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Abstract: Magnesium-ion conducting gel polymer electrolytes (GPEs) with different contents of
nano-sized MgO have been prepared and investigated by various electrical and electrochemical
techniques. The Mg2+ ion conduction in GPEs was confirmed from cyclic voltammetry and impedance
analysis. It was found that doping appropriate nano-sized MgO in the GPE can induce significant
improvements in both the electrochemical and the mechanical properties of GPEs. The composite
GPE with 7% MgO shows a high ionic conductivity of 4.6 × 10−3 S/cm with electrochemical stability
up to 4.7 V versus Mg2+/Mg at room temperature. Furthermore, it is free-standing and flexible with
high tensile strength (9.7 ± 0.1 MPa) and elongation at break (91.7 ± 0.2%), further ensuring their
potential applications as GPEs for rechargeable Mg batteries.

Keywords: rechargeable magnesium batteries; gel polymer electrolyte (GPE); Ionic conductivity;
electrochemical stability

1. Introduction

With the increasing demand for energy, people began to pursue advanced energy storage
devices [1–4]. Considering the negligible danger and enhanced security, studies on rechargeable
magnesium batteries are expected to have ample promise for development in the future [2–6]. However,
rechargeable Mg batteries suffer from several serious limitations, e.g., metallic Mg/electrolyte
incompatibility and lack of suitable Mg2+ ion-conducting electrolytes. It has been reported that
the irreversible deposition/dissolution of the Mg electrode in its simple salts/non-aqueous aprotic
solvents is caused by the formation of a dense passivation layer on the Mg surface, resulting from its
reaction with the electrolyte [5–10]. So more and more researchers focus on developing solid-state Mg2+

ion-conducting electrolytes to achieve rechargeability [11–13]. Gel polymer electrolyte (GPE), which is
an important part component of solid-state Mg-batteries, is an excellent substitute for liquid electrolyte.
It has been widely studied due toits chemical and mechanical stability which makes it suitable for
application in advanced energy storage devices, e.g., batteries, supercapacitors, and so on [14–16].
There are few reports on the Mg2+ ion-conducting GPEs [17–19].

For a good GPE, both the ionic conductivity and stability (electrochemical and mechanical stability)
are important. There are many methods for preparing GPE to improve the ionic conductivity [18–23].
To prepare superior GPE, electrospinning technique is a particular and useful way [24–26]. In addition,
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the matrices are also critical for GPE. We have studied the performance of thermoplastic polyurethane
(TPU)/poly (vinylidene fluoride) (PVdF) based GPEs in lithium batteries [22,26]. TPU with low
crystallinity possesses high tensile strength and elasticity. With good mechanical and high anodic
stability, PVdF has been adopted as a good matrix for PEs in lithium batteries. Due to the advantages
of TPU/PVdF matrixes, the GPEs show excellent electrochemical and mechanical properties in
lithium batteries.

In this paper, we choose TPU and PVdF as matrices to study the effect of nano-sized MgO
in magnesium-ion conducting GPEs. The GPEs based on TPU/PVdF with different amounts of
nano-sized MgO have been prepared by electrospinning technique. The properties of the GPEs are
investigated by stress–strain test, impedance analysis, cyclic voltammetry, and so on. It is found that
doping appropriate contents of nano-sized MgO into the GPEs can improve their properties efficiently.
The composite GPE with 7% MgO shows the best comprehensive performance.

2. Results and Discussion

2.1. Morphology/Structure and Differential Scanning Calorimeter Analysis

The virgin morphology of the membranes is shown in Figure 1. A porous structure with
interconnected multifibrous layers are found in the samples. The average fiber diameter (AFD)
of the membrane without MgO is about ~1.51 µm. As shown in Figure 1b–d, after adding nano-MgO,
the surface of the membrane becomes less smooth and the AFD of the membrane decrease. When the
content of MgO is 7%, the AFD of the membrane is only about 0.61 µm. Due to the homogeneous
dispersibility of nano-MgO, the morphology of the membrane with MgO (<7%) seems to be the same as
that of pristine membrane. With the content of MgO increasing, the surface of the membrane becomes
coarser due to a lower dispersion of the MgO nano-particles (Figures S1–S3). Though the membrane
with 15% MgO (Figure S3) has a lowest AFD (~0.32 µm), the network of interlaid and tubular structure
is in disarray. Without the finer structure, the electrolyte uptake will be lower [22,26]. This predicts the
membrane with MgO 7% will have a higher ionic conductivity.

Energies 2017, 10, 1215 2 of 10 

 

conductivity [18–23]. To prepare superior GPE, electrospinning technique is a particular and useful 
way [24–26]. In addition, the matrices are also critical for GPE. We have studied the performance of 
thermoplastic polyurethane (TPU)/poly (vinylidene fluoride) (PVdF) based GPEs in lithium batteries 
[22,26]. TPU with low crystallinity possesses high tensile strength and elasticity. With good 
mechanical and high anodic stability, PVdF has been adopted as a good matrix for PEs in lithium 
batteries. Due to the advantages of TPU/PVdF matrixes, the GPEs show excellent electrochemical 
and mechanical properties in lithium batteries. 

In this paper, we choose TPU and PVdF as matrices to study the effect of nano-sized MgO in 
magnesium-ion conducting GPEs. The GPEs based on TPU/PVdF with different amounts of 
nano-sized MgO have been prepared by electrospinning technique. The properties of the GPEs are 
investigated by stress–strain test, impedance analysis, cyclic voltammetry, and so on. It is found that 
doping appropriate contents of nano-sized MgO into the GPEs can improve their properties 
efficiently. The composite GPE with 7% MgO shows the best comprehensive performance. 

2. Results and Discussion 

2.1. Morphology/Structure and Differential Scanning Calorimeter Analysis 

The virgin morphology of the membranes is shown in Figure 1. A porous structure with 
interconnected multifibrous layers are found in the samples. The average fiber diameter (AFD) of the 
membrane without MgO is about ~1.51 μm. As shown in Figure 1b–d, after adding nano-MgO, the 
surface of the membrane becomes less smooth and the AFD of the membrane decrease. When the 
content of MgO is 7%, the AFD of the membrane is only about 0.61 μm. Due to the homogeneous 
dispersibility of nano-MgO, the morphology of the membrane with MgO (<7%) seems to be the same 
as that of pristine membrane. With the content of MgO increasing, the surface of the membrane 
becomes coarser due to a lower dispersion of the MgO nano-particles (Figures S1–S3). Though the 
membrane with 15% MgO (Figure S3) has a lowest AFD (~0.32 μm), the network of interlaid and 
tubular structure is in disarray. Without the finer structure, the electrolyte uptake will be lower 
[22,26]. This predicts the membrane with MgO 7% will have a higher ionic conductivity. 

 
Figure 1. The scanning electronic microscopy (SEM) images of the membranes with nano-sized 
MgO: (a) 0 wt %; (b) 1 wt %; (c) 3 wt %; and (d) 7 wt %. Figure 1. The scanning electronic microscopy (SEM) images of the membranes with nano-sized MgO:

(a) 0 wt %; (b) 1 wt %; (c) 3 wt %; and (d) 7 wt %.

The Fourier transform infrared spectrometer (FTIR) spectra of the membranes with and without
MgO are shown in Figure 2. The characteristic peaks which belong to TPU ( 3308 cm−1 and 1727 cm−1)
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and the peaks PVdF (1399 cm−1, 1073 cm−1 and 877 cm−1) are present clearly in the pristine eletrospun
membrane (Figure 2a). When the membranes turn to GPEs (Figure 2b–h), the vibration peaks of
amino-group (–NH) around 3600–3200 cm−1 and 1750–1650 cm−1 shift to higher band due to the
formation of the more new freedom –N–H forms and the reduction of the hydrogen bonds within
the hard domain. Moreover, with the formation of the interactions between Mg2+ and ether groups,
the broad peak at around 1250–1110 cm−1 increases. With the addition of nano-MgO, the intensity
of the peaks for ClO4− (650–600 cm−1) become strong and wider. The change of the peak intensity
reveals more active ClO4− dissociates from Mg(ClO4)2 (Figure 2c–h). This implies the addition of
nano-MgO promotes the dissociation of Mg(ClO4)2 in the GPEs.
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Figure 2. The Fourier transform infrared spectrometer (FTIR) spectra of the samples: (a) the membranes
without MgO fillers, (b–h) the gel polymer electrolytes (GPEs) with different content of nano-sized
MgO; (b) 0%; (c) 1%; (d) 3%; (e) 5%; (f) 7%; (g) 10%; and (h) 15%.

Figure 3 displays the differential scanning calorimeter (DSC) tests of the eletrospun membrane
and the GPEs. As shown in Figure 3, the melting temperature of the samples with nano-MgO is
slightly lower than the without ones. The melting enthalpy (∆Hf) of the membrane with nano-MgO is
much lower. As shown in Table S1, the ∆Hf of the membrane with nano-MgO ranges from 7.52 J/g to
18.07 J/g. However the value of the ∆Hf of the without one is 22.86 J g−1. The crystallinity values are
calculated by Equation (1) and the results are shown in Table S1. The values of crystallinity decrease
while the MgO contents increase. These changes might be due to the partial inhibition of the polymer
crystallization by the addition of the nano-MgO [16,17,27]. Thus the amorphous regions in the polymer
increases. The higher the amorphous of membrane is, the higher the conductivity enhancement is.
The result implies that the GPE with 7% nano-MgO may have a high ionic conductivity.Energies 2017, 10, 1215 4 of 10 
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2.2. Mechanical Properties and Porosity/Electrolyte Uptake

The mechanical property of the polymer membranes are shown in Figure 4. Both the mechanical
tests and porosity of the membranes are given in Table S1. The results show that both the tensile
strength and elongation at break performance of membranes can be improved by adding nano-MgO
with appropriate contents. The membrane with 7% MgO shows the best mechanical property
(high tensile strength (9.7 ± 0.1 MPa) with elongation at break (91.7 ± 0.2%)). These superior
performances imply the sample with 7% MgO will be stable and flexible during charge/discharge
processes and will subsequently be likely to be applied in polymer magnesium ion batteries.
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Figure 4. The stress–strain curves of the films with different content of MgO: (a) 0 wt %; (b) 1 wt %;
(c) 3 wt %; (d) 5 wt %; (e) 7 wt %; (f) 10 wt %; and (g) 15 wt %.

The porosity increases with the addition of nano-MgO due to the fine structures lapped by
nanofibers. With the addition of nano-MgO, the AFDs of the membrane decrease. Then more gaps
form in the sample. Thus the membrane with more gaps has a higher porosity. Though the membranes
with a higher content of MgO (10% and 15%) have lower AFDs, their porosities are not the highest ones
due to the huge gap created by the irregular interwoven structure of the nanofibers. Thus the sample
with 7% MgO shows the highest porosity at 98%, implying a higher electrolyte uptake. As shown
in Figure 5, the membranes with nano-MgO have a higher electrolyte uptake than those without,
and the membrane with 7% MgO has the highest electrolyte uptake. These can be attributed to the
high porosity and the high amorphous content of the polymer bases with nano-MgO. The liquid
penetrates into the membrane very fast due to the unique interconnected pore structure. This is exactly
the reason why the membrane with 7% MgO has the highest electrolyte uptake.
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2.3. Ionic Conductivity

The conductivity of the GPEs with different MgO contents is shown in Figure 6 and Figure S4.
Clearly an initial increase in the conductivity of GPEs by the addition of nano-MgO follows by
two maxima which can be observed at 3% and 7 wt %. These behaviors have been reported by
Pandey et al. [16,17]. The disaggregation of undissociated Mg(ClO4)2 into free ions with the addition
of nano-MgO possibly gives rise to the first maximum of the conductivity. The second conductivity
maximum is observed at 7 wt % MgO. This may explain the composite effect and the formation of the
conducting interfacial space-charge double-layer between the nano-MgO with GPEs [16,17]. With the
contents of nano-MgO increasing, too much nano-MgO hinders the motion of mobile ions. Thus,
the conductivity declines after the second conductivity maximum [20]. The optimum conductivity
value of the GPEs is 6.8 × 10−3 S/cm (GPE with 3 wt % MgO). The GPE with 7 wt % MgO, which has
the best mechanical property, also has an excellent conductivity about 4.6 × 10−3 S/cm.
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Figure 7 shows the changes of ionic conductivity of GPEs with temperature in the range 25–85 ◦C.
The ionic conductivity of all the GPEs changes stable with the temperature increasing. This is due to
the poor twists in the pore structure and the slow ion conduction in the swollen phase. To compare the
differences of ionic transport behaviors between crystalline and amorphous phases, the σ values are
fitted by the Arrhenius formula, respectively: σ = σ0exp (−Ea/RT) (Ea is activation energy, R is the
gas constant, σ0 is the pre-exponential index and T is the testing absolute temperature). As shown
in Figure 7, all the curves follow the Arrhenius equation. When the temperature is low, the GPEs
are in high degree of crystallization. Thus the ionic conduction needs large activation energies.
Therefore, the ionic conductivities for all the GPEs are very low. When the temperature increases,
the GPEs become amorphous. Thus the activation energies for ionic conduction become lower, and
the ionic conductivities are higher. From the ionic conductivity depending temperature tests, it was
found that the GPE with 3 wt % MgO has remarkable conductivity about 4.6 × 10−3 S/cm at 25 ◦C
and 7.5 × 10−3 S/cm at 85 ◦C. In addition, even at high temperatures, the GPEs are flexible and
still self-standing, showing great potential applications in Mg ion batteries during a wider range
of temperatures.
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2.4. Electrochemical Activity and Stability

Cyclic voltammetry (CV) tests with Mg/GPE/Mg cells were carried out to check the Mg2+ ion
conduction in the GPEs. We also test the cell with symmetrical SS electrodes for comparison. There is
no current peak in the cell with SS electrodes. However, in cells with Mg electrodes, the current peaks
are distinctly observed when the applied voltage is more than 2 V. This reveals the deposition and
resolution of Mg2+ ion occurs at the Mg/GPE interface. It is noteworthy that Mg deposition occurs
when the voltage is more than 2 V, perhaps due to the collapse of the dense passivation layer on the
surface of metal Mg. Though Mg deposition occurs, the current peak of the GPE without MgO is
unobvious. With the addition of nano-MgO, the separated value of the cathodic/anodic peak potentials
decrease and the anodic/cathodic peak currents increase. Electrochemical activity enhancement may
be attributed to the highly Mg2+ transmission paths along the interfaces formed between metal Mg
and gel electrolyte with nano-MgO and the removal of impurities such as water from the interface by
the nano-MgO [16,17,27]. When the GPE covers the surface of the Mg, the nanosized MgO dispersing
in the polymer matrix locates on the Mg–gel electrolyte interface. Then MgO: Mg2+ species form
space-charge regions and local electric fields. The enhanced Mg2+ electrochemical activity is probably
attributed to the formation of the local electric field. In addition, the nanosized particles have a
relatively large specific surface area, leading to the establishment of coherent conductive paths at
the metal Mg/GPE interface. The newly-built paths, so-called “nano-bridges”, not only provide
convenience for easy passing of Mg2+, but they also hinder impurities from reacting with metal Mg.
Thus, metal Mg becomes to be electrochemical reversible under certain condition of relatively wide
applied voltages. A peak current maximum appears with the addition of 7 wt % nano-MgO in the
GPEs, as shown in Figure 8 (inset). This suggests that nano-MgO enhances the electrochemical activity
at the Mg–gel electrolyte interface at room temperature.

The electrochemical stability tests of the GPEs are shown in Figure 9. In the high voltage range,
electrodes/electrolytes begin to decompose resulting in the onset of current flow. So the upper limit of
the electrolyte stability is within this voltage range. With the addition of the nano-MgO, the stability
of the GPEs is further enhanced. The stable electrochemical window of the GPE with 7 wt % MgO is
more than 4.7 V (versus Mg2+/Mg). The result implies that the addition of nano-MgO into GPE can
increase both the electrochemical activity and electrochemical stablilty.
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Figure 9. Linear sweep voltammograms (LSVs) of the GPEs with different content of MgO: (b) 0 wt %;
(c) 1 wt %; (d) 3 wt %; (e) 5 wt %; (f) 7 wt %; and (g) 10 wt %.

3. Materials and Methods

The 9% solution of TPU-PVdF (1:1, w/w) in DMF/acetone (3:1, w/w) with MgO powder in different
weight ratios (from 0 to 15 wt %) was ultrasonicated for about 0.5 h to ensure proper dispersion of filler
particles and stirred thoroughly at room temperature until forming a homogeneous solution. Then the
solutions were electrospun into fibers under 28.5 kV at room temperature. Then the films were put on
the table overnight and dried under vacuum at 60 ◦C for 12 h. The electrospun films were ~100 µm.
Finally, the dried membranes were dipped in 1 M Mg(ClO4)2–EC/PC electrolyte solutions for 1 h in
a glove box filled with argon at room temperature.

Thermoplastic polyurethane (TPU, Yantaiwanhua, 1190A) and Poly (vinylidene fluoride)
(PVdF, aldrich) were dried under vacuum at 80 ◦C for 24 h. Magnesium oxide (MgO nanopowder, 99+%
metals basis) were obtained from Alfa Aesar (Ward Hill, Haverhill, MA, USA). Magnesium perchlorate
(Mg(ClO4)2, anhydrous, Alfa Aesar, Ward Hill, Haverhill, MA, USA) and MgO powder were vacuum
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dried at 120 ◦C for 72 h. 1.0 M Liquid electrolyte was made by dissolving a certain quality of Mg(ClO4)2

in ethylene carbonate (EC, Shenzhen Capchem Technology Co. Ltd., Shenzhen, China)/propylene
carbonate (PC, Shenzhen Capchem Technology Co. Ltd.) (1/1, v/v). N-Dimethylforamide (DMF) and
acetone were analytical purity and used as received without further treatment.

Membrane Characterization

The morphology of films was examined by Scanning electron microscope (SEM, Hitachi S-3500N,
Hitachi, Osaka, Japan). The structure was investigated by FTIR spectra (Spectrum One, PerkinElmer
Instruments, Shanghai, China).

The thermal characterization of the prepared polymer networks was carried out by differential
scanning calorimeter (DSC) with a heating and cooling rate of 20 ◦C min−1 on a DSC TA (DSC-7,
Perkin-Elmer Co., Shanghai, China) instrument. Samples were run under a nitrogen atmosphere
over a temperature range of −90–230 ◦C. The crystallinity (χc) was calculated based on the following
Equation (1) from the DSC curves:

χc = ∆H f /∆H∗
f φ × 100% (1)

where ∆H f and ∆H∗
f represent the fusion enthalpy of blend membrane and PVdF with 100%

crystallinity, respectively. The value of ∆H∗
f is 104.7 J/g. φ is the measuring weight fraction of PVdF.

The mechanical strength of the polymer gel electrolyte films was measured by universal testing
machines (UTM, Instron Instruments, Chicago, IL, USA). The extension rate was kept at 10 mm/min.
The dimensions of the sheet used were 2 cm × 5 cm × 100–150 µm (width × length × thickness).

The porosity was investigated by immersing the membranes into n-butanol for 1h and then
calculated by using the following relation (Equation (2)):

P =
Ww − Wd

ρbVp
× 100% (2)

where Ww and Wd are the mass of the wet and dry membrane, respectively, ρb the density of n-butanol,
and Vp the volume of the dry membrane.

The electrolyte uptake was determined by measuring the weight increase and calculated according
to the following equation:

Uptake(%) =
W − W0

W0
× 100% (3)

where W0 is the weight of dried films and W is the weight of swelled films.
The ionic conductivity of the composite film was measured with SS/PE/SS bl ◦C king cell by

AC impedance measurement using an Autolab PGSTAT302N with a frequency range of 0.1–1 MHz.
The thin films were prepared about 100 µm in thickness and 2.24 cm2 in area for impedance
measurement. Thus, the ionic conductivity could be calculated from the following equation:

σ =
h

RbS
(4)

where σ is the ionic conductivity, Rb is the bulk resistance, h and S are the thickness and area of the
films, respectively.

Electrochemical stability was measured by a linear sweep voltammetry (LSV) of an Mg/GPE/SS
cell using an Autolab PGSTAT302N at a scan rate of 5 mV/s, with voltage from 0 to 5 V.
Cyclic voltammetry (CV) was carried out using an Autolab PGSTAT302N at a scan rate of 0.1 mV/s in
the potential range of −5–5 V (vs. Mg2+/Mg).
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4. Conclusions

To summarize, TPU-PVdF based Mg2+ ion conducting GPEs with different amounts of nano-sized
MgO have been prepared by electrospinning at room temperature. It can be observed that both of
the electrochemical and the mechanical properties are improved with the addition of nano-sized
MgO. The composite GPE with 7 wt % MgO displays the widest electrochemical stability and perfect
mechanical stability. Also, its ionic conductivity is as high as 4.6 × 10−3 S/cm at room temperature.
These results show that the incorporation of nano-sized MgO is an efficient way to improve the
properties of GPEs.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1996-1073/10/8/1215/s1.
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