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Abstract: In an electric power grid that has a high penetration level of wind, the power fluctuation
of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system
frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction
generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing
over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying
on the system frequency deviation that operates in combination with the maximum power point
tracking control loop. To improve the power-smoothing capability while preventing over-deceleration
of the rotor speed, the gain of the additional loop is modified with the rotor speed and frequency
deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large.
The simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed
scheme significantly lessens the output power fluctuation of a WPP under various scenarios by
modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the
frequency deviation within a narrow range.

Keywords: power smoothing; doubly-fed induction generator; frequency regulation; adaptive gain;
rotor speed; frequency deviation

1. Introduction

For an electric power grid that has a high penetration level of wind, the high fluctuation of wind
causes difficulties in regulating the system frequency within a narrow range [1–6]. This is because
variable-speed wind turbine generators (WTGs), such as doubly-fed induction generators (DFIGs) and
fully-rated converter-based WTGs, perform maximum power point tracking (MPPT) control, which
is unable to mitigate the fluctuating output power of the WTGs caused by the continuously varying
wind speeds. To minimize these problems, some countries specify requirements on the ramp rates of
the output power of a wind power plant (WPP) [7].

Power-smoothing schemes of WTGs can be divided into two groups: those with or without energy
storage systems (ESSs) [8–12]. In [8–10], ESSs such as flywheels, supercapacitors, or batteries were
suggested to smooth the frequency fluctuation caused by WTGs. ESSs help mitigate the frequency
fluctuation by using their stored energy; however, these devices require an extra cost for installation
and maintenance, particularly for a large-scale WTG.
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To avoid or reduce the additional cost for the ESS, power-smoothing schemes have been
suggested that release or absorb the kinetic energy stored in the rotating masses of a WTG.
These schemes use additional control loops operating in conjunction with the MPPT control loop:
the rate-of-change-of-frequency (ROCOF) loop and/or frequency deviation loop [11,12]. These loops
help smooth the frequency fluctuation; however, these schemes use the fixed gain for additional control
loops. A large gain can improve the power-smoothing capability of a WTG, but it is unable to prevent
over-deceleration of the rotor speed in the low-rotor-speed region; thus, to avoid this, the use of a small
gain is inevitable, thereby providing a limited contribution to mitigating the frequency fluctuation.

This paper proposes a power-smoothing scheme of a DFIG to regulate the frequency deviation
within a narrow range. The proposed scheme uses an additional control loop relying on the frequency
deviation operating in conjunction with the MPPT control loop. To improve the power-smoothing
capability while preventing over-deceleration of the rotor speed, the gain of the additional control
loop varies with the rotor speed and frequency deviation. The performance of the proposed scheme is
investigated under various scenarios, including continuously varying wind conditions for two wind
power penetration levels in the IEEE 14-bus system using an EMTP-RV simulator.

2. Proposed Power-Smoothing Scheme of a DFIG

2.1. DFIG Model

Figure 1a shows a typical configuration of a DFIG, which includes a mechanical power model,
two-mass shaft model, back-to-back converters, and a pitch control model.

The mechanical power extracted from the wind (Pm) is defined as:

Pm = 0.5ρAv3
wcp(λ, β) (1)

where ρ, A, vw, cp, λ, and β are the air density, rotor-swept area by blades, wind speed, power coefficient,
tip-speed ratio, and pitch angle, respectively.

As in [13], in this paper cp can be represented as:

cp(λ, β) = 0.645
{

0.00912λ +
−5− 0.4(2.5 + β) + 116λi

e−21λi

}
(2)

where:
λi =

1
λ + 0.08(2.5 + β)

− 0.035

1 + (2.5 + β)3 (3)

In this paper, the maximum cp and optimal λ for β = 0◦ are set to 0.5 and 9.95, respectively.
The drivetrain system is modeled as a two-mass shaft model for the dynamics between the

low-speed turbine and high-speed generator. A two-mass shaft model is represented by:

dωt
dt = 1

2Ht
{Tt − Ksθs − Ds(ωt −ωr)− Dtωt}

dωr
dt = 1

2Hg
{Ksθs + Ds(ωt −ωr)− Dgωr − Tg}

dθs
dt = ω(ωt −ωr)

 (4)

where Ht, Hg, ωt, ωr, Tt, Tg, Dt, and Dg are the inertia time constants, angular speeds, torques, and
damping constants of a wind turbine and generator mass, respectively; and Ks, Ds, θs, and ω are the
shaft stiffness, damping constant, torsional twist, and base value of the angular speed, respectively [14].
In this paper, the parameters are set as follows: Ht = 4 s, Hg = 1 s, Ks = 1.25 p.u., Ds = 1.5 p.u., Dg = 0 p.u.,
and Dt = 0 p.u.
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Figure 1b shows an electrical equivalent circuit of an induction generator. When the Park’s
transformation is applied, the rotor and stator voltage equations of an induction generator in the d-q
reference frame can be written as:

vds = −rsids −
dψds

dt
−ωsψqs (5)

vqs = −rsiqs −
dψqs

dt
−ωsψds (6)

vdr = −rridr −
dψdr

dt
− (ωs −ωr)ψqr (7)

vqr = −rriqr −
dψqr

dt
− (ωs −ωr)ψdr (8)

where vds and vqs are the stator voltages in the d- and q-axis, respectively; vdr and vqr are the rotor
voltages in the d- and q-axis, respectively; ids and iqs are the stator currents in the d- and q-axis,
respectively; idr and iqr are the rotor currents in the d- and q-axis, respectively; rs and rr are the rotor and
stator resistances, respectively; ψds and ψqs are the stator flux linkages in the d- and q-axis, respectively;
ψdr and ψqr are the rotor flux linkages in the d- and q-axis, respectively; and rs and rr are set to 0.023 p.u.
and 0.016 p.u., respectively.

The flux linkages for the stator and rotor windings can be represented as:

ψdr = lsids + lmidr (9)

ψqs = lsiqs + lmiqr (10)

ψdr = lridr + lmids (11)

ψqr = lriqr + lmiqs (12)

where ls, lr, and lm are the stator, rotor, and magnetizing inductances, respectively; and they are set to
3.1 p.u., 0.16 p.u., and 2.9 p.u., respectively.

The DFIG controller comprises a rotor-side converter (RSC), grid-side converter (GSC), and
pitch-angle controller, as shown in Figure 1a. An RSC controls the active power injected into an electric
power grid and the reactive current (idr) to regulate the stator terminal (see Figure 1c); in addition,
a GSC controls the DC-link and terminal voltages (see Figure 1d) [15]. To extract the maximum power
from the wind, the reference for the MPPT control (PMPPT) is set to (13), as in [16]:

PMPPT = kgω3
r (13)

where kg is constant, and it is set to 0.512 in this paper.
A pitch-angle controller is used to prevent ωr from exceeding the maximum operating limit

(ωmax), as shown in Figure 1e. To obtain realistic results, this paper includes the rate and angle limiters,
which are set to ±10◦/s and 30◦, respectively.
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Figure 1. Typical topology and pitch control scheme of a doubly-fed induction generator (DFIG).  

(a) Typical configuration of a DFIG; (b) Electrical equivalent circuit of an induction generator; (c) 

Simplified rotor-side converter (RSC) control scheme; (d) Simplified grid-side converter (GSC) control 

scheme; (e) Pitch-angle control scheme used in this paper. MPPT: maximum power point tracking. 

Figure 1. Typical topology and pitch control scheme of a doubly-fed induction generator (DFIG).
(a) Typical configuration of a DFIG; (b) Electrical equivalent circuit of an induction generator;
(c) Simplified rotor-side converter (RSC) control scheme; (d) Simplified grid-side converter (GSC)
control scheme; (e) Pitch-angle control scheme used in this paper. MPPT: maximum power
point tracking.
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In addition, the excessive increase of output power may cause mechanical stresses [17,18]. To avoid
these, this paper considers the torque, power, and rate limits, as shown in Figure 2. The active power
limit (Plimit) and the torque limit (Tlimit) are set to 1.20 p.u. and 1.17 p.u., respectively [18]. The rate
limit is set to 0.45 p.u./s [19]. The operating range of ωr is from 0.7 p.u. (ωmin) to 1.25 p.u. (ωmax).
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2.2. Conventional Power-Smoothing Scheme in [12]

Conventional power-smoothing schemes of a DFIG rely on the ROCOF and/or frequency
deviation (∆f ). The proposed scheme uses the ∆f loop only, as in the conventional scheme in [12],
because the ROCOF loop is prone to noise components contained in the measured system frequency.
This subsection briefly describes the features of the conventional scheme in [12].

Figure 3 shows the conventional power-smoothing scheme of a DFIG in [12], which is
implemented in the RSC controller. The power reference (Pref) in [12] consists of PMPPT and the
output of the ∆f loop (∆P) as in:

Pre f = PMPPT + ∆P (14)

In the conventional scheme, ∆P in (14) is determined as:

∆P = − 1
R0

∆ f (15)

where 1/R0 is the fixed gain of the ∆f loop, and in this paper it is set to 25 to prevent over-deceleration
of the rotor speed for the low-rotor-speed region [11].
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2.3. Proposed Power-Smoothing Scheme Using the Adaptive Gain with the Rotor Speed and ∆f

In the conventional scheme, the gain of the ∆f loop is set to be the small value of 25 irrespective of
the stored kinetic energy. Thus, the conventional scheme provides a limited contribution to smoothing
the power fluctuation, even though there is a large amount of kinetic energy in the rotating masses of
a WTG.
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Figure 4 shows the operational characteristics of the proposed scheme, which aims to improve
the power-smoothing capability of a DFIG while preventing over-deceleration of the rotor speed.
To achieve this objective, the proposed scheme suggests the adaptive gain of the ∆f loop (K (ωr, ∆f ))
modifying with ωr and ∆f.

In the proposed scheme, ∆P is determined as:

∆P =

{
−KUF(ωr, ∆ f )∆ f , f or fsys ≤ fnom

−KOF(ωr, ∆ f )∆ f , f or fsys > fnom
(16)

where KUF (ωr, ∆f ) and KOF (ωr, ∆f ) are the gains of the ∆f loop, and they are separately defined in
the under- and over-frequency regions, respectively, as in:

KUF = C0(ω
2
r −ω2

min)(−a∆ f + 1), f or fsys ≤ fnom

KOF = C0ω2
r (a∆ f + 1), f or fsys > fnom

}
(17)

where C0 and a are the constants, and they are set to 200 and 20 in this paper, respectively. C0 and a
can be determined in many ways depending on the design purposes and system conditions. A larger
value of C0 and a can be used to increase ∆P at any ωr and ∆f.

To improve the power-smoothing capability of a DFIG, both KUF and KOF are set to be proportional
to the stored kinetic energy; this means that the gain becomes large if there is a large amount of
stored kinetic energy; otherwise, the gain becomes small. However, KUF is set to be proportional to
(ωr

2 − ωmin
2), and KOF is set to be proportional to ωr

2. The reason for this is as follows. To mitigate the
frequency fluctuation, a DFIG should release kinetic energy in the under-frequency region to increase
the frequency, but it should absorb kinetic energy in the over-frequency region to reduce the frequency.
To prevent over-deceleration of a DFIG in the under-frequency region, KUF is set to zero at ωr = ωmin.

Further, to suppress the large frequency deviation, the magnitude of KUF and KOF increases as the
magnitude of ∆f increases. The increase rate depends on a. This means that a can be set to be large to
attain high power-smoothing capability as ∆f increases. Thus, the proposed scheme can significantly
mitigate the frequency fluctuation as ∆f increases.

As shown in Figure 4b, it can be concluded that KUF and KOF depend on ωr and ∆f ; they are set
to be large if the kinetic energy and/or magnitude of ∆f is large.
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3. Model System

Figure 5 shows the IEEE 14-bus system used to validate the proposed power-smoothing scheme
using an EMTP-RV simulator. The system includes five synchronous generators, static loads, and
two aggregated DFIG-based WPPs. The parameters of the synchronous generators [20] and the load
consumptions of the buses are shown in Figure 5. The droop gains of all of the synchronous generators
are set to 5%, which is the typical droop setting of the synchronous generators used in Korea’s power
system. To simulate an electric power grid that has a low ramping capability, all of the generators are
assumed to be steam turbines; the steam turbine governor model is the IEEEG1 [21]. The total static
load is set to approximately 600 MW and 57.4 MVAr.
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4. Case Studies

The system frequency of an electric power grid with a high penetration level of wind fluctuates
because of the wind speed variation. This section investigates the performance of the power-smoothing
schemes under the scenarios by continuously varying the wind speeds for the wind power penetration
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levels set to 16.7% and 33.3%, which indicate the installed capacity of each WPP of 50 MW and 100 MW,
respectively. In this paper, the wind power penetration level is defined as the installed capacity of a
WPP divided by the load [22].

Figure 6 shows the input wind speeds of two WPPs, which have the same pattern with different
average wind speeds: 7 m/s for WPP2 and 11 m/s for WPP1. The performance of the proposed scheme
is compared to that of the conventional scheme in [12] with the fixed gain of 25 and to a case that
performs MPPT operation. In all schemes, if ωr reaches ωmax, a pitch-angle controller is activated.
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4.1. Case 1: Wind Power Penetration Level of 16.7%

This subsection investigates the performance of the power-smoothing schemes under the varying
wind speeds in the wind power penetration level of 16.7%. As shown in Figure 7a, in the proposed
scheme, the frequency fluctuation is significantly mitigated compared to the conventional scheme
because the proposed scheme significantly smooths the total output power of the WPPs by modifying
the control gain with ωr and ∆f (see Figure 7b).

As shown in Table 1, the root mean square (RMS) values of ∆f in the conventional and proposed
schemes are 84% and 47% of that of MPPT operation, respectively. In addition, the maximum frequency
deviations (∆f max) in the conventional and proposed schemes are 73% and 20% of that of MPPT
operation, respectively; in contrast, the minimum frequency deviations (∆f min) in the conventional
and proposed schemes are 88% and 62% of that of MPPT operation, respectively. This means that
the proposed scheme provides better performance in regulating the frequency deviation in the
over-frequency region than in the under-frequency region. This is because KOF in (17) is larger
than KUF.

Table 1. Results for Case 1. RMS: root mean square.

Parameter MPPT Operation Conventional Scheme Proposed Scheme

RMS {∆f } (Hz) 0.051 0.043 0.024
∆f max (Hz) 0.108 0.079 0.022
∆f min (Hz) −0.121 −0.106 −0.075

Operating Range of ωr for WPP1 (p.u.) 0.205 0.218 0.308
Operating Range of ωr for WPP2 (p.u.) 0.237 0.267 0.297

As shown in Figure 7c,d, the proposed scheme shows better performance as the wind speed
increases. This is because K (ωr, ∆f ) of WPP1 (high wind speed) is larger than that in WPP2 (low wind
speed) (see Figure 7i,j); subsequently, the ∆P of WPP1 is significantly larger than that of WPP2.

In the proposed scheme, ωr varies more widely than it does in the conventional scheme because
K (ωr, ∆f ) in the proposed scheme is significantly larger than that in the conventional scheme; this
means that the proposed scheme utilizes the operating range of ωr more than the conventional scheme.
In addition, in the proposed scheme, the operating range of ωr for WPP1 is larger than that of WPP2.
This means that ωr varies more widely as the wind speed increases in the proposed scheme.

In all schemes, the pitch-angle controller is activated for WPP1 when ωr reaches ωmax

(see Figure 7m); however, the pitch angle of the proposed scheme is larger than that in the conventional
scheme because of the larger gain.
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Figure 7. Results for Case 1. (a) Frequency; (b) Total output power of two WPPs; (c) Output power
of WPP1; (d) Output power of WPP2; (e) PMPPT of WPP1; (f) PMPPT of WPP2; (g) ∆P of WPP1; (h) ∆P
of WPP2; (i) K (ωr, ∆f ) of WPP1; (j) K (ωr, ∆f ) of WPP2; (k) Rotor speed of WPP1; (l) Rotor speed of
WPP2; (m) Pitch angle of WPP1.

4.2. Case 2: Wind Power Penetration Level of 33.3%

As the wind power penetration level increases, the system frequency fluctuation is more severe
when the wind speed is continuously varying. Thus, this subsection investigates the performance of
the power-smoothing schemes for a higher wind power penetration level.

Figure 8 shows the results for Case 2, which is identical to Case 1 except for a wind power
penetration level of 33.3%. As expected, in this case, the frequency fluctuation is more severe than
it is in Case 1. As in Case 1, the frequency fluctuation is significantly mitigated compared to the
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conventional scheme (see Figure 8a). In addition, in this case the proposed scheme can smooth the
frequency fluctuation more than it does in Case 1; compare Figure 8a with Figure 7a.

As in Case 1, the proposed scheme provides better performance to smoothing the frequency
fluctuation in the over-frequency region than in the under-frequency region. The RMS values of ∆f
in the conventional and proposed schemes are 78% and 38% of that of MPPT operation, respectively
(see Table 2). The values of ∆f max in the conventional and proposed schemes are 65% and 13% of that
of MPPT operation, respectively; and the values of ∆f min in the conventional and proposed schemes
are 81% and 48% of that of MPPT operation, respectively. Further, the proposed scheme provides a
better contribution to lessening the frequency fluctuation as the wind speed increases.

Table 2. Results for Case 2.

Parameter MPPT Operation Conventional Scheme Proposed Scheme

RMS {∆f } (Hz) 0.098 0.076 0.037
∆f max (Hz) 0.196 0.128 0.026
∆f min (Hz) −0.235 −0.191 −0.113

Operating Range of ωr for WPP1 (p.u.) 0.209 0.235 0.385
Operating Range of ωr for WPP2 (p.u.) 0.245 0.285 0.320

In this case, at approximately 15 s, 45 s, and 160 s, ∆P of the conventional scheme is temporarily
set to zero because ωr of WPP2 reaches ωmin. This is because ∆P is larger than that in Case 1 because
of the larger frequency deviation (see Figure 8h).

As in Case 1, in the proposed scheme ωr varies more widely than it does in the conventional
scheme because of the large gain; the pitch-angle controller is activated for WPP1 if ωr reaches ωmax.
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5. Conclusions 

This paper proposes a power-smoothing scheme of a DFIG relying on the frequency deviation 

loop, the gain of which is modified depending on the rotor speed and frequency deviation. To 

enhance the power-smoothing capability of a DFIG while preventing over-deceleration of the rotor 
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frequency region. Further, the gain increases if the frequency deviation increases. 

Simulation results clearly demonstrate that the proposed scheme significantly smooths the 

output power fluctuation of a DFIG by adjusting the control gain of the frequency deviation loop, 

thereby mitigating the frequency fluctuation caused by varying wind speeds. In addition, the 

proposed scheme provides better performance when the wind speed increases and/or wind power 

penetration level is high. 

The advantages of the proposed scheme are that it can significantly mitigate the DFIG’s output 

power fluctuation by releasing or absorbing the kinetic energy under continuously varying wind 

speeds; therefore, it can regulate the frequency deviation into a narrow range in an electric power 

grid that has a high level of wind penetration. Thus, it will help reduce the size of the ESS required 

to regulate the frequency fluctuation caused by varying wind speeds. 

Acknowledgments: This work was supported in part by the National Research Foundation of Korea (NRF) grant 

funded by the Korea government (MSIP) (No. 2010-0028509) and in part by the Energy Efficiency & Resources 

of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea 

government Ministry of Trade, Industry & Energy (2012T100201551). The National Renewable Energy 

Laboratory’s (NREL’s) contribution to this work was supported by the U.S. Department of Energy under 

Contract no. DE-AC36-08-GO28308 with NREL. Funding provided by DOE Wind Energies Technologies Office. 

Author Contributions: All the authors contributed to publish this paper. Hyewon Lee, Min Hwang, and Yong 

Cheol Kang mainly proposed the scheme of this paper. Hyewon Lee and Min Hwang carried out the simulation 

tests; Eduard Muljadi, Poul Sørensen, and Yong Cheol Kang revised the original scheme. Writing was done by 

Hyewon Lee, Min Hwang, Eduard Muljadi, Poul Sørensen, and Yong Cheol Kang. Final review was also done 

by Hyewon Lee, Min Hwang, Eduard Muljadi, Poul Sørensen, and Yong Cheol Kang. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 8. Results for Case 2. (a) Frequency; (b) Total output power of two WPPs; (c) Output power
of WPP1; (d) Output power of WPP2; (e) PMPPT of WPP1; (f) PMPPT of WPP2; (g) ∆P of WPP1; (h) ∆P
of WPP2; (i) K (ωr, ∆f ) of WPP1; (j) K (ωr, ∆f ) of WPP2; (k) Rotor speed of WPP1; (l) Rotor speed of
WPP2; (m) Pitch angle of WPP1.

5. Conclusions

This paper proposes a power-smoothing scheme of a DFIG relying on the frequency deviation
loop, the gain of which is modified depending on the rotor speed and frequency deviation. To enhance
the power-smoothing capability of a DFIG while preventing over-deceleration of the rotor speed, the
control gain in the over-frequency region is set to be higher than that in the under-frequency region.
Further, the gain increases if the frequency deviation increases.

Simulation results clearly demonstrate that the proposed scheme significantly smooths the output
power fluctuation of a DFIG by adjusting the control gain of the frequency deviation loop, thereby
mitigating the frequency fluctuation caused by varying wind speeds. In addition, the proposed scheme
provides better performance when the wind speed increases and/or wind power penetration level
is high.

The advantages of the proposed scheme are that it can significantly mitigate the DFIG’s output
power fluctuation by releasing or absorbing the kinetic energy under continuously varying wind
speeds; therefore, it can regulate the frequency deviation into a narrow range in an electric power
grid that has a high level of wind penetration. Thus, it will help reduce the size of the ESS required to
regulate the frequency fluctuation caused by varying wind speeds.
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