

Supplementary Materials: Ageing and water-based processing of LiFeMnPO₄ secondary agglomerates and its effects on electrochemical characteristics

Benjamin Starke, Stefan Seidlmayer, Oleksandr Dolotko, Ralph Gilles and Karl-Heinz Pettinger

The following section provides the complete list of refined parameter values of the diffraction data used in the manuscript.

All refinements were carried out starting with the following reference data sets for Al and LiFe_{0.27}Mn_{0.73}PO₄ (LFMP) from the Inorganic Crystal Structure Database (ICSD) maintained by the FIZ Karlsruhe as given in Tables S1 and S2. The occupancy value for Li1 in LFMP was set to 1 prior to the refinements. Occupancy factors of Fe and Mn were constrained to unity and refined together for neutron diffraction data. The refined parameters and their corresponding standard uncertainties are listed below in Table S3. The refinements were carried out using the Highscore software package [1] with THOMPSON-COX-HASTINGS (TCH) type pseudo-Voigt profile functions either as RIETVELD [2] or PAWLEY [3] fit as implemented in the software.

Table S1: Al Phase starting parameters. Biso is the abbreviation for isotropic displacement parameter.

Al ICSD #-43423, [4] Space group: *F m* 3 *m* (No. 225) *a* = 4.0497(0) Å *V* = 66.42(0) Å³ *Z* = 4

Atom	Wyckoff	occupancy	fı	actional coordi	B : (Å2)	
	position		x	y	z	$D_{150}(\mathbf{A}^2)$
Al	4 <i>a</i>	1	0	0	0	Not determined

LiFe0.27Mn0.73PO4
ICSD #-54826, [5]*
Space group: <i>P n m a</i> (No. 62)
a = 10.4084(9) Å
b = 6.0705(4) Å
c = 4.7247(2) Å
$V = 298.53(3) \text{ Å}^3$
Z = 4

Table S2: LFMP Phase literature parameters, Li occupancy was set to 1 prior to starting the

refinements. Biso is the abbreviation for isotropic displacement parameter.

Atom	Wyckoff	occupancy	fra	ctional coord	\mathbf{D}_{i} (Å 2)	
	position		x	y	z	D150 (A-)
Li1	4a	1	0	0	0	1.59(8)
Mn1	4c	0.73	0.28183(3)	1⁄4	0.02747(8)	0.558(6)
Fe1	4c	0.27	0.28183(3)	1⁄4	0.02747(8)	0.558(6)
P1	4c	1	0.09309(6)	1⁄4	0.5887(1)	0.560(9)
O1	4c	1	0.0968(2)	1⁄4	0.2657(4)	0.85(3)
O2	4c	1	0.4559(2)	1⁄4	0.7896(4)	0.86(3)
O3	8 <i>d</i>	1	0.3375(1)	0.5487(2)	0.2213(2)	0.86(2)

* Structure originally published in space group P b n m. The structure was transformed to the standard setting P n m a. Transformed data set as presented here was used as starting model for the refinements.

Table S3: Instrumental setup. $K_{\alpha_2} / K_{\alpha_1}$ ratios were determined by refinement using a Si-powder standard (NIST 640d).

Experimental setup								
Sample name	Pristine	23 °C/35% rh	40 °C/100% rh	NMP	H ₂ O			
Method	ND	ND	ND	XRD	XRD			
Instrument setup	Debye-	Debye-	Debye-	Debye-	Debye-			
geometry	Scherrer	Scherrer	Scherrer	Scherrer	Scherrer			
Step size	0.05	0.05	0.05	0.008	0.008			
Wavelength (Å)	1.5482	1.5482	1.5482	0.70932	0.70932			
Exposure time (h)	7	7	7	3	19			
$\mathbf{K}_{\alpha_2}/\mathbf{K}_{\alpha_1}$ ratio	monochromator	monochromator	monochromator	0.328	0.328			

R-values, %								
Sample name	Pristine	23 °C/35% rh	40 °C/100% rh	NMP	H ₂ O			
RBragg (LFMP)	1.14	1.34	0.84	3.15	2.66			
RBragg (A1)	-	-	-	0.78	0.86			
Rwp	2.3564	2.7104	1.4808	6.6040	4.8384			
Refined general parameters								
Zero Shift (° 2θ)	-0.0094(2)	-0.0213(3)	-0.010(4)	-0.0026(3)	-0.0023(4)			
Sample displacement (mm)	-	-	-	0.086(2)	0.095(3)			

Table S4: R-values of the refinements and not phase-specific (general) parameters.

Table 55: refined Al phase parameters.								
Refined Al phase parameters (PAWLEY –Fit)								
Cample name Pristine 23 °C/35% rh 40 °C/100% rh NMP H2O								
S/L Asymmetry	-	-	-	0.001(3)	0.00(6)			
D/L Asymmetry	-	-	-	0.000(3)	0.00(6)			
TCH-Profile W	-	-	-	0.001(1)	0.0014(5)			
TCH-Profile U	-	-	-	0.03(9)	0.04(4)			
TCH-Profile X	-	-	-	0.0(4)	0.0(2)			
TCH-Profile Peak Shape	-	-	-	0.337(8)	0.295(3)			

Table S5: refined Al phase parameters.

Refined LFMP phase parameters (RIETVELD -Fit)							
Sample name	Pristine	23 °C/35% rh	40 °C/100% rh	NMP	H ₂ O		
Scale Factor	39.99(3)	29.11(3)	23.28(4)	0.00008(1)	0.000391(1)		
Cell axis <i>a</i> (Å)	10.41128(4)	10.4125(5)	10.41263(7)	10.4119(3)	10.4092(3)		
Cell axis <i>b</i> (Å)	6.07066(2)	6.07113(3)	6.07085(4)	6.0705(1)	6.06889(8)		
Cell axis c (Å)	4.72981(2)	4.73063(2)	4.73114(3)	4.73055(9)	4.72931(4)		
Preferred Orientation:							
Model: March-Dollase[6]	0.9897(3)	0.9857(4)	0.9839(6)	0.988(1)	0.9935(7)		
Direction: (1 0 1)							
S/L Asymmetry	0.0486(1)	0.0335(1)	0.0498(2)	0.013(1)	0.012(10)		
D/L Asymmetry	0.0195(1)	0.0355(2)	0.0216(5)	0.013(1)	0.012(10)		
TCH-Profile W	0.196(1)	0.199(2)	0.196(2)	0.00471(6)	0.0055(1)		
TCH-Profile V	-0.125(3)	-0.122(4)	-0.123(6)	-	-		
TCH-Profile U	0.084(3)	0.080(4)	0.077(5)	-	-		
TCH-Profile X	0.00(2)	0.00(2)	0.00(3)	-	-		
TCH-Profile Peak Shape	0.126(2)	0.077(2)	0.101(4)	0.63(1)	0.55(1)		
Overall Biso (Å ²)	-	-	-	1.44(2)	1.25(2)		
Li1 Biso (Å ²)	2.21(2)	3.18(3)	3.08(5)	-	-		
Mn1/Fe1 fractional coordinate x	0.2820(5)	0.2855(6)	0.2843(10)	-	-		
Mn1/Fe1 fractional coordinate z	0.026(1)	0.053(1)	0.058(2)	-	-		
Mn1/Fe1 Biso (Ų)	0.5(1)	0.5(2)	0.5(3)	-	-		
Mr1/Est second as factor	0.6933(6)/	0.6933(7)/	0.693(1)/				
MINI/Fel occupancy factor	0.3067(6)	0.3067(7)	0.307(1)	-	-		
P1 fractional coordinate x	0.09360(4)	0.09375(4)	0.09352(7)	-	-		
P1 fractional coordinate z	0.58852(7)	0.58826(9)	0.5884(1)	-	-		
P1 B _{iso} (Å ²)	0.649(5)	0.782(6)	0.708(9)	-	-		
O1 fractional coordinate x	0.09759(3)	0.09758(4)	0.09776(7)	-	-		
O1 fractional coordinate z	0.26579(7)	0.2658(9)	0.2661(1)	-	-		
O1 Biso (Å ²)	0.921(5)	1.078(7)	0.99(1)	-	-		
O2 fractional coordinate x	0.45591(3)	0.45571(4)	0.45574(6)	-	-		
O2 fractional coordinate z	0.79014(8)	0.7888(1)	0.7894(2)	-	-		
O2 Biso (Å ²)	0.960(5)	1.226(7)	1.17(1)	-	-		
O3 fractional coordinate x	0.33669(2)	0.33637(3)	0.33631(5)	-	-		
O3 fractional coordinate y	0.54812(3)	0.54845(4)	0.54822(7)	-	-		
O3 fractional coordinate z	0.22088(5)	0.22037(7)	0.2206(1)	-	-		
O3 B _{iso} (Å ²)	0.950(3)	1.180(5)	1.100(7)	-	-		

Table S6: Refined LFMP phase parameters. Standard uncertainty values are given in parentheses as refined by Highscore without multiplying the values with the R_{wp} -value of the fit. B_{iso} is the abbreviation for isotropic displacement parameter.

References

^{1.} Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore suite. *Powder Diffr.* **2014**, *29*, S13–S18, doi:10.1017/S0885715614000840.

- 2. Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. *J. Appl Crystallogr.* **1969**, *2*, 65–71, doi:10.1107/S0021889869006558.
- 3. Pawley, G.S. Unit-cell refinement from powder diffraction scans. *J. Appl Crystallogr.* **1981**, *14*, 357–361, doi:10.1107/S0021889881009618.
- 4. Cooper, A.S. Precise lattice constants of germanium, aluminum, gallium arsenide, uranium, sulphur, quartz and sapphire. *Acta Crystallogr.* **1962**, *15*, 578–582, doi:10.1107/S0365110X62001474.
- 5. Losey, A.; Rakovan, J.; Hughes, J.M.; Francis, C.A.; Dyar, M.D. Structural variation in the lithiophilite–triphylite series and other olivine-group structures. *Can. Mineral.* **2004**, *42*, 1105–1115, doi:10.2113/gscanmin.42.4.1105.
- 6. Dollase, W.A. Correction of intensities for preferred orientation in powder diffractometry: application of the March model. *J. Appl Crystallogr.* **1986**, *19*, 267–272, doi:10.1107/S0021889886089458.

© 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).