizon. The value of the firms’ debts is obtained from the data of 
the book value of firms’ total liabilities in Bloomberg. The information of CCI is also available in 
Bloomberg, which is monthly data, for 7,906 firm-months’ of data, and the data of the firm’s CDS 
spread were derived from the Datastream database. We adopt a 5-year CDS contract with a base date 
starting from December, 2007, containing 2,107 firm-months’ of data. 

Table 1 shows the descriptive statistics of the variables used in the paper. The information about the 
variables used in the Merton DD, naive DD and hazard models can be found in Panel A. A simple 
comparison of πnaive  and πCCI  is also given in Panel A. Broadly speaking, πCCI  has a higher mean and 
lower standard deviation than does πnaive . From Panel B, we can see that the correlation of πnaive  and 
πCCI  is extremely high. Therefore, we can infer that πnaive  and πCCI  have a high gearing effect.  

4. Empirical Results 

4.1. Hazard Model Results 

Table 2 shows the results of the Cox proportional hazard models. Two univariate models and four 
multivariate models are used. Models 1 and 2 are simple univariate models with dependent variables 
πnaive  and πCCI  individually, and two variables are included in Model 3. It is worth noting that πnaive  
and πCCI  are useful for measuring default probabilities, as both are significant in Models 1 and 2, and 
the coefficients of the two models are negative. In Model 3, although two variables are significant, the 
sign of πnaive  is changed due to the influence of πCCI . Therefore, we can infer that πCCI  is a better 
explanator than πnaive .  

Model 4 is a simple reduced form, which contains the same inputs as the naive model and the naive 
model with uncertainty aversion. Variable CCI is significantly positive, while r spread is not. For this 
reason, CCI is useful to explain default probability.  

Model 5 adds πCCI  to Model 4. As πCCI  is significant, we infer that the default probability under 
ambiguity is a useful estimator. In addition, even though all the inputs used to calculate πCCI are 
contained in the regression, πCCI  is still significant. This shows that the functional form of the Merton 
DD model is quite important. In Model 6, which contains all the variables, both πnaive  and πCCI  are 
significant. However, the sign of πnaive  is changed owing to the effect of πCCI , under the same 
conditions as Model 3, suggesting that πCCI  is superior to πnaive . As all the variables used to calculate 
πnaive  or πCCI  are significant and of the correct sign in Model 6, we confirm robustly that the functional 
form of the Merton DD model is useful when predicting defaults. 

In summary, our findings correspond to those of Campbell, Hilscher and Szilagyi [2] and Bharath 
and Shumway [3], in that the functional form of the Merton DD model is important. Our evidence 
shows that either πnaive  or πCCI  is useful in forecasting default. However, πCCI  performs slightly better 
than does π πnaive , and this suggests that CCI provides crucial data in default forecasting. Hence, our 
new default prediction model, which treats investors’ ambiguity aversion as additional information, 
should be a useful guide for examining default probability. 
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Table 2. Hazard model estimates. 

 Dependent Variable: Time to default 
Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

πnaive  
−0.183 * 
(0.018) 

 
0.733 * 
(0.062) 

  
0.504 * 
(0.077) 

πCCI   
−21.065 * 

(1.981) 
−97.848 * 

(7.726) 
 

−22.196 * 
(1.879) 

−76.093 * 
(9.071) 

CCI    
0.021 * 
(0.002) 

0.015 * 
(0.002) 

0.013 * 
(0.002) 

ln(E)    
−0.758 * 
(0.035) 

−0.721 * 
(0.035) 

−0.698 * 
(0.035) 

ln(F)    
0.746 * 
(0.048) 

0.938 * 
(0.052) 

0.920 * 
(0.051) 

1/σE    
−2.208 * 
(0.168) 

−2.170 * 
(0.167) 

−2.177 * 
(0.164) 

r spread    
0.814 

(0.342) 
−3.800 * 
(0.636) 

−3.783 * 
(0.638) 

Note: There are 7,906 firm-months in the sample from 2000 to 2011; πnaive  is calculated via the naive 
model; πCCI  is the default probability with CCI, and ln(E) and ln(F) are the natural logarithms of market 
equity and book debt, respectively; 1/σE is the inverse of equity volatility; r spread is the difference between 
stock return over the last day of the previous month and the 3-month risk free rate over the last day of the 
current month. Standard errors are shown in parentheses. * Denotes significance at the 1% level. 

Table 3. CDS spread regressions. 
Panel A. Summary statistics. 

Variable 
Quantiles 

Mean SD Min 0.25 Median 0.75 Max 
CDS spread 134.01 405.39 10.00 43.28 61.00 102.50 10,255.00 
πnaive  5.07 11.86 0.00 0.00 0.03 2.77 68.63 
πCCI  5.02 11.79 0.00 0.00 0.02 2.59 68.59 

Panel B. Regressions. 

Variable 
Dependent variable: log(CDS spread) 

Model 1 Model 2 Model 3 
Constant −1.8494 * (0.0011) −1.6551 * (0.0169) −1.3999 * (0.0776) 

log( πnaive ) 0.1478 * (0.0050)  −0.2025 * (0.0599) 
log( πCCI )  0.1735 * (0.0058) 0.4075 * (0.0695) 

Obs. 2107 2107 2107 
2R  0.2919 0.2995 0.3033 

Note: The observation period is from December, 2007, to December, 2011. There are 43 firms in the sample 
for a total of 2,107 firm-month observations. CDS spread is the credit default swap spread in basis points; 
πnaive  is calculated via the naive model; πCCI  is the default probability with CCI. Standard errors are shown 
in parentheses. * Denotes significance at the 1% level. 
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4.2. CDS Spread Regressions 

We also provide evidence from the credit derivatives market to support our empirical findings. The 
observation period is from December, 2007, to December, 2011, in order to match the five-year CDS 
contract, which has a base date starting from December, 2007. We have data on 43 firms.  

Panel A in Table 3 shows the descriptive statistics of the variables. The CDS spread is in basic 
points, while πnaive  and πCCI  are in percentages. We construct three models in this paper, and the 
details are given in Panel B. In Models 1 and 2, which are simple univariate models, all of the 
variables are significant, and R2 for in Model 2 is slightly higher than in Model 1. In Model 3, the 
statistical significance of πnaive  is retained, though the sign of the coefficient is changed. However, 
both the sign and the statistical significance of πCCI  are retained. Therefore, πCCI  seems to be more 
suitable for measuring default probability. 

5. Conclusions 

Campbell, Hilscher and Szilagyi [2] and Bharath and Shumway [3] provided evidence that the 
default predictability of the Merton DD model can be attributed to its specific functional form. Bharath 
and Shumway [3] constructed a naive default forecasting model. The feature of their naive model is 
that it retains the functional form of the Merton DD model and computes default probability in a naive 
way, rather than simultaneously solving two nonlinear equations or implementing a complicated 
iterative procedure. 

Recently, the issue of ambiguity aversion has drawn a lot of attention in the academic field. 
Although there have been many studies dealing with ambiguity issues in asset prices and equity 
premia, little is available regarding the influence of ambiguity aversion on forecasting default 
probability. The purpose of this paper was to construct a default prediction model under ambiguity and 
to examine the validation of the Merton DD model under ambiguity. To the best of our knowledge, 
ambiguity aversion has not previously been analyzed in terms of the default prediction issue 
considered here. 

By using CCI in our empirical analysis as an inverse proxy for the level of ambiguity aversion, we 
constructed a new default forecasting model. Applying the Cox proportional hazard model, this paper 
showed that the new model was superior to Bharath and Shumway’s naive model. In addition, 
although the statistical significance of Bharath and Shumway’s naive default probability is retained, its 
sign is changed due to the effect of our model in the CDS spread regressions. Therefore, our model 
could serve as a useful reference for modifying the Merton DD model when ambiguity aversion is 
accommodated. 
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