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Abstract: This paper presents a control strategy to improve the output power for a single-cylinder
two-stroke free-piston linear generator (FPLG). The comprehensive simulation model of this FPLG is
established and the operation principle is introduced. The factors that affect the output power are
analyzed theoretically. The characteristics of the piston motion are studied. Considering the different
features of the piston motion respectively in acceleration and deceleration phases, a ladder-like
electromagnetic force control strategy is proposed. According to the status of the linear electric
machine, the reference profile of the electromagnetic force is divided into four ladder-like stages
during one motion cycle. The piston motions, especially the dead center errors, are controlled by
regulating the profile of the electromagnetic force. The feasibility and advantage of the proposed
control strategy are verified through comparison analyses with two conventional control strategies
via MatLab/Simulink. The results state that the proposed control strategy can improve the output
power by around 7–10% with the same fuel cycle mass.
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1. Introduction

A free-piston linear generator is a novel energy converter which normally consists of an internal
combustion engine (ICE), a linear electric machine (LEM) and a rebounding device [1,2]. The hybrid
electric vehicle equipped with this energy conversion device can increase the runtime or reduce
the demand of charging. Compared with the conventional internal combustion engine, due to the
elimination of the crankshaft and flywheel of ICE, the piston of the ICE and the mover of the linear
generator are directly connected [3–5]. Therefore, the piston is free to oscillate between the top dead
center (TDC) and the bottom dead center (BDC) without the limitation of the crankshaft mechanism.
This brings the ability to accommodate multi-fuel by easily controlling the compression ratio without
modifying the mechanical structure. The energy conversion efficiency can be increased with optimizing
the compression ratio [6–9]. Furthermore, the key performances of FPLG, the output power and system
efficiency could be improved by controlling the motion state of the piston [10,11].

At present, there are mainly three kinds of conventional control strategies to operate the piston motion
state. The first one is trajectory tracking control, which means the piston motion is controlled to follow
along with a specified reference trajectory [12–17]. The second one is specifying a reference current profile
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to generate an appropriate electromagnetic force for stable operation [5,18–20]. Another one is to achieve
the balance of energy flow by regulating the load factor and combustion parameters [7–9,21–24].

Němeček, and Vysoký investigated a two-stroke opposed-piston FPLG [13]. In order to avoid
collisions between the piston and the cylinder head, a motion control was presented through
giving a desired trajectory that was very similar to the sinusoidal signal. Kosaka and Moriya also
presented a trajectory tracking control to operate the piston motion [12,16]. However, in their studies,
an inappropriate reference trajectory could have a negative effect on the output power and the system
efficiency [13]. Furthermore, an offline reference trajectory will produce cumulative error and made a
misfire after a long runtime [16]. At present, it is difficult to generate a high conversion efficiency with
an adaptive trajectory according to the amount of combustion energy and the burning state, especially
when a high motion frequency and a high motor-generator dynamic response are required [17].

In [4,11,18,19], Xu et al. presented a single cylinder four-stroke FPLG. Their research proposed a
control strategy which used a constant electromagnetic force profile generated by the reference current
during one stroke. The reference current was regarded as the control variable to limit the dead center
deviations within a suitable range. In [25], a hierarchical hybrid controller was designed by Xia and
Grimble. Similarly, the one stroke constant electromagnetic force was used to control the piston motion,
the value was adjusted based on the energy balance equation of each stroke. Since the piston motion
of acceleration and deceleration, a simple constant reference force profiles could not totally conform to
the features of piston motion.

The researchers in [6,20,26] presented a full-cycle simulation model, which consisted of a single
piston engine, linear electric machine and a gas spring bounce chamber. The stable operation
was achieved by adjusting the combustion and rebounding parameters. During operation process,
the electromagnetic force was proportional to the velocity of the piston, and the direction was opposite
with the velocity when FPLG was in generator mode. Similarity, Jia presented a novel cascade control
method that was used to regulate the fuel mass to overcome the disturbances of the LEM and ICE [8,9].
Gong described a nonlinear linear quadratic regulator (LQR) controller to adjust the input energy
for reaching the fast response in an opposed-piston FPLG [22,23]. In these strategies, though the
electromagnetic force was adjusted by the load coefficient, it was defined as a constant under a
specified working condition. A large constant load coefficient will slow down the velocity of piston in
the acceleration phase of each cycle [27]. For one thing, these control strategies didn’t take into account
the effects between the power demand and the load requirement. For another, they rarely consider the
relationship between the output power and electromagnetic force profile, Therefore, only by regulating
the injected fuel mass and load factor could not be a suitable method to improve output power.

Due to that increasing fuel mass is an effective way to increase the output power [7,23,28,29],
the relationship between the output power and the electromagnetic force profile is seldom noticed.
In the previous research most researchers only pay attention to the stable operator of the piston.
However, the output power not only depends on these factors, such as the in-cylinder initial pressure,
the dimension of FPLG [4,10,18], but also the piston movement characteristic. Therefore, a feasible and
succinct control strategy is of necessity to achieve an appropriate operation process for improving the
output power. In this paper, the relationship between the average piston motion velocity and average
output power is derived and a ladder-like control strategy considering the piston acceleration and
deceleration phase is developed.

In the following sections, firstly, the structure of middle spring-rebounded FPLG is described
and the mathematical models of FPLG components are built. The working principle of this device is
introduced. Secondly, on the basis of the characteristics of the piston motion, energy equations and
influence factors of the output power, a succinct control strategy is proposed to improve the output
power. The main structures of total control system are presented. Finally, the power converter unit
is implemented to the simulation model to obtain reliable results. The simulation results are also
compared with different control strategies.
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2. FPLG Configurations and Features

Figure 1 shows the elementary structures of FPLG studied in this paper. There are three main
components: ICE, mechanical spring and LEM. The combustion system is a single-cylinder free-piston
engine without a crankshaft mechanism. It is equipped with electromagnetic valves, fuel injection and
spark plug. A spark ignited two-stroke combustion mode is used to FPLG. Compare with four-stroke,
it has higher power density with the same engine size and injected fuel mass. A set of parallel
mechanical springs functions as a rebounding device to push the piston back from BDC to TDC. It is
assembled between the combustion chamber and LEM to decrease the heat transfer rate from the
combustion chamber to the mover of LEM. This single-cylinder FPLG with the mechanical spring is a
compact device which is easier controlled to overcome the combustion fluctuation and achieve stable
operation [4,18,19].

Figure 1. Basic configurations of FPLG, (a) The structure diagram; (b) The prototype of FPLG.

The main structures of the LEM are described in Figure 2. The LEM is a single-phase moving-coil
permanent magnet motor/generator, also called a voice coil motor (VCM). The windings are inserted
into a nylon cylinder to achieve light moving mass and fast dynamic response. The permanent magnets
and wingdings have a symmetrical distribution in the metal housing. This design brings the advantage
of producing the same forces by two ring-type wingdings [19]. The mover of LEM is connected to
the piston of ICE and moves to and fro between TDC and BDC. In this paper, a moving-coil voice
coil motor (VCM) is employed in the FPLG. The windings of the mover are inserted into a nylon
cylinder without an iron core. Therefore there are no iron losses in the mover. Permanent magnets
are assembled on the iron core in the stator. The iron losses of the stator have not been considered.
The efficiency of the motor is 94%.

Figure 2. The 3D structure of voice coil motor.
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3. Dynamic and Thermodynamic Modeling

The piston motion trajectory is decided by the resultant force acting on the piston [30–33].
The force analysis is shown in Figure 3. The dynamic equation is expressed as:

M
d2x
dt2 = Fp + G− Fatm − Fmag − Fsp − Ff (1)

where, Fp is the pressure force of the combustion chamber, Fatm is caused by the atmospheric pressure,
G is the gravity acting on the piston assembly, Fsp is the force generated by mechanical spring, Ff is the
frictional force between the piston components and the linear guide, and Fmag is the electromagnetic
force, M is the mass of the piston assembly, and the displacement between the piston and cylinder
head is defined as x for the purpose of describing the piston motion. The positive direction is defined
to be from TDC to BDC, and the initial position of piston is near the TDC.

Figure 3. The force analysis of the piston assembly.

3.1. Thermodynamic Modeling of the ICE

In ICE, there are five main stages, intake, compression, combustion, expansion and exhaust.
After the scavenging, assuming that the in-cylinder pressure also equals atmospheric pressure.
Simultaneously, in combustion chamber, the thermodynamic dynamic is described by a single-zone
model, and the assumptions are given below.

• The working medium of the combustion chamber is regard as ideal gas, the pressure change and
temperature change follow the ideal gas state equation;

• The combustion process is working in a quantitative working medium, the leakage and gas
exchange losses are ignored and the power required by scavenging process is ignored.

Figure 4 shows the in-cylinder energy flow. In ICE, the chemical energy is converted into heat
energy when fuel is burnt. The in-cylinder pressure and temperature increase with the release of heat
in the early stage of expansion process. On the basis of the first law of thermodynamics [6,31,34],
the thermodynamic process in ICE can be described as:

dU
dt

=
dQ
dt
− dQw

dt
− dW

dt
+ ∑

i

.
Hi −∑

e

.
He −∑

l

.
Hl (2)

where,
.

Hi,
.

He and
.

Hl are regarded as zero according to the assumptions above.
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The change rates of the work done by in-cylinder pressure and the internal energy of the working
medium can be expressed as (3) and (4):

dW
dt

= P
dV
dt

(3)

dU
dt

= mCv
dT
dt

(4)

By ignoring the gas leakage through the piston ring and the gas exchange loss due to the intake
and exhaust process. Equation (2) can be simplified as:

dQ
dt

= mCv
dT
dt

+
dQw

dt
+ P

dV
dt

(5)

According to the ideal gas state equation, the in-cylinder pressure is satisfied with (6):

PV = mRT (6)

The derivative of (6) with respect to time is written as:

P
dV
dt

+
dP
dt

V =
dm
dt

RT + mR
dT
dt

(7)

dT
dt

=
1

mR

(
P

dV
dt

+
dP
dt

V − dm
dt

RT
)

(8)

Substituting the (8) into (5), the combustion released energy is derived as:

dQ
dt

= P
dV
dt

+
Cv

R

(
P

dV
dt

+ V
dP
dt

)
+

dQw

dt
(9)

For convenient expression, polytropic exponent γ is defined as:

γ = 1 +
R
Cv

(10)

In combustion process, the values of polytropic exponent of compression stroke and expansion
stroke are different. Here, in order to build model easily, the comprehensive process is simplified,
and the specific heat ratio γ is defined as a constant [20].

The in-cylinder pressure can be written as [26]:

dP
dt

=
1
x

[(
γ− 1

Ap

)(
dQ
dt
− dQw

dt

)
− γP

dx
dt

]
(11)

In this equation, using the Weiber function [34], the released combustion heat of the combustion
process is represented as:

dQ
dt

= Hug f
dχ

dt
(12)

where, the burned mass fraction can be written as:

dχ

dt
= 6.908

n + 1
Tc

(
t− tc

Tc

)n
exp

(
−6.908

(
t− tc

Tc

)n+1
)

(13)

where, n is combustion quality index, which is a non-dimensional parameters. Its value depends
on the compression ratio, the initial combustion temperature and the state of the mixture formation.
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Normally, for a small gasoline engine, parameter n is in the range from 0 to 3. In our research, the value
of n is specified as 2 [4].

There are many generic function models used to represent the heat transfer between the in-cylinder
working medium and wall. Here, the Hohenberg model is used to describe this process [29]:

dQw

dt
= 130AsurV−0.06

( p
105

)0.8
T−0.4(vm + 1.4)0.8(T − Tw) (14)

Ultimately, the pressure acting on piston is described as following:

Fp − Fatm = (P− Patm)Ap (15)

Figure 4. The thermodynamic process of the combustion chamber.

3.2. Mathematical Modeling of Linear Generator

Figure 5 describes the equivalent circuit of motor/generator system, which consists of LEM, convertor
and power supply unit. The LEM can be operated as a motor or a generator. The convertor is used to
switch the work mode of LEM and control the current. The power supply can work in battery charging
mode or discharging mode. The electromagnetic force of LEM is related to the armature current. When the
system is in the starting process, LEM works as a motor and the force is described by (16):

Fmag = Kii (16)

When the FPLG is working in generating mode, the back EMF can be written as:

ε(t) = −N
dΦ
dt

= −N
dΦ
dx
· dx

dt
(17)

Figure 5. The equivalent circuit of motor/generator system.
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In accordance with Figure 5, the voltage equation for this system is described as:

ε(t) = ri(t) + L
di(t)

dt
+ Ri(t) (18)

The electromagnetic force caused by the piston motion also can be presented as (16). The transfer
function between ε(t) and i(t) can be written as:

I(s)
ε(s)

=
1

R + r + Ls
(19)

3.3. Modelling of the Rebounding Device

Compared with the in-cylinder pressure and electromagnetic force, the friction force is small,
the value of which can be regard as a linear relationship with the piston velocity:

Ff = f · .
x (20)

where, f is the frictional coefficient.
In our research, the spring is a constant-stiffness spring, the resilience can be expressed as:

Fsp = Ksp
(
x− xsp0

)
(21)

where, xsp0 is the initial length of the mechanical spring.
According to the design requirements and related work, the main parameters and structure

dimensions of the FPLG are shown in Table 1 [1,20,23,25].

Table 1. The key geometric and performance parameters of FPLG.

Parameters Value

Nominal output power Pnom (kW) 15
Operating frequency fz (Hz) 15–25
Efficiency of generator ηmag (%) 94
Combustion indication efficiency ηi (%) 48
Frictional coefficient f (N·(m/s)−1) 12
Piston sectional area Ap (m2) 0.0082
Load resistance R (Ω) 6
Internal resistance r (Ω) 0.33
Excess air coefficient α 1.05
Specific heat ratio γ 1.32
Combustion duration Tc (m·s) 4
Combustion quality index n 2
Thrust constant Ki (N/A) 34.7
Fuel lower heating value Hu (J/mg) 44
Elasticity coefficient Ksp (kN/m) 80
Target top dead center TDC* (mm) 10
Target bottom dead center BDC* (mm) 125
Equivalence ratio εe 1

4. Force Control of the FPLG

In our previous studies [4,18,19], the force control strategy was used to control FPLG with a
four-stroke combustion model. Here, the control strategy of two-stroke combustion model is shown in
Figure 6.
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Figure 6. Schematic diagram of the operating principle.

The piston motion is from static state to stable reciprocating motion by regulating the target
currents. Here, the target current in each stroke is a constant value as shown in this schematic diagram.
As shown in Figure 6, there are starting process and regulation process before steady operation.
In the starting process, the initial position of the piston is close to TDC and the initial states of
electromagnetic valves are closed. When FPLG starts working, the LEM works as a driving motor
to generate electromagnetic force to push the piston. The driving currents i01, i02 are calculated by
Equations (22) and (23). Their directions are same with the velocity of piston: i01 =

1
2 Ksp(xivo−x0)

2

Ki(xivo−x0)

i02 = 1
2 Ksp(BDC− x0)

2 − Ecom
(22)

Ecom =
∫ xIVO

TDC∗
P0(

V0

V
)

γ

dV =
p0V0

γ− 1
(Rγ−1 − 1) (23)

where, Ecom is the in-cylinder internal energy generated by the compression of the air pressure when
the piston is from BDC to TDC, xivo is the switch position of the intake valve, x0 is the initial position
of piston, P0 is the intake pressure, and V0 is the initial volume at the end of the scavenging process.

After that, the compression stroke starts. The fuel is injected into the combustion chamber to
generate premixed fuel-air mixture. Once the piston runs close to the specified compression ratio,
the spark plug will be enabled. The high pressure from the combustion of in-cylinder air-fuel mixture
pushes the piston to BDC. Meanwhile, the LEM and the mechanical spring generate a braking force to
decelerate the piston until its speed becomes 0. The cycles of starting process will be repeated until the
appropriate maximum piston velocity and combustion conditions are achieved.

The valve timing is also depicted in Figure 6. In the first cycle, the exhaust valves are closed
and the intake valves are enabled, therefore the combustion chamber is filled with fresh air during
the period that the piston move from initial position to BDC. In the rest of the starting process,
the exhaust and intake valves will be enabled in turn when the piston reach xsca and xivo, respectively.
Then, the exhaust and intake valves will be disabled successively when the piston reach xiv and xsca,
respectively. In regulation process and stability process, the electromagnetic valves are operated in the
same order. Here, the scavenging position is defined at near 0.085 m.
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The main purpose of the regulation process is to realize steady operation. The regulating
relationships between target currents ie, ic and the energies are shown in (24): ie =

∫ BDC∗
TDC |Fp−Fatm|dx− 1

2 Ksp

∣∣∣[(BDC∗−x0)
2−(TDC−x0)

2
]∣∣∣−E1

Ki(TDC−BDC∗)

ic =
1
2 Ksp

∣∣∣[(BDC−x0)
2−(TDC∗−x0)

2
]∣∣∣−∫ TDC∗

BDC |Fp−Fatm|dx−E2

Ki(BDC−TDC∗)

(24)

where, E1 and E2 are the sum of energy losses in expansion and compression stroke, respectively.
They are calculated by accumulating iteration. BDC* and TDC* are the target dead center position,
BDC and BDC are the actual dead center position. The TDC error is the difference between the target
TDC position (TDC*) and the actual TDC position (TDC), and the BDC error is the difference between
the target BDC position (BDC*) and the actual BDC position (BDC).

The control diagram is shown in Figure 7. The errors of the dead centers are fed back to the
control loop to adjust piston motion. When the TDC error is positive, the in-cylinder pressure is
higher than the set pressure and could result in a detonation combustion phenomenon. When the
TDC error is negative, the in-cylinder pressure is insufficient to push the piston to BDC*. On the
other hand, a large BDC error indirectly affects the TDC position accuracy. These two situations
have an impact on the next cycle and steady power output. Therefore, according to the working
conditions, the target currents are continuously regulated until the errors are within a suitable range.
The calculation corresponds to (22)–(24), the current switching process is determined according to the
piston velocity and displacement. At the same time, the mode switching can switch the state of FPLG
between motor and generator based on the working conditions.

Figure 7. The force control strategy of two-stroke.

5. Ladder-like Electromagnetic Force Control Strategy

5.1. Influence Factors of Average Output Power

The average output power is one of the most important performances of FPLG. From the
perspective of the work done by electromagnetic force, the average output power can be defined as:

P =
WFmag

Tcycle
=

WFmagS
TcycleS

= WFmag ·
1
S
· v = ηmag(ηi · Ein − Eloss) ·

1
S
· v = Kp · v (25)

Kp =
ηmag(ηi · Ein − Eloss)

S
(26)

where, WFmag represents the work done by the electromagnetic force. The duration of a cycle is Tcycle, P
is the average output power, S is the path length of an operation cycle. Ein represents the input energy
from fuel combustion in a cycle. Eloss is the loss energy such as friction force, heat transfer, etc. ηi and
ηmag are the combustion indicated efficiency and the efficiency of generator, respectively.
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In (26), the input energy, path length, loss energy and efficiency in stable operation have tiny
variations under specified working conditions. Therefore, Kp is the power factor coefficient can be
regarded as a constant. Through (25), the average output power is proportional to the average velocity
of the piston when the FPLG is working in a stable process. This means that if the average velocity
increases, the average output power can be improved.

5.2. Piston Motion Characteristics Analysis

Figure 8 shows the phase trajectories of FPLG. They are obtained when FPLG is in stable operation
with two different control strategies. The average velocity of Curve 2 is larger than that of Curve 1.
The whole operation process could be divided into four stages, which are Acceleration 1, Deceleration
2, Acceleration 3 and Deceleration 4. The absolute values of the velocity gradually increase in
Accelerations 1 and 3, and then drop in Decelerations 2 and 4. If the absolute values of the acceleration
increase in these four stages, the average velocity of the piston will be improved, the curve 1 could be
changed to curve 2 as shown in Figure 8. Especially, the cover area of the curve, which indicates the
output power, will be increased accordingly.

Figure 8. The phase trajectory of FPLG.

As shown in (1), when the LEM is working in generator mode, the LEM produces an
electromagnetic force whose direction is opposite to the piston acceleration. The piston acceleration
could be adjusted by changing the value of the electromagnetic force in different zones. Compared to
constant force in one stroke as shown in Figure 6, if the electromagnetic force has two different values
in the same stroke, i.e., the force decreases in the acceleration zones and increases in the deceleration
zones, the piston acceleration would be increased.

In the same way, in each stroke, a minimum reference current in acceleration zone and a maximum
reference current at deceleration zone can achieve the maximum acceleration. However, these reference
currents have limits to satisfy the requirements of stable operation.

5.3. Ladder-Like Control Strategy

Through the above analysis, the reference current in one stroke is divided into two phases, and the
current values in acceleration and deceleration zones are determined by the input energy and the rated
current of LEM. Here, the rated current of LEM is used as the reference currents in deceleration zones.
No matter that the piston is working in compression or expansion stroke, the appropriate reference
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current in acceleration zone is the key point that ensuring both the stable operation and high output
power. The reference currents i11, i12, i21 and i22 can be obtained according to the following equations:{

i12 = −ir
i22 = ir

(27)

i11 = −

∫ BDC
TDC

∣∣Fp
∣∣dx− 1

2 Ksp

∣∣∣[(BDC− x0)
2 − (TDC− x0)

2
]∣∣∣− ∣∣ir(BDC− xsp1

)∣∣− E1

Ki
(
xsp1 − TDC

) (28)

i21 =

1
2 Ksp

∣∣∣[(BDC− x0)
2 − (TDC− x0)

2
]∣∣∣− ∫ TDC

BDC

∣∣Fp
∣∣dx−

∣∣ir(xsp2 − TDC
)∣∣− E2

Ki
(
BDC− xsp2

) (29)

where, i12, i22 are defined to be equal to ir, which is the rated current of LEM. xsp1 and xsp2 are defined
as nominal half-stroke positions.

Figure 9 describes the relationship among the target currents, switching positions and piston
displacement. In the operation of FPLG, if a large combustion fluctuation happens, it will cause the
errors between the actual and target dead centers. These errors are employed to be a feedback signal to
modify reference currents for achieving the stable operation. In this control strategy, when the piston
cannot reach the target TDC (BDC), the reference currents of next compression (expansion) stroke
will be reduced. On the contrary, the reference currents will be increased when the piston position
overshoot the target dead centers.

Figure 9. The schematic diagram of the Ladder-like control strategy.

5.4. Power Amplification Circuit

A single-phase H-bridge circuit is developed to adjust the armature current of the LEM based on
the control strategy described above. As shown in Figure 10, the H-bridge driving circuit consists of
two by-pass switching tubes (VTa, VTb), three high-frequency capacitances (C1, C2, C3) and a set of
super-capacitors (VCH, VCL). There are four insulated gate bipolar translators IGBTs (VT1, VT2, VT3,
VT4) in the backbone circuit, which regulate the value and direction of current. The high-frequency
capacitance has a function of absorption and protection of switching surge. The switching statuses
of IGBTs (VTa, VTb) determine whether the LEM is working on the motoring or generating mode.
In order to realize the charging and discharging, the initial state of these two super capacitors VCH

and VCL are high and low voltages respectively. In simulation analysis, this H-bridge is verified to
be capable of realizing stable operation effectively. Compared with the conventional single-phase
H-bridge circuit, it benefits the feedback of electric energy and improves the efficiency of the electrical
energy storage.
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Figure 10. The H-Bridge circuit of LEM.

5.5. The Total Control of FPLG

In Figure 11, the input energy is associated with combustion parameters, they are operated
according to the introduced working principle. The output energy is adjusted by target current for
stable operation in each stroke. The target current is calculated in the energy balance calculation
stage. The details of the current control loop of LEM are shown in Figure 12, which is different
from Figure 7 on the calculator. In this control strategy, the calculator is designed according to the
Equations (22), (27)–(29) with six target current outputs. In this control diagram, the unit of movement
state monitoring detects the stages of stroke (compression or expansion stroke) and system stability.
Once the stable operation is realized, the parameter optimization is starting. Then, according to the
in-cylinder pressure, piston velocity and displacement, the enable positions of electromagnetic valves,
injected position and ignition position will be regulated to obtain higher conversion efficiency and
lower emissions.

Figure 11. The control strategy diagram.
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Figure 12. The control strategy of ladder-like.

6. Simulation Results

In this section, system dynamic response, average output power, piston displacement and average
velocity of piston are analyzed to verify the stability and output performance of the FPLG with the
ladder-like control strategy. An H-bridge circuit is implemented in these simulations to control the
armature current following the reference current.

6.1. The Stability of Ladder-Like Control Scheme

The dynamic response of the FPLG with the ladder-like control strategy is shown in Figure 13.
This figure shows the piston displacement, BDC and TDC errors of the FPLG from the starting process
to stable operation. The injected fuel is 30 mg at the beginning, and then it is changed to 35 mg when
the FPLG reaches a stable state. From Figure 13, the BDC error has a large fluctuation when the FPLG is
starting and the injected fuel mass is suddenly changed, and it settles into a stable band from −0.5 mm
to +0.5 mm after several cycles. The position control of TDC has a strong stability performance under
this control strategy. The TDC errors are within the stability band even when the injected fuel mass
has a 5 mg step changes. The accurate TDC position determines the stability of the whole system.
Therefore, the FPLG can be controlled steadily when the fuel mass has a step change within 16% under
the ladder-like control scheme.

Figure 13. Dead center errors of piston.

Figure 14 shows in-cylinder pressure from the starting process and when the injected fuel mass
changes. The peak pressure increases to a higher value steadily when the fuel mass changes to 35 mg.
The smooth control of peak pressure reflects the feasibility of the ladder-like strategy.
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Figure 14. In-cylinder pressure of combustion chamber.

Figure 15 shows the changes of the currents under different fuel mass in stable stage. As shown
in Figure 6, i10 and i20 are the starting current, which correspond with the displacement from starting
point to BDC1 and the displacement from BDC1 to TDC, respectively.

Figure 15. Phase trajectory and currents of the ladder-like control strategy.

i11 (i′11) and i12 are the regulated currents in expansion stroke, these are correspond with the
displacement from TDC to BDC. i21 and i22 are also the regulated currents in the compression stroke;
there correspond with the displacement from BDC to TDC. Their reference currents can be calculated
by the Equations (22), (27)–(29). When the fuel mass changes from 30 to 35 mg, the value of i11

(−35.7 A) increases to i′11 (−53.6 A). However, the others currents have a minor variation. Therefore,
the combustion fluctuations are restrained by i11, and can be controlled effectively to accommodate the
different fuel masses under the study strategy.

6.2. The Comparative Analysis of Three Control Strategy

Comparisons of three control strategies when the FPLG is in stable operation are shown in
Figure 16. Figure 16a shows the control strategy that the load coefficient and combustion parameters
are regarded as the control variables, which is defined as strategy 1. The electromagnetic force of this
control strategy is Fmag = α· .x. Figure 16b shows the constant force control strategy during one stroke,
which is defined as strategy 2. Figure 16c shows the ladder-like force control strategy under study,
which is defined as strategy 3. In order to ensure the input energy is the same, the experiment setup is
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defined as: fuel mass is 30 mg, xigs = 12 mm, the dead centers are BDC = 125 mm and TDC = 10 mm.
Figure 16 also states that the change of the armature current follows the reference current.

Figure 16. Three control strategies during the stable operation period.

From Figure 16, the actual current changes under strategy 1 are proportional to the velocity of
piston. Especially, the starting of expansion stroke, the change of the current is faster than other zones.
The starting of compression stroke, the changes of currents under three control strategies are similar.
The actual currents of strategy 2 and strategy 3 are following the reference currents, this states the
power converter unit is effective to control the LEM armature current.

In Figure 17, the displacements of the three control strategies are compared, the initial position
and time are unified. This figure shows that the control strategies 1 and 2 almost have no difference
on the duration of one cycle, but that of the control strategy 3 is shorter. This illustrates that the
piston has a higher average velocity under our ladder-like control strategy. The phase trajectories of
three control strategies are compared in Figure 18. The piston velocities of expansion and compression
stroke have an increment under strategy 3. In addition, the average velocity of the piston is simulated
under different fuel mass. The change range of fuel mass is increasing from 27 to 35 mg by 1 mg each
time. In Figure 19, the blue curve is the result of the average velocity using the ladder-like strategy,
the average velocity is significantly higher than with the other control strategies. At the same time,
the velocity of strategies 1, 2 and 3 is increasing along with the increasing fuel mass, respectively.

In Figure 20, the instantaneous power of three control strategies are compared. The results are
obtained when the fuel mass is specified to be 30 mg. In Figure 20a, the average power of strategy 1 is
12.2 kW, which is less than the average power of the strategy 3, 12.9 kW, although their peak values are
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similar. It is because the average velocity of strategy 3 is higher as shown in Figure 19. In Figure 20b,
the strategy 3 has larger amplitude and average power than strategy 2. In Figure 20c, there is no
significant difference on average power, though the strategy 1 has larger peak values than strategy 2.

Figure 17. Piston displeacement diagram.

Figure 18. Phase trajectory of control strategies.

Figure 19. Piston average velocity with three control strategies.
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Figure 20. Instantaneous power diagram.

Through analyzing the results above, the strategy 3 has a faster operation frequency when the
injected fuel masses are identical. The reduction of electromagnetic force in the acceleration zones
and increment of the electromagnetic force in deceleration zones can effectively improve the average
velocity of the piston, which contributes to the rapid conversion of energy. Therefore, the average
output power of system has a promotion with ladder-like electromagnetic force. Meanwhile, the results
are also consistent with the Equation (25).

Figure 21 shows that the average power is probably 1 kW higher than two conventional control
strategies under the same fuel cycle mass from 27 to 35 mg. From the other view, the proposed
ladder-like force control strategy can reduce the operation time by around 7–10% when the work done
is the same.
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Figure 21. Average output power diagram.

7. Conclusions

In this study, a single-cylinder spring-rebounded FPLG has been developed. A mathematical
model including the thermodynamics has been built. A force control strategy of the two-stroke
FPLG has been presented and verified to be feasible for steady operation. It was found that the
average output power could be improved through increasing the average piston velocity. From further
analysis, the changes of reference profile of the electromagnetic force in acceleration and deceleration
stages could improve the piston acceleration and hence increase the average velocity. Therefore,
a ladder-like force control strategy has been proposed to increase the output power with the same
fuel consumption in a cycle. Comparison studies with other two conventional control strategies
was conducted. The results show that the output power has a 7–10% increase under same fuel
cycle mass with the proposed method. This control strategy has been validated for a single-cylinder
FPLG. Its feasibility for other types of FPLGs such as two-cylinder free-piston engine will be further
investigated. In addition, compared with the other force control strategy, the disadvantage of the
proposed ladder-like force control strategy is that the controller becomes a bit more complicated,
but the disadvantage can be ignored compared to the benefits it brings, and experimental tests will be
implemented in future work.
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Nomenclature

U Total in-cylinder energy of the working medium (W)
Q Heat released by the burnt fuel (W)
Qw Total amount of heat transfer (W)
W External work of working medium (W)
.

Hi Injected energy (W)
.

He Exhaust energy (W)
.

Hl Leak energy from the ring piston (W)
UL Voltage of the storage power unit (V)
N The number of winding turns per phase
T Temperature of the in-cylinder (◦C)
P In-cylinder pressure (Pa)
V Working volume of ICE chamber (m3)
m Total in-cylinder mass of working medium (kg)
Cv Constant volume specific heat (J/(kg·K))
R Gas constant (J/(mol·K))
g f Injected fuel mass (kg)
χ Mass fraction burned
n Combustion quality factor
Tc Combustion duration (s)
t Time variable (s)
Asur Heat transfer surfaces (m2)
ee
V Mean piston velocity (m/s)

Tw Average surface temperature of the cylinder wall (◦C)
Fatm Atmospheric pressure (Pa)
xsca Scavenging position (m)
xivo Intake valves open position (m)
xig Ignition position (m)
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