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Abstract: Optimal power flow (OPF) is a non-linear and non-convex problem that seeks the
optimization of a power system operation point to minimize the total generation costs or transmission
losses. This study proposes an OPF model considering current margins in radial networks.
The objective function of this OPF model has an additional term of current margins of the line
besides the traditional transmission losses and generations costs, which contributes to thermal
stability margins of power systems. The model is a reformulated bus injection model with clear
physical meanings. Second order cone program (SOCP) relaxations for the proposed OPF are made,
followed by the over-satisfaction condition guaranteeing the exactness of the SOCP relaxations.
A simple 6-node case and several IEEE benchmark systems are studied to illustrate the efficiency of
the developed results.

Keywords: SOCP relaxations; optimal power flow; current margins

1. Introduction

The Optimal power flow (OPF) problem is widely researched in the many fields of power systems,
such as energy management, economic dispatch, congestion management, demand response, etc. [1].
In Carpentier’s research about economic dispatch, this optimization problem is firstly raised [2].
Dommel and Tinney make the contribution of making OPF a complete optimization model [3].

Constrained by Kirchhoff’s law, the OPF problem is a nonlinear mathematical program,
being non-convex and NP-hard [4]. Myriad algorithms for solving OPF have been proposed in
recent years. Linearized power flow equations have been used extensively in practice, often called
DC OPF, see [5–8]. It approximates the AC power flow in a mathematical format resembling DC
power flow. The model is simpler in a linear format and makes the simulation faster. However,
the solution cannot be exactly correct due to unavoidable errors. In [9], OPF is solved with the
Newton-method. After that, many methods according to Newton-method and gradient-algorithm
are proposed, see [10–12]. In these methods, the optimization point is found with iterations in the
specific direction. However, the problem is that it is very slow to reach convergence near the optimal
point. Besides, when there are many local optimal solutions, it is hard to get the global optimization
point. With the rapid development of computer science, the artificial intelligence algorithm makes
great progress in searching the optimal solution. Many algorithms are therefore applied in solving
OPF, see [13–18]. However, these methods occupy much space of storage and the operational time
depends very much on the performance of the CPU.

In order to ensure a global optimization solution, people tend to model OPF through convex
optimization problems. Some familiar ways are to relax the nonconvex constraints of bus injection
model by a semidefinite program (SDP) or the branch flow model’s constraints by a second order
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cone program (SOCP). Ref. [19] firstly transforms the power flow model in a quadric format with SDP
relaxations. This model processes superlinear convergence but it is not exactly equal to the original
problem. Ref. [20] reveals that SDP relaxation is exact only if the duality gap is zero. This method is
based on the bus injection model, relaxing the nonconvex rank-1 constraint of network’s voltage matrix.
The bus injection model is established on the relationship of the node voltage, voltage product of the
connected nodes and apparent power, of which the physical meaning is easy to understand. However,
the rank-1 solution cannot be obtained for some cases. Exact SOCP relaxations are demonstrated
in [21,22]. By relaxing the constraints of apparent power, branch current and node voltage, the OPF is
shown in a convex optimization model. The SOCP method can use short operation time and does not
have much relations with the network scale. It calculates faster than the SDP method with colossal
matrices. In this model, the physical relationship is no longer clear due to the squared algorithm of the
power flow equation and the direction in which the line should be defined.

The objective functions in OPF are often about transmission losses and generator’s active power
costs. Due to practical requirements, there can be some other constraints or objectives of OPF in
addition to these two objectives. Ref. [23] considers an emission and voltage stability enhancement
index in the objective functions. Ref. [24] focuses on voltage deviation and emission objective.
Ref. [25] solves OPF under security consideration. It adds operating limits in both pre-contingency
and post-contingency conditions. The OPF in [26] has additional voltage stability constraints. It puts
constraints on voltage difference. From the perspective of stability, people always put constraints
on the maximum transmission power or current and maximum voltage difference. The margin of
transmission current influences the thermal stability greatly. When the current margin is relatively
large, the system will obtain strong robustness to the transient current burst. Current margins seem
to be more important with high penetration of renewable energies that will lead to large power flow
changes due to inherent fluctuations.

In this paper, we propose an OPF problem considering current margins in radial networks. We use
different weight coefficients to make the current margins, active power losses and generation costs an
objective function. It concentrates on enough current margins on each branch, smallest transmission
losses and generators’ costs. The OPF model is derived from the bus injection model and with some
branch variables accounting for the current margins. SOCP relaxations are made for rank-1 constraints
of voltage matrix of each branch. The complex variables are decoupled into real ones so as to formulate
the OPF into a real convex optimization problem whose theory is self-contained nowadays and can
be solved in polynomial time with a global optimal solution. One theorem with the over-satisfaction
condition is presented to guarantee the exactness of the relaxations.

The paper is organized as follows: In Section 2, we introduce the notations in this paper and the
original OPF problem. Also, the basic OPF problem is elaborated from objective functions to equality
and inequality constraints. The objective functions here consider the current margins. In Section 3,
we solve OPF by two steps of relaxations. After two steps, the OPF is reformulated as a convex
optimization problem. In Section 4, we discuss the exactness of relaxations and propose one condition
to guarantee the exactness. In Section 5, a 6-node system and IEEE benchmark systems are applied to
test the algorithm. In Section 6, we conclude the paper, summarizing the main contributions of this
manuscript.

2. Problem Formulation

2.1. Notations

In this paper, we use the following notations:

1. Indices and Sets

R the set of real numbers C the set of complex numbers

Re(a) the real parts of a Im(a) the imaginary parts of a
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aH the conjugate form of a E the set of connected lines

N0 the set of all the nodes i the imaginary number constant

N the set of nodes without slack node G the set of generators’ node

i ∼ j the branch from i to j k serial number of each node

2. Parameters

For each bus node i ∈ N0, the variables are in capital letters, and the subscripts of them represent
the bus node numbers. Ui denotes the voltage in node i, Ii denotes the injection current of node
i. We define PGi and PDi for a node i, where PDi denotes the active power of node i demanded,
PGi denotes the active power which node i generated. Similarly, we define QGi and QDi the generated
and demanded reactive power of node i. For the injection power of each node Si = (PGi − PDi) +

i(QGi − QDi) denotes the complex power of node i, and Yi = Gi − iBi denotes the admittance to
ground.

For each line (i, j) ∈ E, let Iij denote the current from i to j and Iijmax denote the maximum
transferred current of each line. Let Sij = Pij + iQij denote the transmission power from i to j,
and Sji = Pji + iQji denote the transmission power from j to i. Yij = Gij − iBij denotes the admittance
of the line. Zij = Rij + iXij denotes the line impedance and Yij =

1
Zij

. In the AC network, U, Y, Z, I, S
are all complex variables, P, Q, G, B, R, X are all real variables.

Some notations are illustrated in Figure 1.

Figure 1. Summary of notations.

2.2. Optimal Power Flow Problem and Assumptions

An OPF problem can be stated mathematically as

Minimize f (x)

s.t. g(x) = 0

h(x) ≤ 0.

(1)

This is an optimization format where the objective function is described as f (x) here and g(x)
represents all the equality constraints of the variable x. h(x) means the inequality constraints. The word
“s.t.” is the abbreviation of the phrase “subject to”. As summarized in Equation (1), we make the
problems by minimizing the value of f (x) when the equality constraints g(x) and inequality constraints
h(x) are satisfied and x is the optimization variable.

2.2.1. Objective Functions

The objective function f (x) in OPF generally focuses on the transmission power losses or total
generators’ costs. The power loss can be formulated with the square of transmission current or the
square voltage of bus nodes. The generators’ cost function can be described with the non-negative
thermal plants’ coefficients ci and the generators’ active power PG. It can be shown as

f (Iij, PGi) = ∑
(i,j)∈E

I2
ijRij + ∑

i∈G
ciPGi, (2)
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The total power loss is represented with ∑ I2
ijRij here. ∑ ciPGi is the total generators’ cost.

In this paper, our objective functions involve a new term of current margin considering the thermal
stability limit.

In a power system, there is always a specific limit for the apparent power or current that can be
transferred from one node to another. This constraint only considers the maximum transforming limit
rather than margins of the branch. For a specific line, the percentage of transmission current and limit

current constructs the current margins. Let ϕij =
Iij

Iijmax
be an index variable where Iijmax represents the

maximum transferred current of each line (i, j) which is greater than 0. If each of branch is labeled with
ik jk where in radial network k ranges from 1 to n, there is ϕi1 j1 , ϕi2 j2 , . . . , ϕin jn individually for every line
where (i1, j1), (i2, j2), . . . , (in, jn) ∈ E. With a relative small and similar value on ϕik jk , enough current
margins will be acquired on all lines. For the connected lines, it goes as follows:

0 < ϕi1 j1 = ϕi2 j2 = · · · = ϕin jn < 1 (3)

To simplify the notations, ϕik jk will be abbreviated to ϕ. To obtain the uniform current margins,
(3) should be added as a constraint in OPF. However, this cannot be strictly satisfied considering
different situations of operation. Our targets are to get the relatively similar current margins which
means to approach (3) instead of exactly being at (3). We prefer small difference in ϕ of neighboring
branches. Due to the Cauchy-Buniakowsky-Schwarz inequality theorem [27], it is known (3) can
be obtained when the lower bound of ∑ ϕ2 is acquired under the condition that the sum of ϕ is
fixed, and 0 < ϕ < 1. Therefore, we put the ∑ ϕ2 in the objective functions. The objective functions
considering current margins will be shown as:

f (Iij, PGi) = κ ∑
(i,j)∈E

I2
ijRij + β ∑

i∈G
ciPGi + ι ∑

(i,j)∈E

I2
ij

I2
ijmax

, (4)

where β, κ, ι are the weight coefficients here.

2.2.2. Equality Constraints

The equality constraints g(x) in OPF are about load flow equations which are governed by the
Kirchhoff’s law and power balance’s law. For two bus nodes i and j in a connected branch as shown in
Figure 1, the formulation goes as follows:

Sij = Ui IH
ij , (5a)

Iij = (Ui −Uj)Yij, (5b)

ΣSij = (PGi − PDi) + i(QGi −QDi). (5c)

Equation (5) shows the load flow equations of each line. Equation (5a) demonstrates the relations
of the node voltage, transmission current and complex power. The Equation (5b) describes the
relationship of transmission current and voltage difference. Equation (5c) means each node’s power is
governed by the power balance law.

2.2.3. Inequality Constraints

The inequality constraints h(x) refer to limit of transmission power and current, limits for
voltage and capacity power considering system’s stable and safe operation. Let PGimin, PDimin and
PGimax, PDimax denote lower and upper bounds of the generated and demanded active power, QGimin,
QDimin and QGimax, QDimax denote lower and upper bounds of the generated and demanded reactive
power. For a load node, the bounded values of PGi and QGi are regulated 0. For the non-dispatchable
load, the value of PDimin and PDimax, QDimin and QDimax will remain the same as its demand value
respectively. Then PGi, PDi, QGi, QDi can be constrained as:
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PGimin ≤ PGi ≤ PGimax, (6a)

QGimin ≤ QGi ≤ QGimax, (6b)

PDimin ≤ PDi ≤ PDimax, (6c)

QDimin ≤ QDi ≤ QDimax. (6d)

In the power system, the voltage of each node should not fluctuate much from the sending point
to the receiving point. The limits are usually ±5% within the base voltage value. Uimin and Uimax
represents the minimum and maximum voltage value respectively. Ui gets the following constraints:

Uimin ≤ Ui ≤ Uimax. (7)

The nodes following Equation (7) are the ones that do not connect to the main grid, that is to
say i ∈ N. While for the slack bus which connects to the grid, the power limits of active power and
reactive power can vary from −∞ to ∞. However, we always regulate its voltage to be 1 + 0i under
unitary or regulate with a fixed voltage Ure f

0 .
For a transmission line from i to j, there are some constraints for the thermal limit to make sure

that the transmission line operates safely and stably. It can be shown as follows:

|Iij| ≤ Iijmax (8)

where Iijmax denotes the maximum limit of the transmission current. Usually, it depends on the
transmission line’s length and materials. We may use (8) for each line separately in different occasions.

2.2.4. OPF Problem and Assumptions

The OPF problem can be represented according to the above formulations:

Minimize (4)

s.t. (5), (6), (7), (8)
(9)

In this paper, we make the following assumptions:

1. The network graph G in network topology is connected.
2. The OPF in (9) is feasible.

3. OPF in Conic Format

Due to the nonlinear equality constraints in (5a), OPF is a nonlinear and nonconvex program
problem which is hard to find the global optimal solution. To make OPF solvable in polynomial time
and the optimal operation point found, we change OPF problem into a convex optimization format.
In this part, we aim to solve OPF problem (9) through two steps of relaxations. After the fist step,
the current variables in OPF problem will be wade away. In the second step, the quadric equations
will be relaxed with SOCP relaxations. The OPF problem can be solved thus by convex optimizations
and the global optimum can be obtained successfully. The structure of this section is summarized in
Figure 2.

Figure 2. The structure of this section schematic.
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3.1. First Step

The first step of relaxation is to handle with the current variables. By eliminating the current
variables, the non-convexitiy in power flow constraints (5a) will be changed. In the transformation,
we introduce the variables Sij and Sji at the same time for a transmission line i, j. Sij denotes the
direction of current form i to j and Sji denotes the power transformed form j to i. Please note that on
the transmission line i ∼ j, the current from i to j equals to the value of −Iji. However, due to the
voltage difference, the transmission power Sij does not equal to −Sji. By eliminating the variables Iij
and Iji, the power flow formulation becomes:

ΣSij = (PGi − PDi) + i(QGi −QDi), (10a)

Sij = YH
ij UiUH

i −YH
ij UiUH

j , (10b)

Sji = YH
ij UjUH

j −YH
ij UjUH

i . (10c)

We define the variables as:
Vi = UiUH

i , i ∈ N

Vij = UiUH
j . (i, j) ∈ E

(11)

where Vi ∈ R and Vi ≥ 0, Vij ∈ C. Through the transformation, the following power flow formula can
be obtained by substituting variables:

ΣSij = (PGi − PDi) + i(QGi −QDi), (12a)

Sij = YH
ij Vi −YH

ij Vij, (12b)

Sji = YH
ij Vj −YH

ij VH
ij , (12c)

where i ∈ N, i, j ∈ E.
With the transformation, there is relationship for the voltage of each line. It can be shown as:

|Vij|2 = ViVj. (13)

Equation (12) together with (13) is the new power flow constraints that indicate the current,
voltage and power balance in each branch of a power system topology. It is the power flow constraints
instead of the (5).

From Equation (12) above, we can see that Vij and VH
ij exist at the same time. For a convex

optimization problem, all the equality constraints should be affine, the objective functions and
inequality constraints should be convex functions. The Equation (12b) combining with (12c) together
are no longer affine functions due to the non-affine relationship between Vij and VH

ij . Therefore we

change the power flow constraints in the real number filed and replace Vij and VH
ij with new variables

in real number field.
Below we decouple the active and reactive power, real and imaginary parts of voltage and current

totally; the complex problem is changed into a real convex problem. More details about convex
optimization can be seen in [28]. The active and reactive power balance equation can be described as

PGi − PDi = ΣPij, (14a)

QGi −QDi = ΣQij, (14b)

where i ∈ N and (i, j) ∈ E. PGi and PDi are always equal or larger than zero. The equations above
means the total power of node i is the sum power of all connecting branches. The real and imaginary
part of Vij is defined as aij and bij. That is to say,

Vij = aij + biji. (15)
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Then the relations of Pij,Pji,Qij,Qji can be shown as follows:

Pij = Gij(Vi − aij) + Bijbij, (16a)

Pji = Gij(Vj − aij)− Bijbij, (16b)

Qij = −Gijbij + Bij(Vi − aij), (16c)

Qji = Gijbij + Bij(Vj − aij). (16d)

The Equation (13) can be represented as

a2
ij + b2

ij = ViVj, (17)

because of (15).
Since there are no more variables as Iij in the power flow constraints, the objective functions

should be reformulated correspondingly.
For (4), the power loss of i ∼ j can be represented with the sum of Pij and Pji. The active power

loss is consumed by the resistance of the line. For ϕ2 here, we can describe as

ϕ2
ij =

(Pij + Pji)

Rij I2
ijmax

(i, j) ∈ E

The objective function (4) can be shown as:

g(Pij, Pji, PGi) = ∑
(i,j)∈E

αij[Pij + Pji] + β ∑
i∈G

f (PGi), (18)

where
αij = κ +

ι

Rij I2
ijmax

. (19)

The objective function is concerned with the active power of each line which can be written as:

Minimize g (P), (20)

where P refers to (Pij, Pji, PGi). It should be noted the objective functions here can get the same value
of (4). For the voltage constraint, it will be for the new variables Vi instead of Ui.

U2
min ≤ Vi ≤ U2

max, i ∈ N

V0 = U2
re f .

(21)

Ure f denotes the reference voltage of the slack node.
For the inequality constraints (8), the constraints for Iij can be represented with the variables Pij

since Pij = I2
ijRij and Rij is a constant variable. For the line i ∼ j, the maximum transmission value of

Iij is same as that of −Iji, which both represents the current limit of the line (i, j). The constraints (8)
can be represented as:

−Rij I2
ijmax ≤ Pij ≤ Rij I2

ijmax,

−Rij I2
ijmax ≤ Pji ≤ Rij I2

ijmax.
(22)

With the variables Pij and Pji, we have the following constraints considering the actual
physical meanings.

Pij + Pji ≥ 0. (23)

When the value of Iij is positive, the value of Iji must be negtive and vice versa. The sum of Pij
and Pji represents the power loss of the transmission line which should be positive.
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After the first step of relaxation, the relaxed OPF problem is like this:

Minimize g(P)

s.t. (14), (16), (17), (6), (21), (22), (23)
(24)

The objective functions g(P) in a convex function of variables. The equality constraints (14a)–(14b)
and (16a)–(16d) are totally linear and affine and in a simple form. The equality constraints (17) are
in quadratic form. The inequality constraints (6), (21), (22) and (23) are all convex. Besides all the
variables are in real format. To make this problem a convex optimization, we need to do with the
non-affine equality constraints (17). This will be done in the next step.

3.2. Second Step

SOCP relaxations are applied to quadratic equations to convexify the OPF problem in
this subsection.

The quadric Equation (17) is converted into an inequality constraint after the relaxation.
The quadratic equation is changed into a rotating cone when relaxing the sign of equality into the sign
of inequality.

a2
ij + b2

ij ≤ ViVj. (25)

This Equation (25) can be presented as a cone in a 2-norm form.∥∥∥∥∥∥∥
2aij
2bij

Vi −Vj

∥∥∥∥∥∥∥
2

≤ Vi + Vj. (26)

This way, the inequality constraints are in conic format. The OPF (24) becomes a convex
optimization problem in real field after the second step of relaxation:

Minimize g(P)

s.t. (14), (16), (25), (6), (21), (22), (23).
(27)

To guarantee the correctness of the solution, it is expected that the final result exists on the bound
of the cone. If we get the solution when the formulation (26) acquires the equal sign, the relaxation is
what we call it an exact relaxation. When (26) gets the exact relaxations, the relaxed problem is equal
to (24) then. The exactness of the relaxation will be illustrated in the next section.

3.3. Relaxation Discussions

It is (27) that is the final presenting form in this paper. It is in a standard convex optimization
format, which ensures global optimality. The objective function considering power loss and current
margins here are linear independent with variables Pij and Pji. In addition, the generators’ cost objective
is a convex function with variables PGi. Therefore, it is regarded as a convex objective function in
OPF problem. The nonconvexity in the power flow constraints changes into convex constraints after
two steps of relaxations. Then, all the variables above are in R, the equality constraints are in affine
format, and the inequality constraints are convex functions. From the formulation, we can know
that the optimization problem is about variables PGi, PDi, QGi, QDi, Vi, aij, bij and Pij, Pji, Qij, Qji are the
intermediate variables.

Compared with the SDP relaxation method mentioned in [20], we transform the positive
semidefinite matrix of the voltage into some 2X2 ones, the number of which depend on branches’
amount. We improve the operational efficiency this way. Furthermore, with the bus injection model
adding branch variables, we make the current margin as a part of objective functions under thermal
stability consideration. The optimal solution of this objective function will leave enough margins to



Energies 2018, 11, 3164 9 of 17

branches and contribute to the power system’s stable operation. Compared with the SOCP relaxation
method proposed in the branch flow model in [21], we do not use the current variables in the model.
Instead, we use voltage variables. In addition, for each branch, we focus on the branch itself. In branch
flow OPF, when building up model for node i, it regulates the direction of transmission such as k ∼ i
and i ∼ j. In the above method, we split the power system with nodes and there is no need to regulate
the transforming direction for the branches.

The OPF solutions of voltage U can be recovered from square root calculations of Vi and division
operations of aij + biji. With the solutions of Vi, aij, bij, we present the following Algorithm 1 to recover

voltage of each node. In this algorithm, we first make the value of U0 equal to Ure f
0 and initialize the

set Mstay with number 0. When the set Mstay is not equal to the set N0, the algorithm runs into the
loop. In this loop, we will get the voltage value of the node and update the Mstay at the same time.
When the set Mstay is same as the set N0, the loop will end.

Algorithm 1: Recover U from Vi, aij and bij

Input:(Vi, aij, bij) that satisfies Lemma 1
Output:U
1. U0←Ure f

0 ;
2. Mstay← 0;
3. while Mstay 6= N0 do

find i→ j that i ∈ Mstay and j 6∈ Mstay;

compute Uj →
aij−biji

UH
i

;

Mstay → Mstay∪ j;
end while

Lemma 1. Let Vi ∈ R for i ∈ N0, let aij and bij ∈ R for (i, j) ∈ E.

If 1. V0 = Ure f
0 [Ure f

0 ]H for Ure f
0 ∈ C;

2. Vi is nonzero for i ∈ N0;
3. ViVj = a2

ij + b2
ij;

then the above algorithm computes the unique Ui that satisfies

U0 = Ure f
0 (28a)

Vi = (Ui)(Ui)
H i ∈ N, (28b)

aij + biji = UiUH
j (i, j) ∈ E. (28c)

Proof of Lemma 1. We will proof this with the recursive algorithm. The total recursive time is denoted
by the postive interger T. Let t indicate the recursive time where t = 1, 2, . . . , T. Let M(0) = 0, Mt

represent the set Mstay after the t recursion.
In the algorithm, for node 0 we simplify name one of the nodes connecting to it with number 1.

When t = 0, it is easy to know:

V0 = (U0)(U0)
H , (29a)

V1 6= 0, (29b)

a2
01 + b2

01 = V0V1. (29c)

Because of Algorithm 1, it can be obtained:

U0 = Ure f
0 (30a)

a01 − b01i = U1UH
0 . (30b)
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It satisfies (28a) naturally due to (30a). Combining (29) and (30b) together, we will get the
following equations:

a01 + b01i = U0UH
1 , (31a)

V1 = U1UH
1 . (31b)

It satisfies (28b) and (28c) at the same time. Therefore, Lemma 1 is satisfied for node 0 and the
branch connecting to node 0. Assume Lemma 1 holds for the node k and the branch (k− 1, k) after the
t recursion where k− 1 ∈ Mt, k ∈ Mt, 1 < t < T − 1. Therefore for one of the nodes connecting to k
which is denoted as k1 and k1 6∈ Mt, we can know:

Vk = UkUH
k , (32a)

Vk1 6= 0, (32b)

a2
k,k1

+ b2
k,k1

= VkVk1 . (32c)

Similarly, applying Algorithm 1 in the t + 1 recursion, we can get:

ak,k1 − bk,k1 i = Uk1UH
k . (33)

Combining (32) and (33), we can get

ak,k1 + bk,k1 i = UkUH
k1

, (34a)

Vk1 = Uk1UH
k1

. (34b)

(28) is satisfied for the node k1 and the connecting branch k ∼ k1. Therefore, Lemma 1 holds for
t + 1 recursion. This completes the proof that Algorithm 1 computes a U that satisfies (28).

Please note that such recursion holds on condition that the network topology is radial. In radial
networks, introducing a new node will only lead to one new branch. While in mesh networks, a new
node introduced will construct more than one branch when the node is in a circle. This makes it no
more sufficient in the recursion.

Lemma 1 offers a way to recover the OPF solution of (9) from the solution of (27) under the
condition that the second step of relaxation is exact.

For constraints, the solution of (27) with variables PGi, QGi, PDi, QDi, aij, bij satisfy the equality
and inequality constraints in (27). The Algorithm 1’s recovered variables PGi, QGi, PDi, QDi, Ui can be
proved to satisfy the constraints (5)–(8) by putting (28) and (14), (16), (17), (6), (21), (22), (23) into the
formula. This implies that when the second step of relaxation is exact, the relaxed OPF constraints can
accord with primal OPF constraints equivalently.

For objective functions in (9) and (27), we can get some f (Iij, PGi) = g(Pij, Pji, PGi) here. In the
first step of relaxation above, we can see the first step is done by introducing variables Vi, aij and bij
satisfying Vi = UiUH

i and UiUH
j = aij + biji. With each Iij and Ui, we can get the corresponding Vi, aij,

bij, Pij and Pji. Thus,
f (Iij, PGi) ≤ g(Pij, Pji, PGi). (35)

Due to Lemma 1, with Algorithm 1 we can recover Ui and Iij. Subsequently,

g(Pij, Pji, PGi) ≥ f (Iij, PGi). (36)

Then,
f (Iij, PGi) = g(Pij, Pji, PGi). (37)
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Since solving (27) gets a global optimal solution of g(Pij, Pji, PGi), the recovered solution will be
the global optimum of f (Iij, PGi). Therefore, the recovered solution of relaxed OPF in Algorithm 1 is
the optimal solution of OPF problem.

4. Exactness of the Relaxation

As is shown before, we call the relaxation is exact if the optimal solution is where the formulation
(26) gets the equality sign. In this section, we will give one theorem to guarantee the exactness
of relaxation.

Theorem 1. If there is no upper bound on PDmax and QDmax , the relaxation is exact then.

Proof of Theorem 1. Assume we get a group of optimal solutions, aij, bij, Vi and Vj . In addition, we get
exact solutions on line i ∼ j where i, j 6= 0 except the particular line k ∼ l. That is to say, {i, j} ∩ {k, l} 6=
∅ and

a2
ij + b2

ij = ViVj when {i, j} 6= {k, l},

a2
ij + b2

ij < ViVj when {i, j} = {k, l}.
(38)

On the line k ∼ l, we define
a∗kl =

√
VkVl − bkl ,

b∗kl = bkl ,

V∗k = Vk,

V∗l = Vl .

(39)

We define the following variables with a∗kl , b∗kl , V∗k , V∗l ,

P∗kl = Gkl(V∗k − a∗kl) + Bklb∗kl ,

P∗lk = Gkl(V∗l − a∗kl)− Bklb∗kl ,

Q∗kl = −Gklb∗kl + Bkl(V∗k − a∗kl),

Q∗lk = Gklb∗kl + Bkl(V∗l − a∗kl).

(40)

Since a2
kl + b2

kl < VkVl , a∗kl is larger than akl . Then

P∗kl − Pkl = Gkl(V∗k − a∗kl) + Bklb∗kl − Gkl(Vk − akl)− Bklbkl = Gkl(a∗kl − akl) < 0, (41)

Q∗kl −Qkl = −Gklb∗kl + Bkl(V∗k − a∗kl) + Gklbkl − Bkl(Vk − akl) = Bkl(a∗kl − akl) < 0. (42)

The Equations (41) and (42) represent the difference of the transmission power on branch k ∼ l.
For the injected active power at node k and l, we can get

P∗Gk − P∗Dk = P∗kl + Σk∗∼iP∗ki

= P∗kl + Σk∗∼iPki < PGk − PDk

P∗Gl − P∗Dl = P∗lk + Σl∗∼iP∗li
= P∗lk + Σl∗∼iPki < PGl − PDl

Q∗Gk −Q∗Dk = Q∗kl + Σk∗∼iQ∗ki

= Q∗kl + Σk∗∼iQki < QGk −QDk

Q∗Gl −Q∗Dl = Q∗lk + Σl∗∼iQ∗li
= Q∗lk + Σl∗∼iQki < QGl −QDl

(43)

When the demanded active power at node k and l remains unchanged, P∗Gk < PDk and P∗Gl < PDl .
When the demanded reactive power at node k and l remains unchanged, Q∗Gk < QDk and Q∗Gl < QDl .
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If the value of PG and QG has already reached the lower bound of PGmin and QGmin, we can change the
value of PDi and QDi due to the fact there is no upper bound for PDmax and QDmax. The value of PGi
and QGi will remain unchanged then which will satisfy the constraint (6). According to the objective
functions of power cost are strictly increasing in variables PG, the objective function with the variable
PG will have a smaller value or the same value. Besides,

P∗kl + P∗lk − (Pkl + Plk) = Gkl(V∗k −Vk + V∗l −Vl − 2a∗kl + 2akl) < 0. (44)

Then, the objective function with Pij + Pji has a smaller value.
For this set of solutions a∗kl , b∗kl , V∗k , V∗l , we can know that this satisfies (14) and (16) according to

(40) and (43). Obviously, this set of solution satisfies (25), (6), (21), (22),(23). Therefore, the solutions
satisfy the constraint (14) and (6). In addition, it is definitely a solution of (24) and has a better value on
objective functions. The optimal solution is such that every inequality sign in Equation (26) achieves
equality sign. This concludes the proof.

Please note that there is no upper bound on the active and reactive demand power means for a
node i, we can supply more power than it originally needed, this can be called load over-satisfaction
condition. This condition has been mentioned in ref. [20] and ref. [21]. From the proof above, we can
know that if the relaxation is not exact, we can always find a better optimal solution which contradicts
the global optimum. Therefore, we can get the exact solutions under this over satisfaction condition.
Besides, the proof has no relation with the network structure. This works for the mesh network as well.

From all above, the proposed two step relaxation can be summarized by the following Figure 3.

Figure 3. The structure of relaxing and recovering schematic.

5. Case Study

The novel OPF formulation is tested in some cases in this section. One is a six-node system as
an example and the other is the standard IEEE benchmark systems which helps to verify whether
the relaxations are exact. The case studies are evaluated on a computer whose CPU is Intel Core 5 at
2.9 GHz with 8 G RAM. The operation system is Mac OS 10.13. The YALMIP [29] is used to depict the
variables of the model in Matlab 2016a. In addition, the CPLEX [30] solver is used to solve the convex
relaxation problems.

5.1. A 6-Node Small System Example

In the simple radial network, there are six nodes and five branches in total as shown in Figure 4.
In this system, the node 1 refers to the default slack bus. The node 3 and 5 represent the generator
node, and the node 2, 4 and 6 is the adjustable load nodes with controllers. The specific parameters are
summarized in the below Tables 1 and 2, and all the values are in per unit quantities (100MVA Base).

Figure 4. A 6-node small system example.
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Table 1. 6-Node System Bus Parameters.

Bus Parameters

Node P Q Vmin Vmax c0 c1 c2

1 ∞ ∞ 1 1 0.22 2.5 0.11
2 −2.4 −3.2 0.8 1.2 0 0 0
3 limit limit 0.8 1.2 0.25 2.4 0.85
4 −3.5 −1.8 0.8 1.2 0 0 0
5 limit limit 0.8 1.2 0 2.4 0.25
6 −2.5 0 0.8 1.2 0 0 0

Table 2. 6-Node System Line Parameters.

Line Parameters

From to Node r x b plim qlim

1–2 0.05 0.20 0.030 7.5 4.5
1–5 0.10 0.20 0.040 7.5 4.5
2–3 0.05 0.075 0.070 7.5 4.5
3–4 0.01 0.01 0.030 7.5 4.5
5–6 0.01 0.01 0.04 7.5 4.5

The OPF problems can be formulated with Equation (27). Therefore, each branch is constrained
with 7 formulations, 3 of which are inequality constraints and 4 of which are equality equations. For the
nodes, considered on the limit, two equality constraints and five inequality constraints are applied for
each node.

Our optimization objective of this system is to minimize the total cost, transmission loss
and to the best of uniform current margin of the system. We firstly make the objective function
g = Pij + Pji + f (PGi) focusing on transmission loss and power cost and denote it as LC. Moreover,

we choose objective function as g = (1 + 1
Rij I2

ijmax
)(Pij + Pji) + f (PGi) and denote it as LCC. In these

two models, the weight coefficients are all equal to 1. Applying the data in Tables 1 and 2, we get
the corresponding result as follows in Table 3. The transmission loss of each branch here is denoted
with Pij + Pji, and we calculate the value of ϕ in each branch. All the values are in per unit quantities
(100MVA Base).

Table 3. Branch value.

Objective Function LC LCC

Branch No. Pij + Pji ϕ Pij + Pji ϕ

1–2 0.047295 0.30 0.055648 0.47
2–3 0.7975 0.88 0.76391 0.82
3–4 0.11632 0.55 0.11632 0.55
1–5 0.0019792 0.38 0.02467 0.49
5–6 0.061718 0.95 0.071718 0.82

Total power loss 1.025 1.032

We list the corresponding bus value in Table 4. The value of PGi is the active power generated.
In addition, V here is the square amplitude of node voltage.
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Table 4. Bus value.

Objective Function LC LCC

Bus No. PGi V PGi V

1 0.72371 1 0.9011 1
2 0 0.88 0 0.87
3 6.0817 0.94 5.8975 0.95
4 0 0.94 0 0.93
5 2.6266 1.2 2.6334 1.2
6 0 0.92 0 0.91

Total power cost 22.71 22.73

Comparing the results above, we can see with current margin considered in OPF, there will be
changes to the value of ϕ in each branch. As is shown in in Table 3, the ϕ of branch 2–3 and 5–6 are so
large in LC. However, it becomes less somehow in LCC then. Similarly, the value of ϕ of branch 2–3 and
5–6 becomes larger in LCC than LC. In addition, at the cost of considering current margin, the active
power generated will be more in LCC than LC as shown in Table 4. It can be seen the ϕ is not uniform
when the weight coefficients equal to one. Further increasing the weight coefficients, we make the
objective function as F = (1 + 100

Rij I2
ijmax

)(Pij + Pji) + f (PGi) and denote it as LCBC. This way we make

the weight of current margin bigger than power loss and generators’ cost. We get the corresponding
branch results as follows in Table 5.

Table 5. Branch value of LCBC.

Branch No. Pij + Pji ϕ

1–2 0.068284 0.56
2–3 0.68128 0.60
3–4 0.11632 0.55
1–5 0.002786 0.54
5–6 0.046313 0.61

The corresponding bus value is listed in Table 6, where the value of PGi is the generated active
power and V is the square amplitude of node voltage.

From the results we can see different ϕ are in the tendency of accordance. The values of ϕ are
around 0.5 then. With bigger weight of current margin objective, we obtain the relative uniform ϕ.

Table 6. Bus value of LCBC.

Bus No. PGi V

1 1.672 1
2 0 0.78
3 5.2342 1.1
4 0 0.97
5 2.6352 1.2
6 0 0.82

5.2. Test Results in IEEE Benchmark

In the standard IEEE benchmark, the test networks are modified in the Matlab toolbox matpower.
Since the IEEE systems are meshed, we split the circles of five systems for simulation. Our optimization
objective function focuses on the active power loss, which is the sum of Pij and Pji. The operation
time is compared in two different models. The first model is proposed in [31] and we use the relaxed
OPF 3 model metioned in the paper of which the SDP relaxations have been changed into SOCP ones.
We denote this model as BIMR. The second model is according to (27) and denote this model as BIMBR.
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The comparison results are shown in Table 7. The unit of time is in second and all the values are in per
unit quantities (100MVA Base)

Table 7. Two Relaxation Tests in IEEE Benchmark Systems.

Relaxation System Power Loss Operation Time

BIMR

IEEE 9 2.548 0.0262
IEEE 14 13.574 0.0367
IEEE 30 7.359 0.0486
IEEE 57 19.482 0.0521

IEEE 118 62.6212 0.1321

BIMBR

IEEE 9 2.548 0.0251
IEEE 14 13.574 0.0334
IEEE 30 7.359 0.0354
IEEE 57 19.482 0.0425

IEEE 118 62.6212 0.0905

It can be seen from Table 7 that the proposed relaxation makes OPF a convex and solvable
optimization problem. The computation speed of the optimization is counted on the topology and
scale of system. The optimal value of the objective functions is the same in two models. This shows
that both of the relaxation is exact and tight. The model mentioned in [31] is in a complex number field
and our model is illustrated in a real number filed, and as is shown in Table 7, the model proposed in
this paper calculates faster than the bus injection model with SOCP relaxation of each branch, which is
especially obvious in the large systems.

5.3. Discussions

From the case study above, it can be seen that this kind of method is applicable in both small
networks and standard IEEE benchmark systems whose networks are transformed in radial formats.
When the loads have not reached the maximum capacity, our relaxations can be proved to be
exact. With our methods, the current margins of testing cases tend to be more uniform. Besides,
compared with the relaxed SDP method, our method shows a better efficiency.

6. Conclusions

In this paper, we propose an OPF power flow formulation considering current margins in radial
networks. With current margins in objective function, we obtain OPF solutions with relatively similar
and enough margins of each branch. This OPF model makes it possible to consider the current
margins under thermal stability consideration with new branch variables added to bus injection model.
Applying the SOCP relaxations, the OPF is convex and solvable. With branch variables added into bus
injection model, the proposed method is not sensitive to the system scale and has no need to define
transmission directions. Moreover, we propose one sufficient condition to guarantee the exactness of
relaxations. In the case studies, the simple 6-node network model shows relatively uniform current
margins and the tests in standard IEEE benchmark systems using achieve a higher efficiency.
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