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Abstract: In this work we show how a simple model based on chemical signaling can reduce the
exploration times in urban environments. The problem is relevant for smart city navigation where
electric vehicles try to find recharging stations with unknown locations. To this end we have adapted
the classical ant foraging swarm algorithm to urban morphologies. A perturbed Markov chain
model is shown to qualitatively reproduce the observed behaviour. This consists of perturbing
the lattice random walk with a set of perturbing sources. As the number of sources increases the
exploration times decrease consistently with the swarm algorithm. This model provides a better
understanding of underlying process dynamics. An experimental campaign with real prototypes
provided experimental validation of our models. This enables us to extrapolate conclusions to
optimize electric vehicle routing in real city topologies.

Keywords: electric vehicle routing; charging stations; bio-inspired algorithm; stochastic process;
smart cities

1. Introduction

A major challenge in Smart Cities (SC) [1] is the dynamic optimization of routes under different
criteria. The objective is to manage a flood of electrical vehicles (EV) efficiently and in a sustainable
way. This also implies finding the correct position of charging stations and the optimization of routes
to recharge the electric vehicles.

The problem can be solved using different strategies. A popular method found in the literature is
the vehicle routing problem (VRP) [2]. This problem was introduced by Dantzig and Ramser in 1959.
There, the authors found a mathematical solution to the problem of gas distribution among different gas
stations [3]. However, the limited battery capacities of EVs required a new approach. In 2011 Conrad
and Figliozzi presented a new variant; the problem of vehicle routing recharge (RVRP), which includes
the management of charging and discharging times. Combining the problem with a multi-agent
architecture is shown to provide good results [4]. In [5,6] the authors present different types of hybrid
heuristics to solve the electric vehicle-routing problem with time windows and charging stations.
However, none of these works considers the problem of finding a charging station in case of partial
information. In this setting, we can find a damaged recharge station, a new recharge station which
has not been added to the system, or a station which uses a different type of plug, that is not suitable
for the type of the vehicle. Some problems related to the environment can also occur, such as traffic
congestion or sudden interruptions on the road. A solution to this problem can be found in [7]. In these
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cases, we cannot rely on this information and we have to explore the environment in order to find new
recharge stations.

The main difficulty in this case is to avoid traveling over the same paths. As we show in this paper
this problem can be solved by implementing a mechanism that leaves bread crumbs (e.g., messages)
on the path. This behavior has been termed as implicit/indirect communication in previous works.
Implicit communication—also known as stigmergy—is based on the context and its most typical
applications can be found in [8–11]. In this regard, the pioneer work of Pierre-Paul Grasse in termite
colonies revealed the communication mechanisms of these insects by means of chemical signaling
and in particular by pheromones [12]. These observations resulted in an ant-based exploration
algorithm [13]. Here, each ant leaves a pheromone trail in its foraging activity. This trail persists for
some time and it is followed by other ants in the search of food resources.

Also, the pheromone approach has been widely adapted to several artificial intelligence problems
in its converse flavor (i.e., anti-pheromones) [14–16]. In particular, some researchers have used
anti-pheromone (APH) proxies to optimize robot exploration [17]. The main advantage is that each
unit accesses a different region fostering the diversity of the solutions by means of indirect and
decentralized communication.

On the other hand, the efficient exploration and target localization in urban environments is
gaining more and more attention [18,19]. However, bio-inspired algorithms tailored to optimize robot
exploration and dynamic route generation in SC are somewhat separate research fields.

Moreover, RVRP solutions only work if the locations of the charging stations is known beforehand.
Therefore, it is necessary to come up with a new solution for cases where the position of the charging
stations cannot be known or if it is inaccurate. This solution should also enable us to find target
locations in the shortest time possible. In this work, we propose an APH-based strategy aimed at
optimizing these routing times in presence of uncertainty. A simple Markov model will also provide
insight into the local rules that produce the observed behaviour at a large time scale.

This paper is organized as follows. In Section 2.1 we present the APH-based algorithm. We explore
numerically this strategy in a synthetic lattice in Section 2.2 and we validate the approach through
an experiment campaign with prototypes in Section 2.3. In Section 2.4, we introduce the perturbed
Markov chain model. Finally, in Section 2.5 we apply the algorithm to real urban environments.
The main outcomes from this study are summarized in Section 3 and we conclude in Section 4.

2. Materials and Methods

To test the feasibility of the presented algorithm we will use a setting in which an EV has to
find a recharge station. The EV has a map with partial information, with which it can get to know
the topology of the environment but not the position of the recharge station. The map is static;
the configuration of the routes and the positions of the recharge stations cannot change during the
experiment. Also, we do not consider the traffic jam problem or other environment constraints.

The use of EVs makes it necessary to consider the capacity of the batteries. Usually, this aspect
is modeled with the discharge rate of the battery or the maximum time limit. In our case, we do
not consider this aspect explicitly, however, we do use a secondary parameter, called “arrival time”.
The goal is to avoid the battery form discharging completely, we can deduce that in this problem it is
necessary to minimize the time it takes to find a recharge station. In this way, we only need to use one
parameter to model the problem.

In order to validate our approach the first step is to simulate the APH algorithm in a grid.
The simulation consists of an EV traveling through a square lattice which tries to find a charging
station in the shortest time possible. This type of map adds a restriction in which the EVs can only
circulate through the grid lines and not in whichever direction. This corresponds to the reality,
in which an EV can only circulate on the roads. Here we conduct a statistical analysis of the parameters
involved in order to reduce the time of finding the charging station. In the next phase we test the
results obtained in the simulation in a real EV. The experimental set-up consists of a robot prototype



Energies 2017, 10, 929 3 of 11

designed in the electronics laboratory of the University of Salamanca navigating over a printed poster
grid. We measured the empirical travel times to the target and then we compared the results with
our simulations.

From the analysis of both the simulation and the experiment datasets we built a theoretical model
that enables us to explain the observed behavior. This is a modification of a lattice Markov Chain
process where a subset of perturbing sources creates an asymmetry in the random walk transition
probabilities as we discuss below.

Finally, we conducted numerical simulations using the bicycle paths of four Spanish cities;
Gijon, Castellon, Barcelona and Madrid. We verify that the large scale behavior is the same as in
the synthetic environment used in the laboratory experiments. In the following we provide a more
detailed description of our approach.

2.1. An Anti-Pheromone Navigation Based Algorithm

The navigation algorithm we present in this work (pseudocode in Algorithm 1) is an adaptation
of the classical two-dimensional APH gradient [18] to a 1D gridded world. This world consists
of a set of parallel and perpendicular lines arranged in a way that mimics urban topologies with
a Manhattan distance.

Algorithm 1 Anti-pheromone navigation algorithm.

1: procedure APH
2: while current_location 6= target do
3: if current_location = intersection then
4: [paths]← getPaths( )
5: angle← getRandomPath([paths])
6: turn ( angle )
7: go on
8: else if current_location = dead_end then
9: turn ( 180◦ )

10: else
11: drop anti-pheromone
12: go on

Our electric vehicle is designed to mimic the behaviour of an insect. The EV moves along a path
until it reaches an intersection. At every step it leaves a unit of anti-pheromone. At the intersection
the EV decides which path must be followed. The selected path is that with the lowest amount
of anti-pheromones (see getPaths() in Algorithm 1). In cases where two or more paths have the
same number of anti-pheromones, one of the paths is chosen at random (see getRandomPath() in
Algorithm 1). This way we use a greedy strategy for every local routing decision. The execution of the
algorithm finishes when the vehicle finds a recharge station, this way avoiding the exploration of the
entire environment.

This algorithm enables us to explore the map in a pseudorandomized way. Whenever possible,
traveling over the same path is avoided. It is also avoided that the EV gets trapped in a local minimum;
as the number of anti-pheromones increases, repulsion also increases and the tendency is to dive into
unexplored regions. We considered a local minimum as a loop in the map.

This approach can be easily extended for the case of multiple electric vehicles. In this case, each EV
would explore a different area of the map and would prevent the other vehicles from exploring these
areas. Once a position is found, this information is then broadcast to the rest of the vehicles. It can
also be adapted to a random number of available recharge stations from where a target subset can
be chosen.
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In the following section we apply this strategy to different scenarios.

2.2. Numerical Simulations with a Synthetic Grid Map

Our tests consists of an N × N gridded world. In this setting we define the following parameters:

1. n: number of EVs
2. R = Npath/N2: proportion of path units (Npath) with respect to the total number of cells.

This provides a measure for the spatial complexity of the map. In this case we obtained
a complexity of RSynth = 0.1974.

3. Φ: pheromone evaporation time (i.e., number of time units a pheromone takes to evaporate).
At every time step the EVs leave a pheromone unit.

For the simulation we ran a parameter sweep with N = 83, n = 1 and Φ ∈ [0, 180] with steps = 10.
Every combination of parameters has been repeated 500 times for the statistical analysis. The target
and initial position are located the closest possible to the center of the map and to the southwest corner
respectively. At each run we obtained the arrival times to the target t.

2.3. Experiment with Robot Prototypes

In this phase we conduct empirical experiments with a real EV. To this end we built real robot
prototypes to monitor the APH navigation strategy in the laboratory. The reason for using real robots
is that these prototypes—as electric vehicles—are subjected to incidents which can be extrapolated
to the incidents that are commonly found in real EV scenarios. The use of robots entails an intrinsic
need to handle some errors, such as failures in communications, running off track, acceleration and
turning time errors, loss of power when the battery levels drop, etc. The errors that we notice in small
vehicles can be extrapolated to failures in real EVs as can be seen in Table 1. In this work we assume
that the difference between the errors made by the robot and those made by EVs is acceptable in the
experimentation phase in a laboratory.

Table 1. A tentative mapping between the robot and the real electrical vehicles (EVs) domain for the
most common incidents found in the laboratory tests.

Robots Electric Vehicles

Accelerations Traffic signals
Turn delay traffic signals
Decision time Traffic signals
Power loss Traffic jam
Traction loss Traffic jam
Battery discharge Battery discharge
Incorrect detection of intersections Roadblocks
Run off track No GPS signal
Location error No GPS signal
Internet connection lost Internet connection lost
Message loss Message loss
Decision time Decision time

In particular, position measurement errors and communication inaccuracies found in real
environments also occur in the prototypes. Moreover, the lab tests allow us to explore the robustness
of our approach, which is a major concern in real robotic implementations.

The map consist of straight black lines printed on a 2 m × 2 m white surface. The map was scaled
so that each 2 cm × 2 cm corresponds to a cell unit in the simulated environment. The robot uses the
Message Queue Telemetry Transport (MQTT) protocol for the communication between the robot and
the software.

During the exploration the robot sends an MQTT message through Wi-Fi, for every 2 cm traveled.
The robot stops when it reaches an intersection. There, it sends another MQTT message and waits
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for a response to determine its next move. An agent-based software receives all these messages and
updates the pheromone information. Then, the software counts the current APH level of all the
possible paths and it choses the path with the lowest APH level. Finally it sends back an MQTT
message to the robot.

The prototype -Pyxis- has been constructed and tested by the electronics section of the BISITE
research group at the University of Salamanca (Figure 1). An Arduino UNO board is used as
a microcontroller. The motors’ control is enhanced through a driver based on the chip L298n.
Wi-Fi communication is enabled through an ESP8266 board. The robot holds a 2 cell Lithium 800 mAh
based battery.

(a)

(b)

(c)

Figure 1. Robot prototype design: Electronic components and design of the robot connections (a);
Details of the Pyxis Robot (b,c).

The sensing system of the robot consists of the following three parts:

1. An I2C line follower array; a long board of eight infrared sensors configured to be read as
digital bits.

2. Two ultrasound sensors which help to avoid obstacles (not used in this experiment).
3. Motor encoders for measuring the distance travelled.

To calibrate the simulation with real vehicles, each time tick corresponds to the electric vehicles’
movement over one cell. This overcomes the measurement inaccuracies due to the intrinsic
accelerations of the electric vehicle.

Since every experimental point was very expensive in time we limited our tests to Φ = 60 and
Φ = 120. Each test has been repeated 15 times and both the target and starting positions are the same
as in phase 2. During the experiment, we also captured snapshots at every 200 time units (Figure 2).
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(a) (b) (c)

(d) (e) (f)

Figure 2. Robot experiment with Φ = 120. Snapshots captured every 200 steps. The orange traces
correspond to the anti-pheromone level. (a) t = 0 (initial position); (b) t = 200; (c) t = 400; (d) t = 600;
(e) t = 800; (f) t = 1019 (final position, the robot is on target).

2.4. Perturbed Markov Lattice Model

The anti-pheromone traces break the spatial symmetry of the lattice at different times. Hence,
the signaled spots act as repelling sources modifying the exploration trends over time. This could
represent real-time open data messages warning for charging point unavailability or other reasons
in urban environments. In this section we propose a simplified mathematical model aimed at
understanding this effect. The idea is to perturb a random walk on the lattice with a field ranging
over different strength values. The problem can be tackled trough a Markov chain on a bounded
lattice. The state space is the simplex: Ω = {n ≡ (i, j) | i, j ≤ m} ⊂ N×N. The labeling of states is
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simplified through the usual back and forth transformations between the grid coordinates (i, j) and its
corresponding integer index n.

Every state n has k(n) neighbours that depend on whether n is an interior (4), border (3),
or corner (2) point. We introduce a subset S ⊂ Ω of perturbation sources. Each source s creates
a perturbation in its neighbourhood Us by modifying the local interactions of each neighbour q ∈ Us

with its neighbours Uq. The idea is that the interaction between q and each of its neighbours is different
depending on whether the target neighbour is a source or not (see Figure 3).

Figure 3. Schematic for the perturbed random walk on a lattice. Here a random walk starting at the
bottom left corner (green dot) will wander through the lattice until the target (red dot at the center)
is reached. At some cells s, the transition probabilities of the cell neighbors are perturbed (orange
dots array).

Also, both types of interaction are balanced so that they cancel out locally. This way we induce
an asymmetry in the problem. The transition matrix elements are defined as follows:

Pnn′ = P0
nn′ + σ×Qnn′ . (1)

Here P0
nn′ = IUn(n

′)/k(n) is the homogeneous random walk term and Qnn′ represents the
asymmetric perturbation with strength σ. IA(x) is the indicator function, Un is the neighborhood—von
Neumann—of state n and δij is the Kronecker delta function. Based on the stochasticity of Pnn′ and
P0

nn′ the constraint for Qnn′ is:

∑
n′∈Ω

Qnn′ = 0, ∀n ∈ Ω. (2)

From this we propose the following interaction field:

Qnn′ = IUn∩Us̄(n
′)(

1
ρ(n) ∑

s∈S∩Un

δsn′ −
1

k(n)− ρ(n) ∏
s∈S∩Un

(1− δsn′)). (3)

The factor IUn(n
′) in both terms accounts for the local interaction in the neighbour states. In Qnn′

the extra factor IUs̄(n
′), where Us̄ ≡

⋃
s∈S Us, reduces the interactions to those states reached by the

perturbation sources.
If we denote by ρ(n) the number of sources in Un, each source s contributes for the interaction

with the same amount 1/ρ(n). For the non-source states in Un the balancing term contributes with
a ratio of 1/(k(n)− ρ(n)).

Despite the simplicity of this model it is still able to capture the dynamics of the APH based
navigation. In Figure 4 we compare the APH simulations with the perturbed Markov model in
a 9 × 9 grid for different perturbation strengths. The times have been normalized between 0 and 1
to make both analyses comparable. Each x value corresponds to the number of sources in the upper
part of the grid (starting from the left top corner) for the Markovian models. For the APH simulation,
each x step corresponds to an increment of the APH persistence in 10 units. Each data point is the
mean of the time arrivals obtained from 1000 simulations, each run consisting on 3000 step transitions
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in the lattice. The arrival times are computed by filtering the target states from the Markov chain
generated with the transition matrix of Equation (1).

Figure 4. Normalized Arrival times for anti-pheromone (APH) and perturbed Markov model with
different σ strength.

From Figure 4 it is noticed that at least statistically the APH effect can be qualitatively reproduced
by means of perturbed Markov model. On the other hand, our current model is unable to produce
a better agreement since ranging over different σ values does not improve the fit. In a future work we
will elaborate more on the model by allowing the transition matrix to carry a non-homogeneous term
to better fit the APH dynamics.

2.5. Experiments with Urban Topologies

In the last phase, we used real EV maps from the four Spanish cities commented above (see Figure 5).

(a) (b)

(c) (d)

Figure 5. Topologies and spatial complexities for: (a) Gijón R = 0.0384; (b) Castellón R = 0.0565;
(c) Barcelona R = 0.0573; and (d) Madrid R = 0.0820.
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The reason for choosing these four cities is because they have a very different morphology.
As stressed, every topology is parametrized by its spatial complexity R. The resulting complexities
for Gijón, Castellón, Barcelona and Madrid are R = 0.0384, R = 0.0565, R = 0.0573 and
R = 0.0820 respectively.

As in the synthetic grid experiment, the positions of the target and start are the closest possible to
the center of the map and the southwest corner.

The simulation was carried out by using the same parameters of the synthetic map. For each
topology—now with N = 200 size—, we ran a parameter sweep with Φ ∈ [0, 180] and steps = 10.
As before, each parameter combination was repeated 500 times.

3. Results and Discussion

In this work we proposed an algorithm to optimise the arrival times to a target with unknown
location for different topologies. The experiment was repeated 500 times for the simulations and
15 times for real experiments in order to derive statistical measures. Then, for each anti-pheromone
value Φ, we average the arrival times. Also, a scale factor was applied (Ngrid/Ncities)

2 to match the
different dimensions of the maps. In Figure 6 we show the averaged times for different values of Φ.
Here we normalized the values with the maximum and minimum arrival times for all the topologies.
The black line represents the results of the numerical simulation on the grid. The two circles represent
the two experiments carried out with the Pyxis robot. Finally, the color lines correspond to the cities
of: Gijón, Castellón, Barcelona and Madrid. In Figure 6b the plots have been normalized with the
maximum and minimum times from each topology.

(a) (b)

Figure 6. Normalized arrival time means for different topologies and different Φ values. (a) Times
are first scaled with the city to grid area ratio and then normalized with the maximum and minimum
values obtained from all topologies; (b) times are normalized with the maximum and minimum times
from each topology

It is noticed that the general trend is that arrival times decrease as anti-pheromone evaporation Φ
increases. After the transient behavior there is a point where the times stabilize. Approximately at
φ = 120. The existence of an asymptotic value of Φ allows to derive relevant bounds for the amount of
information that an EV will need to optimize its exploration.

We validated the simulation with an experiment using a robot prototype. The two experiments
reproduce the pattern obtained in the simulation. Hence, we can conclude that the APH algorithm for
real electric vehicles performs consistently with the simulated environment that we have established.

Since time is scaled according to the map area, we can compare the times by their complexities.
We notice that, as expected, increasing the map complexity increases arrival times too. The maps of
Gijón (R = 0.0384), Castellón (R = 0.0565) and Barcelona (R = 0.0573) have a similar complexity and
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hence their arrival times are comparable (Figure 6). On the other hand, the Madrid map has a larger
complexity R = 0.0820 and the arrival times are larger than those corresponding to the former cities.
Finally, the arrival times obtained from the synthetic map (R = 0.1974) are the largest, since in this
case R is approximately three times larger than the averaged spatial complexity of the cities.

The proposed stochastic model allows to explore the local rules producing the macro-behaviour
obtained with the APH algorithm. In particular we notice that it is possible to have a deterministic
behaviour at large time scale despite the fact that local rules are probabilistic. As stresses, in a future
work we will improve our Markovian model with a non-homogeneous component to better reproduce
the observed pattern (a time-dependent component).

4. Conclusions

Energy consumption is a major concern for effective electric vehicle deployment in smart cities.
In the case that an EV runs out of battery, it must be towed to the closest charging station. Therefore
avoiding unnecessary cycles in an EV routing can make a substantial difference for the whole SC
performance. This is particularly helpful if the charging station location is not known beforehand.

To solve this problem we have adapted a classical anti-pheromone ant foraging algorithm to
the problem of finding a target with different topologies. We have validated our approach with both
numerical simulations and real laboratory tests.

Firstly, we simulated the algorithm on a grid and then we validated the observed behavior in a real
environment. In both cases the EV arrival times increase with the anti-pheromone evaporation times.

To gain insight into the underlying dynamics of the process we proposed a Markovian which
is able to capture the main pattern observed. The number of repelling sources can be understood as
a proxy of the APH level. On the other hand, the strength of the local perturbation of the transition
probabilities seems to be irrelevant for the arrival time reduction. However, in a future work we will
explore the possibilities of this model by considering non-homogeneous terms.

Lastly, we analysed the case of four Spanish cities; Gijón, Castellón, Barcelona and Madrid.
The numerical simulations allowed us to conclude that the behavior in this case is similar to
that obtained in the previous experiments and qualitatively comparable to the results of the
theoretical model.

The approach presented in this work can be valuable to solve the problem of finding charging
stations with unknown location. As a first step we considered a hypothetical situation in which there
is only one charging point. However, in a future work we will tackle the problem of various charging
stations distributed over the map. This will render the current approach into a more realistic setting.

Another strategy to improve this algorithm is to enable swarm behavior by Using a swarm of
electric vehicles. In this case regardless of the number of charging points the exploration elapsed times
could be significantly reduced. In a future work we will also explore this aggregated behaviour.

Finally, the modeling of potential conflicts at intersections is a logical step in this development.
In a future project we will consider this problem through the same multi-agent approach that we have
used in this work.
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