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Abstract: This paper applies the mean-variance portfolio optimization (PO) approach and 

the stochastic dominance (SD) test to examine preferences for international diversification 

versus domestic diversification from American investors’ viewpoints. Our PO results 

imply that the domestic diversification strategy dominates the international diversification 

strategy at a lower risk level and the reverse is true at a higher risk level. Our SD analysis 

shows that there is no arbitrage opportunity between international and domestic stock 

markets; domestically diversified portfolios with smaller risk dominate internationally 

diversified portfolios with larger risk and vice versa; and at the same risk level, there is no 

difference between the domestically and internationally diversified portfolios. Nonetheless, 

we cannot find any domestically diversified portfolios that stochastically dominate all 

internationally diversified portfolios, but we find some internationally diversified 

portfolios with small risk that dominate all the domestically diversified portfolios. 

Keywords: international diversification; domestic diversification; mean-variance portfolio 

optimization; stochastic dominance 
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1. Introduction 

Despite greater integration of international capital markets, investors continue to hold portfolios 

largely dominated by domestic assets. International investors’ preference for domestic stocks remains 

a subject of controversy, since many studies indicate that greater profits can be made by diversifying 

internationally. This paper applies the mean-variance portfolio optimization (PO) approach and the 

stochastic dominance (SD) test to examine preferences between domestic and international diversification 

strategies. We also examine whether there is an optimal investment strategy for American investors 

according to their risk level. 

Our study is based on daily data consisting of the prices of the 30 highest capitalization US stocks 

and 20 international market indices from Latin American and Asian financial markets and the G6. The 

purpose of this paper is to identify empirically preferences for international diversification versus 

domestic diversification from American investors’ viewpoints. Consider the utility-maximizing 

investor who holds two diversified portfolios: an internationally diversified (IND) portfolio and a 

domestically diversified (DOD) portfolio. The objective is to rank investors’ preferences in regard to 

these two types of diversified portfolios to maximize investors’ expected wealth and/or expected utilities.  

We first apply the PO technique to obtain efficient portfolios for both domestic and international 

diversification and study the preference for international versus domestic diversification for risk-averse 

investors. Our findings from applying the PO tool imply that the domestic diversification strategy is 

better for investors with a high risk level, while the international diversification strategy is the better 

choice for investors with a low risk level.  

Since most of the portfolios including both DOD and IND portfolios are rejected to be normally 

distributed, the results drawn from the PO rule may be misleading. To circumvent this limitation, in 

this paper we also apply the SD test to examine preferences between the domestic and international 

diversification strategies, and we check whether there is an arbitrage opportunity between international 

and domestic stock markets, whether these markets are efficient, and whether investors are rational. 

Our SD analysis shows that there is no arbitrage opportunity between international and domestic 

stock markets; domestically diversified portfolios with smaller risk dominate internationally diversified 

portfolios with larger risk and vice versa; and at the same risk level, there is no difference between the 

domestically and internationally diversified portfolios. These findings support arguments from those 

who claim that domestic diversification is better and those who claim that international diversification 

is better, as well as those who claim that there is no difference between domestic diversification and 

international diversification. Nevertheless, we find that domestically diversified portfolios with smaller 

risk dominate internationally diversified portfolios with larger risk and vice versa. This implies that the 

domestic diversification strategy with a lower risk level is preferred to the international diversification 

strategy with a higher risk level and vice versa. Nonetheless, we cannot find any domestically 

diversified portfolios that stochastically dominate all internationally diversified portfolios, but we find 

that internationally diversified portfolios with smaller risk dominate all the domestically diversified 
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portfolios. This finding supports those who claim that international diversification is better. However, 

although our findings imply that international diversification is better at a low risk level, when the  

risk level is the same, there is no difference in the markets for domestically and internationally 

diversified portfolios.  

The remainder of this paper is organized as follows. Section 2 contains a review of the related 

literature review. Section 3 discusses the data and the methodologies, including the PO portfolio 

optimization and the SD theory. Section 4 examines the empirical PO optimization results and the SD 

relationships between domestically and internationally diversified portfolios. The last section 

summarizes and concludes. 

2. Literature Review 

2.1. Portfolio Optimization 

The classical mean-variance portfolio optimization (PO) model introduced by Markowitz [1] can be 

used to determine the asset allocation for a given capital investment. However, it has been demonstrated 

that the traditional estimated return for the Markowitz mean-variance (MV) optimization seriously 

departs from its theoretic optimal return [2]. To circumvent this limitation, Bai, Liu, and Wong [3] 

have developed new bootstrap-corrected estimations to estimate the optimal return and its asset allocation. 

They have proved that the bootstrap-corrected estimates are proportionally consistent with their 

theoretic counterparts. Bai, Liu, and Wong [4] extend their work by developing a bootstrap estimate 

for the optimal return of self-financing portfolios. Bai, Liu, and Wong [5] further develop some 

properties for the estimators. In addition, Leung, Ng, and Wong [6] further improve the estimation by 

deriving explicit formulas for the estimator of the optimal portfolio return and prove that their  

closed-form return estimator is consistent.  

Most of the work on portfolio theory over the past decade has been based on the principle of utility 

maximization, where either the investor’s utility function is assumed to be a second-degree polynomial 

with a positive first derivative and a negative second derivative, or the probability functions are 

assumed to be normal [7]. Glen and Jorion [8] and others use the mean-variance (MV) analysis  

to investigate the benefits of international diversification based on a risk/return measurement.  

In spite of its popularity, the MV approach has been subject to serious criticism; see, for example, [9]. 

Wong [10] has shown that the mean-variance preference is equivalent to utility maximization if the 

assets being compared belong to the same location-scale family or the same linear combination of 

location-scale families.  

To extend the MV model, Leung and Wong [11] develop a multiple Sharpe ratio test statistic to test 

the hypothesis of the equality of the multiple Sharpe ratios. Ma and Wong [12] establish some 

behavioral foundations for various types of VaR models, including VaR and conditional VaR, as 

measures of downside risk. In addition, Bai, Hui, Wong, and Zitikis [13] develop mean-variance-ratio 

statistics for comparing the performance of prospects after the effect of background risk has been 

mitigated. Bai, Phoon, Wang, and Wong [14] provide evidence that the mean-variance-ratio test is 

superior to the Sharpe ratio test by applying both tests to analyze the performance of commodity 

trading advisors. 
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2.2. Stochastic Dominance 

To circumvent the limitation of the MV approach, academics suggest adopting the SD rules. The 

primary advantage of using the SD approach is that it provides a very general framework for assessing 

portfolio choice without the need for asset-pricing benchmarks. It does not need any assumption on the 

distribution of the assets being examined, and it satisfies the general utility function and takes into 

consideration all the distributional moments in the comparison [15]. The SD approach has been 

regarded as one of the most useful tools for ranking investment prospects (see, for example, [16]), 

since the ranking of assets has been shown to be equivalent to utility maximization for the preferences 

of risk averters and risk seekers [17].  

The SD theory has been continually developed for more than half a century, and many SD 

comparisons have been carried out empirically. For example, Hodges and Yoder [18] use SD to test 

whether investors should prefer riskier securities as the investment horizon lengthens. Meyer, Li, and 

Rose [19] use the SD criteria to examine whether adding internationally based assets to a wholly 

domestic portfolio generates diversification benefits for an investor in New Zealand. Wong, 

Thompson, Wei, and Chow [20] offer an alternative view supporting the risk-based explanation of the 

momentum effect over the period 1965 to 2000. Lean, Smyth, and Wong [21] use the SD test to find 

evidence of weekday and monthly seasonality effects in some Asian markets. Gasbarro, Wong, and 

Zumwalt [22] apply the SD approach to find that over entire 1996–2003 period certain iShares 

dominate others. Fong, Lean, and Wong [23] apply the SD tests to conclude that the behavior of 

Internet stock prices is also consistent with the changing risk preferences of investors. In addition, 

Wong, Phoon, and Lean [24] find both first-order and higher-order SD relationships among the funds 

and conclude that investors would be better off investing in the first-order dominant funds to maximize 

their utility.  

Recently, Abhyankar, Ho, and Zhao [25] find that value stocks stochastically dominate growth 

stocks only for the US, Canada, and Japan, while there are no significant SD relationships between 

these stocks for the UK, France, Germany, and Italy. Abid, Mroua, and Wong [26] find that the 

introduction of options improves the performance of unhedged portfolios, as does buying an in-the-money 

protective put. In addition, Lean, McAleer, and Wong [27] use the MV and SD approaches to reveal 

no evidence of any MV or SD relation-ships between oil spot prices and futures indices. Chan, De 

Peretti, Qiao, and Wong [28] adopt the SD and likelihood ratio test statistic approaches to conclude 

that neither the covered warrants nor the underlying shares stochastically dominate each other, which 

implies that the UK covered warrants market is efficient. Qiao, Clark, and Wong [29] apply the SD tests 

to find that the spot market dominates the futures market for risk averters, whereas futures dominate 

spot for risk seekers, implying that risk averters prefer to buy stocks, and risk seekers prefer long  

index futures. 

2.3. International Versus Domestic Diversification Benefits 

Many studies document the benefits of the diversification strategy. For example, Solnik [30] shows 

that substantial advantages in risk reduction can be attained through portfolio diversification in foreign 

securities as well as in domestic common stocks. Eun and Resnick [31] find potential gains from 



J. Risk Financial Manag. 2014, 2 49 

 

 

international diversification. Li, Sarkar, and Wang [32] reveal that the benefits of international 

diversification are substantial for US equity investors even though short selling is not allowed. Meyer 

and Rose [33] find that international diversi-fication can be advantageous and forms a means for 

managing crises in developed markets. Carrieri, Errunza, and Sarkissian [34] show that greater 

diversification gains can potentially be achieved if local industry investment is country specific and 

that investors should use both cross-country and cross-industry diversification as a way to improve 

portfolio performance. 

In addition, Driessen and Laeven [35] document that the potential benefits from investing abroad 

remain substantial and the gains from international portfolio diversification are larger for countries 

with higher country risk. Chiou [36] finds that adding lower and upper weighting bounds reduces, but 

does not completely eliminate, the potential economic value of international investment. Eun, Lai, 

Roon, and Zhang [37] show that factor fund diversification strategies yield substantial improvements 

in portfolio efficiency beyond what can be achieved by traditional country market index diversification.  

On the other hand, French and Poterba [38] show that most investors hold nearly all of their wealth 

in domestic assets. Tesar and Werner [39] report that domestic diversification was very evident in 

1996. Lewis [40] shows that domestic stocks are a better hedge against home risks than foreign stocks. 

Kilka and Weber [41] show that actual equity portfolio holdings reveal a strong bias toward domestic 

stocks and conclude that this bias can be explained by the stock return expectations expressed in 

probability judgments. Oehler, Rummer, and Wendt [42] reveal that one of the phenomena documented 

in investment portfolios is the home-bias effect, since investors hold a higher-than-optimal portion of 

domestic assets. Antoniou, Olusi, and Paudyal [43] examine whether British investors need to 

diversify their portfolios internationally to gain performance benefits from international markets or 

whether they can obtain these benefits by mimicking the portfolios with domestically traded assets.  

3. Data, Methodology and Hypotheses 

3.1. Data 

To analyze preferences between international and domestic diversification, in this paper we use 

daily arithmetic returns of the closing prices for the 30 highest capitalization US stocks and 

20 international market indices from 1 January 1993 to 31 December 2012. The data are obtained from 

Datastream. We use the daily closing prices of the 30 highest capitalization US stocks (Table 1) to 

form several domestically diversified portfolios (DOD). To form the internationally diversified 

portfolios (IND), we use daily stock market indices from the G6 (the G7 excluding the US; that is, 

Canada, France, Germany, Italy, Japan, and the UK), and indices from Latin American and Asian 

countries. Latin American countries include Argentina, Brazil, and Mexico, while Asian countries 

include China, Hong Kong, India, Indonesia, South Korea, Malaysia, Pakistan, the Philippines, Sri 

Lanka, Taiwan, and Thailand. To avoid exchange rate bias, we express all indices and stock prices in 

US dollars [44]. 
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Table 1. List of selected U.S. stocks. 

1 Apple (AAPL) 16 Citigroup (C) 
2 Exxon Mobil (XOM) 17 Merck (MRK) 
3 Microsoft (MSFT) 18 Verizon Communications (VZ) 
4 Johnson & Johnson (JNJ) 19 Cisco Systems (CSCO) 
5 General Electric (GE) 20 PepsiCo (PEP) 
6 Wal-Mart (WMT) 21 Schlumberger (SLB) 
7 Chevron (CVX) 22 Disney (DIS) 
8 Wells Fargo (WFC) 23 JPMorgan Chase (JPM) 
9 Procter & Gamble (PG) 24 Intel (INTC) 
10 IBM (IBM) 25 Home Depot (HD) 
11 Pfizer (PFE) 26 United Technologies (UTX) 
12 AT&T (T) 27 McDonald’s (MCD) 
13 Coca-Cola (KO) 28 Boeing (BA) 
14 Bank of America (BAC) 29 ConocoPhillips (COP) 
15 Oracle (ORCL) 30 Amgen (AMGN) 

From the perspective of US investors, in this paper we adopt both PO and SD approaches to 

compare the performance of DOD and IND portfolios. We discuss the methodologies used in the paper 

in the following subsections. The selected stocks are listed by market capitalization. 

3.2. Portfolio Optimization 

We first adopt the classical portfolio optimization (PO) model [1] to determine the fraction  

xi (i = 1, …, n) of a given capital invested in asset i  of portfolio P with its expected return, RP, being 
maximized subject to obtaining a pre-determined level of its variance 2

p . More precisely, assuming 

that there are n assets, we denote Ri to be the expected return of asset i and ij  to be the covariance of 

returns between asset i and asset j for i,j = 1,…, n. Given the required level of risk, 2
p , for the 

portfolio, the classical PO model without short selling can be formulated as follows: 

1

n

P i i
i

M axR R x


  subject to 2

1 1

,
n n

p ij i j
i j

x x 
 

  
1

1,
n

i
i

x


  and 0, 1, ..., .ix i n   (1)

Bai, Liu, and Wong [3–5] have developed a new bootstrap-corrected estimation to estimate the 

optimal return and its asset allocation, while Leung, Ng, and Wong [6] derive the closed forms of the 

estimates. In this paper, we adopt their approaches to estimate the efficient portfolios for both 

international and domestic portfolios.  

3.3. Stochastic Dominance Test 

To overcome the limitations of the traditional MV criteria, the SD approach developed by Hadar 

and Russell [15], Hanoch and Levy [45], and others is one of the most useful tools for ranking 

investment prospects under uncertainty. Let X and Y represent DOD and IND portfolios with their 

cumulative distribution functions (CDFs), F and G, and their probability density functions (PDFs),  

f and g, respectively, defined on the common support of [a,b] with a < b. We define 1 

                                                 
1 See [46] for further discussion.  
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0H h ,    1

x

j ja
H x H t dt   (2)

For h = f,g; H = F,G; and j = 1,2,3. We call the integral Hj the jth order CDF.  
The most commonly used SD rules are first-, second- and third-order SD, denoted as FSD, SSD and 

TSD, respectively. All investors are non-satiated (that is, prefer higher return to less) under FSD,  

non-satiated and risk-averse under SSD, and non-satiated, risk-averse, and possessing decreasing 

absolute risk aversion (DARA) under TSD. The SD rules [47] are:  

X dominates Y by FSD (SSD, TSD), denoted by X ≽1 Y (X ≽2 Y, X ≽3	 Y) if and only if 

F1ሺxሻ	൑	G1ሺxሻ	 ሺF2ሺxሻ	൑	G2ሺxሻ,	 F3ሺxሻ	൑	G3ሺxሻሻ	 for all possible returns x in [a,b]. In addition, if the 

strict inequality holds for at least one value of x, X dominates Y strictly by FSD (SSD, TSD), denoted 

by X ≻1 Y (X ≻2 Y, X ≻3 Y). 

The theory of SD is important since it is related to utility maximization [48]. The existence of SD 

implies that risk-averse investors always obtain higher expected utilities when holding dominant assets 

than when holding dominated assets.2 Consequently, investors prefer dominant assets. We note that a 

hierarchical relationship exists in SD: FSD implies SSD, which, in turn, implies TSD. However, the 

converse is not true: the existence of SSD does not imply the existence of FSD. Likewise, the existence 

of TSD does not imply the existence of SSD or FSD. Thus, only the lowest dominance order of SD is 

reported if there is any. 

We note that under certain regularity conditions,3 portfolio X stochastically dominates portfolio Y in 

the first order if and only if there is an arbitrage opportunity between X and Y, such that investors will 

increase their expected wealth, as well as their expected utility, if their investments are shifted from Y 

to X [24]. On the other hand, if FSD does not exist between X and Y, one could conclude that the 

markets are efficient and investors are rational [27]. 

There are two broad classes of SD tests: one is the minimum/maximum statistic [51,52], and the 

other is based on distribution values computed on a set of grid points (DD) [53]. Since the DD test is 

found to be one of the most powerful tests [54], we apply the DD test in our analysis.  

For any two domestically and internationally diversified portfolios Y and Z with CDFs F and G, 

respectively, and for a grid of pre-selected points x1, x2… xk, the order-j DD statistic,  
( )jT x  (j = 1, 2, and 3), is:  

ˆˆ ( ) ( )
( )

ˆ ( )

j j
j

j

F x G x
T x

V x


  (3)

where ,
ˆ ˆ ˆ ˆ( ) ( ) ( ) 2 ( ),j j j

j Y Z Y ZV x V x V x V x    

1

1

1ˆ ( ) ( ) ,
( 1)!

N
j

j i
i

H x x h
N j






 
   

                                                 
2 The SD theory could be extended further to satisfy non-expected utilities; see, for example, [49] and the references therein 
for further details.  
3 See [49] for the conditions.  
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in which jF  and jG  are defined in (1), and  ( ) max ,0x x  . 

It is empirically impossible to test the null hypothesis for the full support of the distributions. We 

test the null hypothesis for a pre-designed finite numbers of values x. Specifically, the following 

hypotheses are tested: 

       
       

0

1

2
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Bai, Li, Liu, and Wong [5] and Li, Bai, McAleer, and Wong [55] modify the DD test (modified DD 

test) with the following decision rules: 

0
1
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max | ( ) | ,  accept :

max ( )  and min ( ) ,  accept :

max ( )  and min ( ) ,  accept :   

max ( )  and min ( ) ,  a

j

j

j

j
j k j

k K

j j
j k k A j

k Kk K

j j
jj k k A

k Kk K

j j
j k k

k Kk K

T x M H X Y

T x M T x M H X Y

T x M T x M H X Y

T x M T x M



 

 

 

 

  

  

  

 

   

  

  

f

2ccept :   jAH Y Xf

 (4)

where jM  is the bootstrapped critical value of the j-order DD statistic. In this paper, we follow their 

recommendation to use simulated critical values in our analysis. We also follow their recommendation 

to use the maximum values of the test statistics to draw conclusions. However, since computing each 

grid point for the entire sample would entail a lot of computer time, we specify K equal-interval grid 

points  Kkxk ,,2,1,   to cover the common support of random samples {Xi} and {Yi}, with K = 100 

as recommended by Fong, Wong, and Lean [56], Gasbarro, Wong, and Zumwalt [22], and others. 

Simulation shows that the performance of the modified DD statistics is not sensitive to the number of 

grid points if the number of grid points is reasonably large, such as K = 100. 
We note that in the above hypotheses, AH  is set to be exclusive of both 1AH  and 2AH , which 

means that if either 1AH  or 2AH  is accepted, this does not mean that AH  is accepted. Accepting either 

H0 or HA implies that there are no SD relationships and no arbitrage opportunity between these two 
diversified portfolios and neither of these two portfolios is preferred to the other. However, if 1AH  or 

2AH  of order one is accepted, a particular DOD (IND) portfolio stochastically dominates another IND 

(DOD) portfolio at the first order. In this situation, there exists an arbitrage opportunity, and thus,  

non-satiated investors will be better off if they switch from the dominated portfolio to the dominant 
one. On the other hand, if 1AH  or 2AH  is accepted for order two or three, a particular DOD or IND 

stochastically dominates the other at the second or third order. In this situation, an arbitrage opportunity 

does not exist, and switching from one portfolio to another will only increase investors’ expected 
utilities, but not their expected wealth [24]. For 1,2,j  3 the null hypothesis H0j	 states that DOD 
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dominates the IND, F ≽j G, at order j, while the null hypothesis H0j states that the IND dominates the 

DOD portfolio, G ≽j F, at order j. 

4. Empirical Results 

4.1. Portfolio Optimization 

We first adopt the PO approach to examine the preferences of different DOD and IND portfolios for 

risk-averse investors. From the MV efficient portfolios derived, we construct the efficient MV 

frontiers for both IND and DOD strategies and display them in Figure 1. By doing so, one could 

construct various efficient sets, which, in turn, enable us to examine the performance of various 

diversification strategies for different levels of risk and return. We construct the 10 DOD and 13 IND 

portfolios as follows: (1) we start from the minimum risk point of the efficient frontier of the DOD 

portfolios and roughly divide them into 10 equal parts in terms of risk; (2) we compute the 10 points 

on the efficient frontiers of both the DOD and the IND portfolios using the same risk obtained in (1); 

(3) we compute 2 extra points on the efficient frontiers of the IND portfolios using the same distance 

of risk obtained in (1) leading to the minimum risk point of the IND; and (4) we include the minimum 

risk point of the IND. 

Figure 1. Mean-variance (MV) efficient frontiers of international and domestic 

diversification strategies. 
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Note: IND is the efficient frontier of internationally diversified portfolios and DOD is the efficient 
frontiers of domestically diversified portoflios. 
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We first summarize in Tables 2 and 3 the descriptive statistics of all 13 DOD and 10 IND 

portfolios, including the mean, standard deviation, coefficient of variation (CV), skewness, and 

kurtosis coefficients. From Table 2, we find that the daily mean return (standard deviation) of the DOD 

and IND portfolios varies from 0.00048 to 0.00114 (0.00973 to 0.02371) and from 0.00032 to 0.00081 

(0.00684 to 0.02371), respectively. In general, DOD portfolios generate higher risk than IND 

portfolios. In addition, as shown in Table 3, the means and standard deviations vary widely across 

diversified portfolios. For example, DOD10 and IND13 possess the two largest daily mean returns 

(0.00114 and 0.00081) and the two largest standard deviations (0.02371 and 0.02371), while DOD1 

and IND1 exhibit the two smallest mean returns (0.00048 and 0.00032) and the two smallest standard 

deviations (0.00973 and 0.000684). Regarding the coefficient of variation (CV), DOD 4 obtains the 

smallest value (16.53), while IND13 obtains the highest values (29.39). In addition, we show that, in 

general, DOD portfolios obtain smaller values than their IND counterparts. In particular, the values of 

the CV of DOD2 to DOD7 are smaller than those of any IND portfolio, while the values of the CV of 

IND1 and IND7–IND13 are bigger than those of any DOD portfolio. 

We turn now to comparing the efficient frontiers of the DOD and IND from Figure 1. Since the 

efficient frontiers of the DOD and IND cross, applying the MV optimization rule to different efficient 

frontiers leads us to conclude that the DOD and IND do not dominate each other in the entire  

risk-return range. To be more specific, by adopting the MV optimization approach, we observe from 

Figure 1 that for any risk level less than 1%, the IND strategy clearly dominates the DOD strategy, but 

the dominance relationship is reversed for any risk level greater than 1%. This implies that the 

question of diversifying internationally or domestically would not have a unique answer for US 

investors and the answer would depend on what level of risk they want to take and what level of return 

they would like to get. If investors are willing to accept a risk level above 1%, the DOD strategy is a 

better choice. On the other hand, if they are only willing to accept a risk level up to 1%, the IND 

strategy is the better choice for them. 

Table 2. Summary statistics of the domestic MV efficient diversified portfolios. 

 Mean (µ) Std Dev (σ) CV (σ/µ) Skewness Kurtosis 

DOD1 0.00048 0.00973 20.26 0.19096 9.21767 
DOD2 0.00055 0.00997 18.01 0.15212 8.61416 
DOD3 0.00063 0.01059 16.88 0.10630 7.39123 
DOD4 0.00070 0.01159 16.53 0.07693 6.09004 
DOD5 0.00077 0.01295 16.72 0.06230 5.29170 
DOD6 0.00085 0.01459 17.19 0.03572 4.87478 
DOD7 0.00092 0.01645 17.84 0.02482 4.73178 
DOD8 0.00010 0.01851 18.58 0.03847 4.94001 
DOD9 0.00107 0.02093 19.57 0.03114 5.46898 

DOD10 0.00114 0.02371 20.73 0.02005 5.95474 

Note: This table reports the summary statistics of the 10 domestic MV efficient diversified (DOD) 
portfolios, DOD1 to DOD10, including mean (µ), standard deviation (σ), the coefficient of 
variation (σ/µ), skewness, and kurtosis coefficients. The construction of DOD1 to DOD10 is 
described in Section 4.1. 
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Table 3. Summary statistics of the international MV efficient diversified portfolios. 

 Mean (µ) Std Dev (σ) CV (σ/µ) Skewness Kurtosis 
IND1 0.00032 0.00684 21.53 −0.21007 5.04703 
IND2 0.00038 0.00712 18.92 −0.18726 4.45829 
IND3 0.00044 0.00799 18.36 −0.15911 3.76602 
IND4 0.00050 0.00973 19.34 −0.12344 3.49837 
IND5 0.00051 0.00997 19.54 −0.11918 3.54673 
IND6 0.00052 0.01059 20.04 −0.10654 3.72651 
IND7 0.00055 0.01159 20.93 −0.05806 3.88917 
IND8 0.00059 0.01294 22.00 −0.04853 4.43614 
IND9 0.00063 0.01459 23.30 −0.00687 4.79284 

IND10 0.00066 0.01645 24.74 0.01599 5.32968 
IND11 0.00071 0.01851 2609.17 0.07545 5.83010 
IND12 0.00076 0.02093 27.69 0.10862 6.26873 
IND13 0.00081 0.02371 29.39 0.13647 6.54289 

Note: This table reports the summary statistics of the 13 international MV efficient diversified 
(IND) portfolios, IND1 to IND13, including mean (µ), standard deviation (σ), the coefficient of 
variation (σ/µ), skewness, and kurtosis coefficients. The construction of IND1 to IND13 is 
described in Section 4.1. 

4.2. Stochastic Dominance 

The results from the PO approach discussed in the previous subsection show that the international 

diversification strategy dominates the domestic diversification strategy in a risk-return range but the 

dominance relationship is reversed in another risk-return range. In addition, from Tables 2 and 3, we 

find that the normality hypothesis is rejected for most of the portfolios. This suggests that the results 

from the PO rule may be misleading. To circumvent this limitation, we use the SD approach and adopt 

the DD (2000) test to examine investors’ preferences between the DOD and the IND strategies. We 

summarize the results in Tables 4 and 5. For example, if we report DOD (F) SSD IND (G), this means 

that DOD stochastically dominates IND strictly in the sense of second-order SD, and denoted by 

GF 2  or F SSD dominates G. On the other hand, ND refers to no dominance between F and G.  

This means that either 0 :H F G  or :AH F G  is accepted. Readers may refer to the notes in 

Tables 4 and 5 for more information on other notations.  

To get a better picture of the results of the DD test, we plot the DD test and corresponding CDFs for 

each DOD and IND for two pairs of observations in Figures 2 and 3 for illustration. The first pair is the 

DOD4 and IND1 portfolios, and the second pair is the DOD3 and IND13 portfolios. From Figure 2 (3), 

we find that the empirical distribution functions of DOD 4 and IND1 (DOD3 and IND13) cross, 

implying that it is very likely that there is no first-order SD between the DOD4 and IND1 (DOD3 and 

IND13) portfolios. The result of the T1 statistic being significantly positive and negative in both 

figures confirms the absence of the FSD relationship. However, Figure 2 (3) reveals that the T2 and T3 

statistics are significantly positive (negative), showing that the IND1 (DOD3) SSD and TSD-dominates 

DOD4 (IND13). Since the hierarchical relationship exists in SD that SSD implies TSD, we report only 

SSD if both SSD and TSD relationships are found. The results of the SD relationship between the IND 

and DOD portfolios are reported in Tables 4 and 5. 
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Figure 2. Plot of the cumulative distribution function (CDF) of the daily returns of the 

fourth domestic diversified portfolio (DOD 4) and the first international diversified 

portfolio (IND 1) and their DD statistics. 

 

Figure 3. Plot of the CDF of the daily returns of the third domestic diversified portfolio 

(DOD3) and the 13 international diversified portfolios (IND13) and their DD statistics. 
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Table 4. Stochastic dominance test between domestically and internationally diversified portfolios. 

Portfolios IND1 IND2 IND3 IND4 IND5 IND6 IND7 IND8 IND9 IND10 IND11 IND12 IND13 SSD 

DOD1    ND ND SSD SSD SSD SSD SSD SSD SSD SSD 8 
DOD2    ND ND SSD SSD SSD SSD SSD SSD SSD SSD 8 
DOD3    ND ND ND SSD SSD SSD SSD SSD SSD SSD 7 
DOD4      ND ND SSD SSD SSD SSD SSD SSD 6 
DOD5        ND SSD SSD SSD SSD SSD 5 
DOD6         ND SSD SSD SSD SSD 4 
DOD7          ND SSD SSD SSD 3 
DOD8           ND SSD SSD 2 
DOD9            ND SSD 1 

DOD10             ND 0 
SSD 0 0 0 0 0 2 3 4 5 6 7 8 9 

Note: This table reports the stochastic dominance results to test whether domestically diversified (DOD) portfolios strictly dominate internationally 
diversified (IND) portfolios in the sense of the j order stochastic dominance for j = 1, 2, 3. The test is based on DD test statistics (refer to Equation 3) 
significance for the first three SD orders (FSD, SSD, and TSD). The results in this table are read on a row-versus-column basis. For example, the cell in the 
first row and the 6th column tells us that DOD1 stochastically dominates IND6 in the sense of SSD and TSD. FSD, SSD, TSD, and ND stand for the first-, 
second-, third-order stochastic dominance, and no stochastic dominance, respectively. Indifference relationships between DOD and IND are presented in 
the shaded areas. The entries in the last column (row) show the numbers of total SSD dominance for the corresponding row (column). 
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Table 5. Stochastic dominance test between global internationally and domestically diversified portfolios. 

Portfolios DOD1 DOD2 DOD3 DOD4 DOD5 DOD6 DOD7 DOD8 DOD9 DOD10 SSD TSD Total 

IND1 SSD SSD SSD SSD SSD SSD TSD SSD TSD TSD 7 3 10 
IND2 SSD SSD SSD SSD SSD SSD SSD SSD SSD SSD 10 0 10 
IND3 SSD SSD SSD SSD SSD SSD SSD SSD SSD SSD 10 0 10 
IND4 ND ND ND SSD SSD SSD SSD SSD SSD SSD 7 0 7 
IND5 ND ND ND SSD SSD SSD SSD SSD SSD SSD 7 0 7 
IND6   ND ND SSD SSD SSD SSD SSD SSD 6 0 6 
IND7    ND SSD SSD SSD SSD SSD SSD 6 0 6 
IND8     ND SSD SSD SSD SSD SSD 5 0 5 
IND9      ND SSD SSD SSD SSD 4 0 4 
IND10       ND SSD SSD SSD 3 0 3 
IND11        ND SSD SSD 2 0 2 
IND12         ND SSD 1 0 1 
IND13          ND 0 0 0 
SSD 3 3 3 5 7 8 8 10 10 11 
TSD 0 0 0 0 0 0 1 0 1 1 
Total 3 3 3 5 7 8 9 10 11 12 

Note: This table reports the stochastic dominance results to test whether domestically diversified (DOD) portfolios strictly dominate internationally 
diversified (IND) portfolios in the sense of the j order stochastic dominance for j=1,2,3. The test is based on DD test statistics (refer to equation 3) 
significance for the first three SD orders (FSD, SSD, and TSD). The results in this table are read on a row-versus-column basis. For example, the cell in the 
first row and the second column tells us that IND1 stochastically dominates DOD2 in the sense of SSD and TSD. FSD, SSD, TSD, and ND stand for the 
first-, second-, third-order stochastic dominance, and no stochastic dominance, respectively. Indifference relationships between DOD and IND are 
presented in the shaded areas. The entries in the third [second] to last column (row) show the numbers of total SSD [TSD] dominance for the corresponding 
row (column) and the entries in the last column (row) show the numbers of total [SSD+TSD] dominance for the corresponding row (column). 
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From Table 4, we find that some domestically diversified portfolios SSD-dominate some 

internationally diversified portfolios in the sense of SSD. More precisely, we find that 44 (33.8 percent) 

of the DOD portfolios SSD-dominate some IND portfolios, implying that risk-averse US investors will 

prefer 33.8 percent of DOD portfolios relative to the corresponding IND portfolios. This, in turn, 

supports the argument from those who claim that domestic diversification is better.  

On the other hand, from Table 5, we observe that some internationally diversified portfolios  

SSD- and TSD-dominate some domestically diversified portfolios. More precisely, we find  

that 68 (52.3 percent) IND portfolios SSD-dominate DOD portfolios, implying that second-order  

risk-averse US investors will prefer 52.3 percent of IND portfolios relative to their corresponding 

DOD portfolios. A similar conclusion can be drawn for the third-order SD dominance from IND to 

DOD. This supports the argument from those who claim that international diversification is better. 

In addition, from Tables 4 and 5, we find some domestically diversified portfolios and internationally 

diversified portfolios that do not dominate each other, supporting the argument that IND and DOD do 

not dominate each other. More precisely, from Tables 4 and 5, we find that 15 (11.5 percent) of the 

DOD and IND do not dominate each other, implying that in 11.5 percent of cases, US investors are 

indifferent between investing in DOD and IND. This, in turn, supports the argument that there is no 

difference between domestic diversification and international diversification.  

Moreover, from Table 4, we find that DOD portfolios with smaller risk stochastically dominate 

IND portfolios with larger risk. Similarly, from Table 5, we find that IND portfolios with smaller risk 

stochastically dominate DOD portfolios with larger risk. These findings lead us conclude that the 

domestic diversification strategy with a lower risk level stochastically dominates the international 

diversification strategy with a higher risk level, which, in turn, supports those who advocate domestic 

diversification. On the other hand, for a low risk level in foreign markets, an international 

diversification strategy stochastically dominates a domestic diversification strategy, which, in turn, 

supports those who favor international diversification. Nonetheless, we find that DOD1 and DOD2 are 

the “best” portfolios among all the DOD portfolios, since they SSD-dominate 8 IND portfolios  

(IND6–IND13). However, they cannot dominate the other five portfolios IND (IND1–IND5). Thus, 

we cannot find any domestic portfolio that dominates all international portfolios. However, Table 5 

shows that IND1 to IND 3 SSD/TSD-dominate all the DOD portfolios. Thus, we can claim that  

IND1–IND 3 are the best choices; this, in turn, supports those who claim that international 

diversification is better. 

Moreover, from Table 4, we find that DOD portfolios with smaller risk stochastically dominate 

IND portfolios with larger risk. Similarly, from Table 5, we find that IND portfolios with smaller risk 

stochastically dominate DOD portfolios with larger risk. These findings lead us conclude that the 

domestic diversification strategy with a lower risk level stochastically dominates the international 

diversification strategy with a higher risk level, which, in turn, supports those who advocate domestic 

diversification. On the other hand, for a low risk level in foreign markets, an international 

diversification strategy stochastically dominates a domestic diversification strategy, which, in turn, 

supports those who favor international diversification. Nonetheless, we find that DOD1 and DOD2 are 

the “best” portfolios among all the DOD portfolios, since they SSD-dominate 8 IND portfolios  

(IND6–IND13). However, they cannot dominate the other five portfolios IND (IND1–IND5). Thus, 

we cannot find any domestic portfolio that dominates all international portfolios. However, Table 5 
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shows that IND1 to IND3 SSD/TSD-dominate all the DOD portfolios. Thus, we can claim that  

IND1–IND3 are the best choices; this, in turn, supports those who claim that international 

diversification is better. 

Now, we use two examples displayed in Tables 6 and 7 to illustrate how to draw the two different 

dominance conclusions displayed in Tables 4 and 5. The first example shown in Table 6 exhibits the 

first three orders of DD statistics between DOD1 and IND2. From the table, we find that 18.3 percent 

(20.8 percent) of the first-order DD statistic T1 is significantly positive (negative); thus, the results lead 

us to reject the hypothesis that DOD1 FSD-dominates IND2 or vice versa. The table also shows that 

39.9 percent of the second-order DD statistic T2 is significantly positive and none of it is significantly 

negative. This implies that IND 2 SSD-dominates DOD1. Similarly, we find that 27.9 percent of the 

third-order DD statistic T3 is significantly positive and none of it is significantly negative. This shows 

that IND2 TSD-dominates DOD1. Finally, we illustrate the second example in Table 7. From the table, 

we find that no percentage of T1, T2 and T3 is significantly positive or negative. This implies that 

DOD1 and IND5 do not dominate each other in the sense of the first-, second-, and third-order SD.  

Table 6. The results of the stochastic dominance (SD) statistics for the first domestic 

diversified portfolio (DOD1) and the second international diversified portfolios (IND2). 

 FSD

 T1 > 0 T1 < 0 

Total (%) 

Positive Domain (%) 

Negative Domain (%) 

18.3 

18.3 

0 

20.8 

0 

20.8 

Max (|Tj|) 8.31 9.92 

 SSD 

 T2 > 0 T2 < 0 

Total (%) 

Positive Domain (%) 

Negative Domain (%) 

39.9 

39.9 

0 

0 

0 

0 

Max (|Tj|) 8.53 0.63 

 TSD 

 T3 > 0 T3 < 0 

Total (%) 

Positive Domain (%) 

Negative Domain (%) 

27.9 

27.9 

0 

0 

0 

0 

Max (|Tj|) 6.97 NA 

Notes: Readers may refer to equation (3) for the formula of Tj for j=1,2,3 with F = DOD1 and  
G = IND2.  The period is from 1 January 1993 to 31 December 2012. 
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Table 7. The results of the stochastic dominance (SD) statistics for the first domestic 

diversified portfolio (DOD1) and the fifth international diversified portfolios (IND5). 

 FSD

 T1 > 0 T1 < 0 

Total (%) 

Positive Domain (%) 

Negative Domain (%) 

0 

0 

0 

0 

0 

0 

Max (|Tj|) 2.80 2.99 

 SSD 

 T2 > 0 T2 < 0 

Total (%) 

Positive Domain (%) 

Negative Domain (%) 

0 

0 

0 

0 

0 

0 

Max (|Tj|) 1.88 2.12 

 TSD 

 T3 > 0 T3 < 0 

Total (%) 

Positive Domain (%) 

Negative Domain (%) 

0 

0 

0 

0 

0 

0 

Max (|Tj|) 1.75 1.21 

5. Conclusions 

In this paper, we compare the performance of the efficient domestically and internationally 

diversified portfolios by applying both the mean-variance portfolio optimization (PO) and the 

stochastic dominance (SD) approaches to analyze the Latin American and Asian financial markets and 

the G6 from 1 January 1993 to 31 December 2012. Comparing the MV efficient frontiers, we find that 

one efficient strategy could dominate the other over a range of risk and return but the dominance 

relationship could be reversed over another range of risk and return. Our PO results show that for 

investors who are willing to accept a higher risk level, a domestic diversification strategy is better for 

them. On the other hand, if they are only willing to accept a lower risk level, an international 

diversification strategy is a better choice. 

Since the normality hypothesis is rejected for most of the portfolios, the results drawn from the PO 

rule may be misleading. To circumvent this limitation, we use the Davidson and Duclos test to 

examine investors’ preferences between the domestic and international diversification strategies. Our 

SD analysis shows that there is no arbitrage opportunity between international and domestic stock 

markets. We find that some domestically diversified portfolios SSD-dominate some internationally 

diversified portfolios, supporting those who claim that domestic diversification is better. On the other 

hand, we observe that some internationally diversified portfolios SSD- and TSD-dominate some 

domestically diversified portfolios, supporting the argument of those who claim that international 

diversification is better. In addition, we find that some domestically and internationally diversified 

portfolios do not dominate each other, supporting the argument that there is no difference between 
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domestic and international diversification. Nevertheless, we find that domestically diversified portfolios 

with smaller risk SSD-dominate internationally diversified portfolios with larger risk and vice versa. 

This implies that for a lower risk level in domestic markets, the domestic diversification strategy 

stochastically dominates the international diversification strategy with higher risk, which, in turn, 

supports the finding that there are benefits from domestic diversification. On the other hand, for a low 

risk level in foreign markets, an international diversification strategy stochastically dominates a 

domestic diversification strategy with higher risk, which, in turn, supports the finding that there are 

benefits from international diversification. Nonetheless, we cannot find any domestically diversified 

portfolio that stochastically dominates all internationally diversified portfolios but we find that the 

internationally diversified portfolios with a risk smaller than that of any domestically diversified 

portfolio SSD- or TSD-dominate all the domestically diversified portfolios. This supports the claim 

that international diversification is better. However, although our findings imply that international 

diversification is better at a lower risk level, the markets for the domestic and international 

diversification strategies are efficient when they have the same risk level.  

One may argue that our findings could fit any argument. So what can investors learn from our 

findings? Our answer is that yes, it is true that our analysis provides grounds to support any argument. 

However, all the arguments are true only under some conditions. We summarize our main findings as 

follows: (1) risk-averse investors are indifferent between the domestic and international diversification 

strategies if both strategies have the same risk; (2) when comparing the domestically diversified 

portfolios with lower risk and the internationally diversified portfolios with higher risk, risk averters 

would prefer to invest in the domestically diversified portfolios; (3) when comparing the 

internationally diversified portfolios with lower risk with the domestically diversified portfolios with 

higher risk, risk averters would prefer to invest in the internationally diversified portfolios; and (4) the 

risk of some internationally diversified portfolios is smaller than that of all domestically diversified 

portfolios, implying that risk averters will prefer only international diversification if they can invest in 

these smaller-risk internationally diversified portfolios.  

Finally, one may wonder whether there is any contradiction for our PO and SD findings because 

from our PO finding, we conclude that the domestic diversification strategy is better for investors with 

a higher risk level, while the international diversification strategy is the better choice for investors with 

a lower risk level. This seems to contradict the SD findings of (1) to (4) above. We note that there is no 

contradiction. Our SD finding is the refinement of our PO finding. Our PO finding shows that for a 

higher risk, the mean of the DOD is higher than that of the IND, and thus, the results from our PO 

analysis conclude that the domestic diversification strategy is better. However, our SD analysis shows 

that this is not true. Our SD analysis shows that for a higher risk, the mean of the DOD is higher than 

that of the IND, but the DOD does not stochastically dominate any IND portfolio, and thus, investors 

in these 2 markets are indifferent between the IND and DOD portfolios with the same risk.  

An extension could include examining the preferences of other types of investors, such as risk 

seekers [48] and investors with S-shaped and reverse S-shaped utility functions; see,  

for example, [46,57,58]. Extensions could also include applying behavioral finance methods [59–61] 

to examine the behavior of different investors when deciding whether to invest domestically  

or internationally.  
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