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Abstract: Voltage and frequency stability are highly important for reliable performance of smart
grids. In grid-connected mode, the utility controls these parameters, but when islanding occurs these
parameters exceed their limits, which may result in irreparable damage to the system. This paper
presents a time-domain approach which uses basic mathematical morphology (MM) operators,
dilation and erosion filters, for microgrid islanding detection. The proposed method applies a
dilation-erosion differential filter (DED) of the RMS signal (DEDFOR) at the point of common coupling
(PCC) in a micro-grid connected to distributed generations (DGs). To evaluate the performance of the
proposed approach, it is tested and compared with existing techniques in the literature under various
conditions such as capacitor bank switching and motor starting. The results verify the accuracy and
efficiency of the proposed technique for islanding detection under different operating conditions and
various power mismatches.

Keywords: microgrid; islanding detection; dilation-erosion differential filter of RMS signal;
mathematical morphology; passive method; signal processing method

1. Introduction

The rapid integration of smart grid (SG) technology opens up the possibility to aggregate
microgrids into the electrical power system and to improve power quality in a safe and reliable
manner [1,2]. Microgrids as integral parts of SG, can be viewed as small-scale power systems with
self-supply capability [3]. According to the U.S. Department of Energy [4], a microgrid is a group of
interconnected loads that is often composed of distributed energy resources (DERs) [5], distributed
generations (DGs), flexible loads, and energy storage systems (ESSs) with the ability to connect and
disconnect from the grid to operate in both grid-connected and islanded mode [6,7].

DGs are small-scale power generations, which are a promising solution to the economic and
environmental issues of conventional power systems [8,9]. Integration of DGs and other DERs, i.e.,
wind energy, solar energy, and hydraulic energy, into the traditional electric power system, can reduce
the emission of the greenhouse gases, and solve the environmental issues [10].

Reliable performance of microgrids, which are the heart of smart grid technology, depends on the
microgrids’ operational conditions and protection systems. Despite the positive impacts of microgrids,
they bring many technical challenges for the safe operation, protection, and stability of the power
grid [11]. Compared to traditional grids, distribution systems have different operating characteristics,
such as bidirectional power flow, voltage profile fluctuations, and possible occurrence of islanding [12].
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Following a disturbance in a power system, the main breaker may be opened automatically to
isolate faults. An islanding condition occurs when a power supply from the main utility is interrupted,
but the microgrid keeps supplying power into the distribution networks. Unintentional islanding due
to grid faults or wrong circuit breaker operations may result in low power-quality, overload conditions,
equipment damage, and even safety hazards [13–15]. Therefore, it is necessary to effectively detect
the islanding conditions and swiftly disconnect microgrid from the distribution network within a
specified time interval. The design and control requirements required for the safe islanding of a
realistic microgrid along with an organized approach for improving the economic, reliable and secure
operation of microgrids operating either in the on-grid or in the off-grid is investigated in [16,17].

The microgrid has reduced system inertia due to increased penetration of non-synchronous
generation sources (e.g., storage devices, wind power and solar photovoltaic) resulting in increased
risk of frequency instability [18]. Therefore, the conventional methods fail to detect islanding condition
and small changes at the point of common coupling (PCC) for distribution systems. To mitigate the
risk, the corresponding IEEE standards specify the requirements for islanding detection and prevention
to be implemented within microgrid equipment [18]. Table 1 shows some common standards for
islanding detection, voltage and frequency ranges, along with the required detection time.

Table 1. Common standards for islanding detection.

Standards Detection Time Frequency Range Voltage Range

IEEE-1547 [19] t < 2 s 49.3 Hz ≤ f ≤ 50.5 Hz 0.88 ≤ V ≤ 1.1 p.u

IEEE-929-2000 [20] t < 2 s 49.3 Hz ≤ f ≤ 50.5 Hz 0.88 ≤ V ≤ 1.1 p.u

IEC-62116 [21] t < 2 s 48.5 Hz ≤ f ≤ 51.5 Hz 0.85 ≤ V ≤ 1.15 p.u

In this work, the standards shown in Table 1 is used to evaluate the performance of the proposed
method in the non-detection zone (NDZ) of the UV/OV and UF/OF relays. Islanding detection
methods can be classified into two major approaches: remote and local detection techniques [22].
Remote detection methods are communication-based techniques which mainly operate based on
transferring data/signals between the electric utility and the DG units. Communication-based methods
such as remote-end measurement [23,24] and wide-area phasor estimation [25,26] that rely on real-time
data transmission are highly expensive and might cause relay malfunction due to communication
failures. Local methods monitor the changes in the system’s parameters. These techniques can be
further divided into three main subgroups: active, passive and hybrid methods. Active techniques
are based on intentional transients or harmonic effects. These methods usually inject a perturbation
into the system and monitor the output power variations, active frequency drifts, and phase of
the voltage at a point of common coupling (PCC) in islanding mode [27]. The dominant active
techniques includes active frequency drift (AFD) [28], second harmonic drift [29], frequency jump [30],
locking frequency band [31], active frequency drift with positive feedback [32], high frequency signal
injection [33], and current injection [34,35]. Despite their effectiveness in islanding detection, active
techniques need to continuously vary the DG output, which negatively affects power quality (PQ) and
speed of detection while compromising the reliability of islanding detection at the PCC. Additionally,
disturbance injection may affect the system reliability.

Passive methods detect islanding conditions by monitoring the system parameters. Under/over
voltage (UV/OV) and under/over frequency (UF/OF) methods are examples of passive techniques
which monitor changes in the frequency and voltage to identify islanding condition [36,37].
To improve the detection performance, more sensitive indicators such as power spectral density [38],
and frequency-dependent impedance change [39] have been proposed. The main drawback associated
with passive techniques is their large non-detection zone (NDZ) which results in their failure when
there is a small power mismatch between DG and the load.
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To reduce the non-detection zone (NDZ) in passive techniques spectral decomposition and
advanced filtering techniques including wavelet singular entropy [40], artificial neural network [41],
Goertzel algorithm based on discrete Fourier transform [27], pattern recognition [42], and data
mining [43] were developed. However, these methods require time-consuming data-training processes
as opposed to an analytic model that characterizes the actual physical interconnection topology.

Hybrid methods which are a combination of the previous techniques are developed to overcome
the abovementioned drawbacks [44]. These approaches mainly use passive techniques to detect
islanding conditions and switch to active methods in the case of small changes in the system
parameters. Recent literature that focuses on hybrid islanding detection techniques can be found
in [45–47]. Although these methods have their advantages, they are usually time consuming and costly,
which makes their real implementation infeasible.

Overall, islanding phenomena are still one of the technical barriers for widespread deployment
of microgrids. Researchers are still struggling to develop highly precise and fast techniques that can
adapt to the dynamic nature of microgrid technology.

In this paper, a novel islanding detection method is developed and tested on a microgrid
with doubly-fed induction generators (DFIGs) as a case study. The proposed method is based on
a differential morphological filter which relies on signal processing in order to detect the islanded
condition during low active and reactive power mismatches. Compared to the existing techniques in
the literature, the proposed method has smaller NDZ, faster detection time and higher accuracy.

Utilizing mathematical morphology (MM) different features of the high-frequency signals caused
by power system disturbances are extracted to distinguish between normal and islanding conditions
with high accuracy. The proposed method uses simple math operators which have low computational
burden compared to matrix product, matrix inversion or other complicated mathematical operations.
In addition, it does not need huge data transfer and the only data that we need to collect, and transfer
is Vpcc which is already measured in the system for other purposes. Therefore, it can efficiently
detect islanding conditions within a short time interval. Simulation results on the various loads with
different active and reactive power mismatches, compared with other islanding detection techniques,
demonstrate the efficiency and accuracy of the proposed methods under different operation conditions
with reduced NDZ.

The rest of the paper is organized as follows: in Section 2 the DFIG model is described.
Mathematical morphology concept is discussed in Section 3. Section 4 presents the proposed algorithm.
Case studies and simulation results are presented in Section 5 followed by our conclusions in Section 6.

2. DFIG Modeling

The mechanical power extracted from wind turbine can be calculated as follows [48]:

Pwind =
1
2

ρ·
(

πr2
)
·V2

w (1)

where ρ and VW are air density and wind speed, respectively. r refers to the radius of the turbine blades.
According to Betz theory, the power can be exchanged to electrical energy by the following equation:

PExtracted = CP × PWind (2)

Cp(λ, β) = C1 (C2/λi − C3β− C4)·e−C5/λi (3)

λ =
r ωm

Vw
(4)

where CP is the turbine power coefficient which is a function of the tip-speed ratio λ and the turbine

blade pitch angle β. C1 = 0.5, C2 = 116, C3 = 0.4, C4 = 5, C5 = 21 and λi =
(

1
λ − 0.035

)−1
[43].
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Figure 1 shows λ (turbine speed)-power for various wind speed and β = 0 degree. It can be seen with
beta = 0, maximum power occurs at 9 m/s.
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A block diagram for DFIG and its controller is shown in Figure 2, where two controllers connect
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3. Overview of Mathematical Morphology

Mathematical morphology is a time domain nonlinear signal processing technique which can
be used to extract pertinent features of the signal under study [49]. It has a time domain structure
with easier implementation, light computation and memory requirements compared to other signal
processing techniques used for islanding detection. The feature extraction is based on the interaction
between the original data set and another set, which is called a structuring element (SE). The main
operators used in MM are addition and subtraction operators, thereby it is a fast and computationally
inexpensive technique.

MM includes two basic morphological operators: dilation and erosion. Other hybrid operators
like opening, closing, hit or miss and top-hat transform are defined based on these two operators.
Dilation, erosion, opening, and closing are mostly used in power systems analysis. Proper SE selection
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can play an important role for efficient signal processing through MM. SE can be defined in different
shapes such as flat, square, curve and triangular. In the power system analysis where the signals are
one dimensional, a flat SE such as a single row or column is more suitable [50].

3.1. Dilation and Erosion

For a one-dimensional signal {x(n)}, with domain Dx = {0, 1, . . . , N − 1}, where N is the maximum
value or the domain of values for the signal. We denote symmetric structuring element as {g(m)},
with domain Dg = {0, 1, . . . , M− 1}, M is the length of {g(m)}. In addition, (M < N) so x(n) is larger
than g(m). Then, the dilation of signal x by g, denoted by (x⊕ g) and erosion of signal x by g, denoted
by (x	 g), are defined as:

xd(n) = (x⊕ g)(n) = max{x(n−m) + g(m)}
f or 0 ≤ (n−m) ≤ n, m ≥ 0

(5)

As an example, consider n1 as the first sample where n1 ∈ Dx. We will use g(m) to consider a
window of signal and find the maximum value in this window:

xd(n1) = max{x(n1 −m1) + g(m1), x(n1 −m2) + g(m2), x(n1 −m3)

+ g(m3), . . . , x(n1 −mM−1) + g(mM−1), x(n1 −mM) + g(mM)}

This process will be performed for all samples (n = N). Every signal sample should also follow
the Erosion relationship as:

xe(n) = (x	 g)(n) = min{x(n + m)− g(m)}
f or 0 ≤ (n + m) ≤ n, m ≥ 0

(6)

Like the previous equation, for the first sample n1, we can write:

xe(n1) = min{x(n1 + m1)− g(m1), x(n1 + m2)− g(m2), x(n1 + m3)

− g(m3), . . . , x(n1 + mM−1)− g(mM−1), x(n1 + mM)− g(mM)}

where n ∈ Dx and m ∈ Dg. xd(n) and xe(n) are the dilated and erotisted outputs of the signal x(n)
processed by g(m) as SE, respectively. These values will be collected and plotted as a new signal which
highlight the changes in the original signal and can be sued for islanding detection with high accuracy
and efficiency.

3.2. Opening and Closing

Based on the two operations described in Equations (5) and (6), two other operators, opening and
closing operators, can be defined. The opening operation of x by g, denoted by x ◦ g and the closing
operation of signal x by g, denoted by x · g are defined as follows:

xo(n) = (x ◦ g)(n) = ((x	 g)⊕ g)(n) (7)

xc(n) = (x · g)(n) = ((x⊕ g)	 g)(n) (8)

where xo(n) and xc(n) are the opening and closing outputs of the signal x(n) processed by g(m) as SE,
respectively. In the following section a modified MM-based approach is used in this paper to detect
islanding condition in power distribution systems.

4. Proposed Islanding Detection Method

The proposed method combines dilation and erosion operators in MM as a dilation-erosion
differential (DED) filter to process the voltage signal at PCC for islanding detection. The goal of
the proposed filter is to highlight the changes of the signal, so it can be easily detected in islanding
condition. A flat SE (g(m) = [0.1, 0.1, 0.1, 0.1, 0.1]) is defined to extract the transient from the signal
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(PCC voltage in this work). The height of all elements in SE is considered equal to extract the transient
from the voltage signal. Otherwise, it will result in unexpected complexity which may not be practical.

This also reduces the time delay for data transfer as the data is already in the measurement system
md and me refer to the length of the SE for the dilation and erosion, respectively. To modify the MM
algorithm for islanding detection a dilation-erosion differential filter (DEDF) is proposed as follows:

DEDF(n) = [(x⊕ g)(n)− (x	 g)(n)] (9)

DEDF is proposed to highlight the changes in the signal. To improve accuracy and further
highlight changes in a signal. The result of a sample signal filtered by proposed DEDF is shown in
Figure 3. Figure 3b shows the output of the proposed filter applied on a sample signal shown in
Figure 3a. As can be seen DEDF highlight the changes in the signal.
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the DEDF.

As can be seen from the figure, DEDF processes the signal to find sudden changes and fluctuations.
These changes are then highlighted in the output of the DEDF. Therefore, it can be detected easily
within a short time interval.

The proposed DEDF is applied on RMS of the signal (DEDFOR) which can be described as follows:

DEDFOR (n) = [(xr ⊕ g)(n)− (xr 	 g)(n)] (10)

DEDFOR (n) = (xdr − xer)(n) (11)

Using RMS signal behind the DED filter increases the accuracy of the filter under minor changes
in the power network/microgrids. Therefore, in this paper, RMS of voltage signals is used as a basic
signal ( xr(n)→ x(n) ). In addition, to avoid zero output in case of small changes in PCC signals,
different lengths of SEs are selected for dilation and erosion. Aside from islanding conditions, there are
other load behaviors in the system that can affect the PCC voltage. To avoid false alarms, the threshold
is set based on the historical data collected from different operation conditions and by trial and
error. The proposed algorithm will detect islanding conditions if the output of DEDFOR is higher
than the predefined threshold. From the results reported in this work, which are collected under
different operation conditions and scenarios, it can be seen that the proposed threshold works properly.
The proposed algorithm is adaptive and will adjust the threshold value for different power system
condition. Figure 4 shows the flowchart of the proposed algorithm.

At first, RMS value of phase voltages (Va, Vb, Vc) of the feeders are extracted. The changes in all
three phase voltages are compared with the threshold of the relay. If relays cannot detect the changes,
DEDF starts a survey to detect the islanding condition. All signals are processed through the proposed
DEDF to extract details of the signals. If the processed signal exceeds the threshold value, the algorithm
will detect the islanding condition. In other word, in case of islanding condition, the magnitude of the
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voltage signals will increase which results in the increase in the output of DEDFOR. The algorithm
stops once all samples of data are processed. These steps attempt to highlight unusual changes in the
signal to distinguish between islanding condition and other events.
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5. Simulation Results

In this section several case studies and operation condition are analyzed to verify the performance
of the proposed algorithm in terms of detection time and non-detection zone (NDZ).

5.1. Test System

The test system used in this work is a balanced system with 50 Hz frequency depicted in Figure 5.
It can connect to various types of DGs, namely AC and DC sources via suitable converters. In this
work, the network is linked to two wind turbines as the DFIG type with 9 MVA power consisting
of six 1.5 MW. The grid is 120 kV with 50 MVA power and connects to a 120 kV/25 kV transformer.
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From PCC, an especial 25 kV network supply with two DFIGs. The DFIGs are connected to the
25 kV network using the transformers of rating 25 kV/575 V and 12 MVA power. Various series and
parallel loads with independent active/reactive power consumption are considered. All elements are
connected to each other with 3-phase PI section lines with 10 km length. More details about the system
are provided in Table 2.
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Table 2. System parameters.

Grid Transformer: TFR1

120 kV, 50 Hz Side1: Yg; Side2: ∆
DGs: DFIG1,2 50 MVA, 120 kV/25 kV

9 MW, 575 V, 50 Hz R1 = R2 = 0.08/30 p.u, Rm = Lm = 500 p.u
Lines: Line 1, 2, 3, 4, 5, 6, 7 L1 = L2 = 0.08 p.u

50 Hz, 10 km Transformer: TFR2,3
3 phase pi section Side1: ∆; Side2: Yg

R1 = 0.1153, R0 = 0.413 (ohm/km) 12 MVA, 25 kV/575 V
L1 = 1.05 × 10−3, L0 = 3.32 × 10−3 (H/km) R1 = R2 = 0.025/30 p.u, Rm = 500 p.u
C1 = 11.33 × 10−9, C0 = 5.01 × 10−9 (F/km) L1 = L2 = 0.025 p.u, Lm = Inf

The power balance in the Figure 5 can be written as follows:

n

∑
i=1

PLoadi + ∆P =
n

∑
i=1

PDGi (12)

n

∑
i=1

QLoadi + ∆Q =
n

∑
i=1

QDGi (13)

SLoad = Vpcc
2/Z∗L = PLoad + jQLoad (14)

PLoad = Real (Vpcc
2/Z∗L) (15)

QLoad = Imag (Vpcc
2/Z∗L) (16)

where PLoad and PDG are active power of loads and DGs, respectively. ∆P refers to power difference
between loads and DG sources which is compensated by the network in connected mode. QLoad,
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QDG and ∆Q are reactive power of loads, DGs, and reactive power difference between loads and DG
sources, respectively.

In this work, islanding condition is simulated by opening the circuit breaker (CB1) that is near to
the PCC. In this situation, both Pnet and Qnet become zero so DGs should supply all available local
loads individually. To verify the performance of the proposed method, it is tested and simulated under
six different conditions.

5.2. Case 1: Islanding

In this case study, the assumption is that CB1 is opened due to a sudden fault in the upstream
network at t = 0.5 s. Therefore, the utility stops supplying loads and switches to the island mode.
According to Equations (12) and (13), DGs support all of the load consumption without power
transmission between the DGs and grid (Pnet, Qnet = 0) in islanding mode. As can be seen in
Equations (17) and (18), the voltage at PCC depends not only on active power but also on reactive
power whereas load impedance is constant. Therefore, three phase voltages at the PCC are measured
and processed using the proposed DEDFOR algorithm to detect islanding change in a power network.

As can be seen from Figure 6a,b, the voltage and frequency in the PCC does not change
significantly before and after islanding, respectively. As previously mentioned in Table 1, over/under
voltage and frequency relays operate only in a specific range. Therefore, the relays could not detect
island in most sensitive conditions like this case. Utilizing the proposed DEDFOR, changes in the
signal are magnified for islanding detection. As it is shown in Figure 6c, immediately after islanding
happens at 0.5 s, output of the DEDFOR passes the threshold and detects islanding condition less than
17 ms.
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5.3. Case 2: NDZ Determination

In real operation, there is always some level of active/reactive power mismatch between the
output of DG and load of the power system. An active power mismatch refers to the ratio of active
power flow on PCC before islanding condition to the total power generated by the DG while the
reactive power mismatch is constant. Similarly, reactive power mismatches can be defined. It should be
noted that voltage magnitude (V) and frequency (f ) of DGs will not change significantly which makes
the islanding detection difficult for over/under voltage or frequency relays. More details regarding
the power balance and islanding formulation are available in [51].

In grid connected mode the power mismatch is compensated by the grid, i.e., ∆P 6= 0, ∆Q 6= 0.
When the grid is disconnected, the voltage (V) and frequency ( f = 1/2π

√
LC) will be forced to new

values, V́, f́ :

f ′ =
1

2π
√
(L + ∆L)·(C + ∆C)

(17)

Considering the pre-islanding frequency, we can write [37]:

f ′ − f
f

=

√
L·C√

(L + ∆L)·(C + ∆C)
− 1 (18)

where fmax and fmin are under and over frequency thresholds, respectively.
Given the frequency thresholds, fmin and fmax, for f ′ to be within the thresholds and assuming

∆L = ∆C ≈ 0, the following condition must be met:(
f

fmax

)2
− 1 ≤ ∆L

L
+

∆C
C
≤
(

f
fmin

)2
− 1 (19)

The relationship between ∆L, ∆C and can be derived as:

∆Q = V2·
(

1
2π· f ·(L + ∆L)

− 2π· f ·(C + ∆C)
)
=

QL
1 + ∆L

L
−QC·

(
1 + ∆C

C

)
(20)

Considering QL = QC = α f ·P, Equation (2) can be rewritten in a normalized form as:

∆Q
P

=
Q f

1+∆L
L
−Q f ·

(
1 + ∆C

C

)
≈ −Q f ·

(
∆L
L

+
∆C
C

)
(21)

where α f is the quality factor.
From Equations (17) to (21) we can write:

α f

(
1−

(
f

fmin

)2
)
≤ ∆Q

P
≤ α f

(
1−

(
f

fmax

)2
)

(22)

The same way we can drive the following threshold for voltage:(
V

Vmax

)2
− 1 ≤ ∆P

P
≤
(

V
Vmin

)2
− 1 (23)

where Vmax and Vmin a are under and over voltage thresholds, respectively. Details of the analysis is
available in [37].

In addition, there is a strong relation between VPCC and PDG and QDG as follows:

SDG − ∆S = Vpcc
2/Z∗L (24)
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PDG − ∆P = Real (Vpcc
2/Z∗L) (25)

QDG − ∆Q = Imag (Vpcc
2/Z∗L) (26)

Based on Equations (12) and (25), if ∆P changes in positive direction, it means PLoad < PDG,
and voltage will increase after CB1 is opened. On the contrary, in negative power mismatch
(PLoad > PDG), Vpcc will decrease. In this case study, several sensitive scenarios with the low
active/reactive power mismatch have been tested to evaluate the performance of the proposed method
under various power mismatch, ranging from 5% to 20%.

5.3.1. Scenario I

In this scenario, active power mismatch is increased step by step to monitor the voltage, frequency
and DEDFOR behavior of the network and companion them. As it is clear from Figure 7a,b, the changes
in voltage and frequency are barely noticeable and cannot be detected by relays. However, the proposed
DEDFOR can clearly detect islanding with high accuracy and in less than 8 ms as shown in Figure 7c.
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5.3.2. Scenario II

In this scenario and in four steps, active power mismatch is decreased to survey the network
behavior. The same as the previous scenario, as depicted in Figure 8a,b the changes in voltage and
frequency are barely noticeable and cannot be detected by relays. By decreasing the active power,
the voltage drops at islanding mode in comparison to connected mode. Since the DG tries to control all
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parameters, it is difficult to detect islanding based on the changes in voltage and frequency. However,
as depicted in Figure 8c, the DEDFOR algorithm can accurately and efficiently detect the islanding
condition under different range of power mismatches.
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5.3.3. Scenarios ІІІ, ІV 

In these scenarios reactive power mismatch is increased step by step and the performance of the 
system is analyzed in each part. Figure 9 clearly shows and compares network parameters when 
reactive power mismatch increased. Although voltage and frequency at PCC have some changes in 
each case, they cannot be detected by relay. Using DEDFOR islanding condition is accurately detected 
in less than 17 ms. 

Figure 8. Case2, Scenario II: the results of analysis for decreased active power mismatch, (a)Voltage at
PCC; (b) frequency at PCC; (c) output of the proposed DEDFOR detector; (d) the trip signal for CB1.

5.3.3. Scenarios III, IV

In these scenarios reactive power mismatch is increased step by step and the performance of
the system is analyzed in each part. Figure 9 clearly shows and compares network parameters when
reactive power mismatch increased. Although voltage and frequency at PCC have some changes in
each case, they cannot be detected by relay. Using DEDFOR islanding condition is accurately detected
in less than 17 ms.
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Figure 9. Case2, Scenario III: the results of analysis for increased reactive power mismatch, (a)Voltage
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A summary of the results is provided in Table 3.

Table 3. Various islanding condition for different power mismatches.

Scenarios Power Mismatch Different Ranges Constant Value

Scenario I increased%∆P +5%,+10%, +15%, +20%∆P 100%∆Q

Scenario II decreased%∆P −5%, −10%, −15%, −20%∆P 100%∆Q

Scenario III Increased%∆Q +5%, +10%, +15%, +20%∆Q 100%∆Q

Scenario IV decreased%∆Q −5%, −10%, −15%, −20%∆Q 100%∆Q

5.4. Case 3: Capacitor Switching Condition

When capacitor banks enter the grid, the reactive power in the grid will change. In this condition,
the grid voltage will change similar to islanding condition. Therefore, islanding protection relays
or methods should have the ability to distinguish it from the islanding condition to avoid a false
trip. In this case study, a large capacitor bank is switched at the PCC at t = 0.5 s by closing CB2.
The results presented in Figure 10 show that the proposed method can successfully separate the
islanding condition from capacitor switching with high accuracy. The output of the proposed DEDFOR
detector will not reach the predefined threshold which indicates that capacitor switching is not detected
at islanding condition.
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Overall, our simulation results have verified the accuracy and efficiency of the proposed method 
under different operating conditions. Certainly, one of the most important factors in islanding 
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proposed algorithm is faster than other well-known methods used for islanding detection. The 
average detection rate for the proposed method is less than 10 ms (minimum 6.09 ms and maximum 
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5.5. Case 4: Motor Starting

Dynamic characteristics of the motors require high current at the starting point which lowers
the terminal voltage. As the voltage across the load on the transmission line drops, it is usually
misinterpreted as an islanding condition. Thus, anti-islanding protection relays should have the
ability to distinguish it from islanding conditions. To verify the functionality of the proposed method
under a motor starting condition, it is tested under motor driving conditions when CB3 is closed at
t = 0.5 s. It can be seen from the results in Figure 11 that the algorithm can accurately and efficiently
separate motor starting from the islanding conditions. The output of the proposed DEDFOR detector
will not reach the predefined threshold which indicates that capacitor switching is not detected as
islanding condition.
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5.6. Case 5: Load Change

In this case, a sudden load reduction and increase is simulated at 0.5 s and 1 s, respectively,
to survey the network behavior under these changes. As can be seen in Figure 12, both these changes
results in some alteration in the output of the proposed detector, however, it will not pass the predefined
threshold and accurately separate both scenarios from islanding condition.
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Overall, our simulation results have verified the accuracy and efficiency of the proposed method
under different operating conditions. Certainly, one of the most important factors in islanding
protection is the detection time which is the lowest amount in the proposed method. Actually,
the proposed algorithm is faster than other well-known methods used for islanding detection.
The average detection rate for the proposed method is less than 10 ms (minimum 6.09 ms and
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maximum 17 ms for detection) which is considerably smaller than other existing methods in the
literature such as wavelet transform [42], S-transform [43], and MM [46] with average detection times
of 18, 26, and 21 ms, respectively. It results in a low computational burden which makes it suitable for
implementation in large-scale power systems. In addition, compared to the passive methods, the NDZ
is significantly reduced. In general, any change in the power grid that affects the voltage of load at the
PCC can be identified and separated from islanding conditions.

6. Conclusions

Unintentional islanding due to grid faults or wrong circuit breaker operations may result in
irreparable damages to the system. Therefore, it is necessary to effectively detect the islanding
conditions and swiftly disconnect DG from the distribution network within a specified time interval.
In this work, an accurate and efficient islanding detection method based on MM is developed and tested
on a microgrid with DFIG sources. Proposed method is a signal processing technique which does not
need requires huge data transfer and only uses simple math operators with low computational burden.
MM is used to highlight the sudden changes in the signals which cannot be detected by existing relays.
The proposed method is tested under different operation conditions, including capacitor switching,
motor starting, load changes and different active and reactive power mismatch. Simulation results
verify the accuracy and efficiency of the proposed method. It is a fast and reliable approach which
can detect islanding under 17 ms with high accuracy. Performance of the proposed method is not
affected by changes of the parameters or operation conditions, as shown by the results. It is scalable
for large-scale power systems due to its low computational burden and simplicity.
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Nomenclature

PLoad Load Real Power
PDG DG Real Power
∆P Real Power Imbalance Limits
QLoad Load Power
QDG DG Reactive Power
∆Q Reactive Power Imbalance Limits
Vpcc Voltage at PCC
Zs Source Impedance
Rs Source Resistance
Xs Source Reactance
Ls Source Inductance
Vs Source Voltage
CB Circuit Breaker
RMS Root Mean Square
ZL Load Impedance
RL Load Resistance
LL Load Inductance
CL Load Capacity
ZDG DG Impedance
RDG DG Resistance
XDG DG Reactance
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