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Abstract: A reactive power/voltage control strategy is proposed that uses wind turbines as
distributed reactive power sources to optimize the power flow in large-scale wind farms and
reduce the overall losses of the collector system. A mathematical model of loss optimization for
the wind farm collector systems is proposed based on a reactive power/voltage sensitivity analysis;
a genetic algorithm (GA) and particle swarm optimization (PSO) algorithm are used to validate the
optimization performances. The simulation model is established based on a large-scale wind farm.
The results of multiple scenarios show that the proposed strategy is superior to the traditional methods
with regard to the reactive power/voltage control of the wind farm and the loss reduction of the
collector system. Furthermore, the advantages in terms of annual energy savings and environmental
protection are also estimated.

Keywords: energy savings; wind farm; reactive power dispatch; genetic algorithm; particle
swarm optimization

1. Introduction

Due to the advancements in wind generation and the increase in the size of wind farms (WFs),
the uncertainty of wind power has a larger impact on the system stability and operational benefits.
However, WFs are required to have the ability to support voltage and reactive power at the point
of common coupling (PCC) according to the Grid Code, which requires a well-configured reactive
power control system [1]. Generally, WFs are equipped with a certain number of reactive power
compensation devices such as static volt-ampere reactive compensators (SVCs) and static synchronous
compensators (STATCOMs) to ensure voltage stability when a three-phase short circuit and other
various faults occur [2,3]. Some researchers have enhanced the voltage stability of each bus in the WF
via precisely coordinated control in case of a failure [4,5]. Nonetheless, this method is not suitable for
reactive power dispatching under normal operations because of economic reasons [6].

Currently, the mainstream doubly-fed and direct-driven wind turbine (WT) operates continuously
between 0.95 power factor lead and 0.95 lag because both of their converter systems have good reactive
power control capability [7]. These WTs could be regarded as reactive power compensation devices that
can be flexibly controlled at low costs in WFs. In a large-scale WF, transformers and collector circuits
are more abundant than in other power plants, contributing to greater losses [8]. Furthermore, the
transmission chain, the converter and other equipment losses are strongly related to the performance
of the WT, while the losses in the collector system are significantly influenced by the distribution of the
electrical power flow [9]. Therefore, the control of the reactive power of the WTs and the optimization
of the load flow are effective methods for improving the voltage level and achieving energy-savings
in WFs.
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Reducing the line loss through power flow optimization is an important measure for the economic
operation of the power system. In reference [10], a robust cone programming approach to determine the
ramp power limit with AC power flow constraints was proposed to maximize the total operating range
of WFs. In reference [11], the optimal operation model of active distribution networks is established,
to reduce the power losses and improve the voltage profiles. Automatic voltage control (AVC) is
usually used in reactive power dispatching of large-scale WFs and focuses on improving the voltage
control level of WFs [12]. If the loss reduction control of the collector system is also incorporated into
the reactive power control goal through load-flow optimization, the operations of the WF and the
control performance of the AVC system can be improved.

To address the aforementioned problems, a reactive power control system based on optimal
reactive power dispatch (ORPD) in a WF is proposed in this paper. The control variable is the
reactive power reference of each WT and is implemented by a sensitivity coefficient matrix with the
purpose to reduce the losses in the collector system and maintain the voltage stability of each bus.
Simultaneously, this control system satisfies the grid code regarding the reactive power demands of
the PCC. The established optimization model is solved using a genetic algorithm (GA) and particle
swarm optimization (PSO) algorithm to determine a suitable algorithm for the ORPD. To improve
the convergence, the voltage violation is addressed using a penalty function. The proposed dispatch
method is compared with the proportional dispatching approach in various cases. The GA and PSO
algorithm are both effective for specific WFs, whereas the results of the GA are better for the estimation
of the energy-savings for the annual power generation.

The rest of this paper is organized as follows. The architecture of the proposed reactive power
control system is described in Section 2. Section 3 presents the GA and PSO algorithm and describes
the solution of the optimization search problem. Section 4 shows the test results for verifying the
effectiveness of the established optimization model in different cases. Finally, the conclusion is given
in Section 5.

2. The Proposed Reactive Power Control System

The architecture of the proposed reactive power control system is shown in Figure 1 and the
operation of the system is as follows. First, based on the topology and the parameters of the WTs
and collector system, the admittance matrix of the nodes Ybus is created and is used for the power
flow analysis under specific wind conditions. A Jacobian matrix J that is calculated based on the load
flow deduces the reactive power/voltage sensitivity matrix between the buses and the loss model
of the collector system is generated. Second, an optimization model with the objective function of
the minimum loss of the collector system is established and the control variable is the reactive power
reference Qre f

WT of each WT. This model begins with the current working states of each WT and is solved
by a random optimization algorithm to obtain the reactive power instruction set.
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The flowchart of the dynamic reactive power control system is shown in Figure 2. It communicates
with the WF control system-energy management (WFCS-EM) and the cycle control period is designed
in minutes. At the same time, the control system provides a mechanism to trigger the control cycle
when the wind speed variation exceeds the threshold value. Therefore, this control system meets the
real-time requirements of existing WFCS-EM.
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2.1. Sensitivity Coefficient Matrix

The loss reduction optimization of the WF collector system must meet the requirements of
stable and unlimited voltage at each bus; the reactive power/voltage sensitivity coefficient matrix is
established to limit the voltage variation range and improve the optimization efficiency.

The Jacobian matrix of the power system contains the sensitivity information regarding the
injection power and voltage of the buses [13]. We consider a WF with n buses of WT, a bus of PCC,
and m is the bus to be solved. The Jacobian matrix J in polar coordinates is divided into four parts:

J =

[
Jmm Jmn
Jnm Jnn

]
(1)

The relationship between the voltage variation ∆V and the reactive power variation ∆Q is
as follows: [

∆Qm
∆Qn

]
=

[
Jmm Jmn
Jnm Jnn

][
∆Vm

∆Vn

]
(2)

Consider ∆QN = 0, that is, only the reactive power of bus m changes. The sensitivity Jacobian
matrix Jsm of i bus is obtained by a matrix change.

Jsm = Jmm − Jmn · J−1
nn · Jnm (3)

J−1
sm =

 A1,1 . . . A1,2a
...

. . .
...

A2a,1 · · · A2a,2a

 (4)

where J−1
sm is the inverse matrix of Jsm, A is the specific element of J−1

sm .
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The sensitivity relationship between the voltage change of m bus and the reactive power change
of j bus is obtained using Equation (5).

S =
∆Vm

∆Qj
= Aa+m,a+j (5)

2.2. Objective Functions

The collector system of the WF includes transmission lines, the main transformer, and package
transformers of the WTs [14]. For the wind farm studied in this paper, the main transformer is a
110 kV/35 kV three-phase step-up transformer connected to the grid, and the package transformer is a
35 kV package integrated compact transformer substation for WT. The optimization model established
in this study uses the objective function of the minimum loss in the collector system and the loss model
of each part is defined as follows.

Transformers:

The main transformer and package transformers differ only in terms of the capacity and
parameters; their loss models are consistent and can be calculated by Equation (6):

Ploss
tr = P0 + β2Pk (6)

where Ploss
tr refers to transformer loss, P0 is the no-load loss, β is the load rate, and Pk refers to the

load loss.

Power cables system:

The cables connecting i bus and j bus are shown in Figure 3; y and I represent the admittance and
current of each cable, respectively, V represents the voltage of each bus, and the current from i bus to j
bus is positive in the i→j direction. The current from i bus to j bus can be calculated using Equation (7).

Iij = Il + Ii0 = yij(Vi −Vj) + yi0Vi (7)

Similarly, the current from j bus to i bus can be calculated from Equation (8).

Iji = −Il + Ij0 = yij(Vj −Vi) + yj0Vj (8)

The losses in the cable ij are the sum of the complex power:

Ploss
ij = Sij + Sji = Vi I∗ij + Vj I∗ji (9)
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The objective function is as follows:

f = minPloss = min∑ (Ploss
tr + Ploss

ca ) (10)

2.3. Constraints

When optimizing the reactive power of the WF, it is necessary to meet not only the constraints of
the power flow equation but also the inequality constraints of the reactive power output of the WTs,
bus voltage, and apparent power of the lines as follows:

Qmin
WTi ≤ QWTi ≤ Qmax

WTi, i ∈ Nn (11)

Vmin
j ≤ Vj ≤ Vmax

j , j ∈ Nn+1 (12)

Sl ≤ Smax
l , l ∈ Nn (13)

In addition, the reactive power demand at the PCC is also a constraint of this
optimization problem:

Qre f
pcc −Qmeas

pcc = 0 (14)

where QWTi represents the reactive power of each WT; Vj indicates the voltage of each bus; Qre f
pcc and

Qmeas
pcc are the reference and measurement values of the reactive power at the PCC, respectively; Sl refers

to the apparent power flow in the line l, and n indicates the total number of WTs. The voltage ranges
constrain the bus voltage Vj so that it is maintained without violating the allowable region. For the
wind farm studied in this paper, each bus voltage is kept between 0.95 pu and 1.05 pu.

3. Algorithm to Solve the Model

The proposed reactive power control strategy is based on the ORPD, which is a multi-objective
optimization problem with the characteristics of strong coupling and nonlinearity. Traditional
optimization methods such as linear programming, the interior point method [15], and sequential
quadratic programming [16] have the characteristics of sensitivity regarding the initial value selection
and easy convergence to a locally optimal solution but have difficulty in differentiating the objective
function and some other problems; in contrast, a random optimization algorithm is an effective method
to solve such problems. However, for specific optimization problems, different random optimization
algorithms exhibit differences in convergence speed and global optimization performance. As a result,
in this study, we used strategies based on the GA and PSO algorithm separately to verify that the final
optimal results are effective.

3.1. Genetic Algorithm

As an evolutionary calculation approach, a GA is probably the most popular method for
optimization search problems. A GA is a random search approach based on imitating the process of
natural selection; the basic framework of a GA is shown in Figure 4. At the start of the optimization
procedure, numerous individuals are initialized at random. Each individual represents a feasible
solution. Subsequently, these individuals are estimated using objective functions. The new individuals
are subjected to selection, crossover, and mutation. The resulting individuals are selected based on a
fitness function to create new offspring [17].
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In this study, the original binary-coded GA was extensively modified to effectively address the
ORPD problem. First, in the optimization algorithm, the candidate solutions are represented by a
combination of floating-point numbers and integers instead of binary strings. Each number in the
candidate solution indicates a variable. However, as in the binary-coded GA, every value is regarded
as a substring. This representation provides more advantages than the binary code. The computing
capability of the GA is greatly improved because it is unnecessary to transform the solution variables
into a binary format. In addition, less memory is required. With the combined type of expression, the
reproduction operator and evaluation process remain unchanged when the binary-coded GA is used
but it is necessary to make some modifications for the crossover and mutation operations. The details
on genetic operators applied in the improved GA are described in reference [18].

3.2. Particle Swarm Optimization Algorithm

Particle swarm optimization is based on simulating the foraging behavior of birds. It is also a type
of evolutionary algorithm that starts with a random solution, finds the optimal solution by iteration,
and evaluates the quality of the solution by a fitness function. However, the PSO has simpler rules
than the GA and has no crossover or mutation operations. The PSO algorithm finds a global optimum
value by searching for the current best variables in the solution space. Particle swarm optimization
algorithms have become popular in recent years due to their high accuracy, fast convergence, and easy
implementation. The PSO algorithm is shown in Figure 5. Many researchers have successfully applied
PSO algorithms for optimal power flow problems [19]. A comprehensive review of PSO algorithms
and applications to power system problems is provided in reference [20].

In this study, the weighted PSO is selected to optimize the proposed ORPD strategy.
The parameters of the weighted PSO are the inertia weight w and the acceleration factors C1 and
C2. Commonly, the values of C1 and C2 are 2. The inertia weight w controls the exploration of the
search space; therefore, an initially higher value (typically 0.9) allows the variables to move freely to
find the global optimum neighborhood rapidly. Meanwhile, a lower value of the final inertia weight
(usually 0.4) narrows the search and is advantageous for the local search [21]. The inertia weight w
that decreases based on a linear function produces good results in many applications; it is calculated
using Equation (15).

w(k) = wstart − (wstart − wend)
k

Tmax
(15)

where wstart is the initial inertia weight, wend is the final inertia weight, k is the current iteration times,
Tmax is the maximum iteration times.
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3.3. Constraints Handling

The constraint handling is a very important part of the optimization problem and directly affects
the quality of optimization. We use an identical constraint handling method in the ORPD strategy
optimized by the GA and PSO because both methods evaluate the solution using a fitness function. The
methods can be classified according to the following four types: search of feasible solutions, penalty
function, solution repair method, and hybrid methods.

Because of the random nature of the GA and PSO, some variables may exceed their limitations
and may consume more time for the algorithm to converge. Penalty functions are used in this study
to ensure that a solution is found and the constraints are met. This penalty function implies that if a
variable violates the inequality restraint, it will be subject to a penalty that extends to the objective
function. In this study, the penalty functions used for handling the inequality constraints are used in
the following manner:

f1 = w1

NWT

∑
i=1

f (vi) + w2

Nbus

∑
j=1

f
(
uj
)

(16)

f (x) =


0, xmin < x < xmax

(x− xmax)
2, x > xmax

(x− xmin)
2, x < xmin

(17)

In order to search an optimization solution as soon as possible, the equality constraint in
Equation (14) is modified and an error value ε is included as follows:∣∣∣Qre f

pcc −Qmeas
pcc

∣∣∣ < ε (18)

f2 = w3 f
(

Qmeas
pcc

)
(19)

As mentioned above, the penalty function is used in the following equation when the variables
surpass the limits:

Fpenalty = f1 + f2 = w1

NWT

∑
i=1

f (vi) + w2

Nbus

∑
j=1

f
(
uj
)
+ w3 f

(
Qmeas

pcc

)
(20)

where,

-- v indicates the control variables involving the reactive power setting of all WTs.
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-- u represents the dependent variables, including all bus voltages and the reference reactive power
of the PCC.

-- w1, w2 and w3 are called the penalty factors in this study; they increase gradually and have little
influence on the initial iterations.

-- f
(

Qmeas
pcc

)
is the absolute value of the difference between Qmeas

pcc and Qre f
pcc.

In addition, the determination of the penalty factor is an important aspect because it affects
the final optimization result and the optimal penalty factor value is not always the same under
different wind conditions. In this study, the corresponding optimal penalty factor value of each case is
obtained using a series of tests, an empirical value method in engineering, multiple test methods, and
a comprehensive approach.

4. Case Study

The ORPD strategy is aimed at minimizing the collector system loss in a WF without additional
reactive power compensation sources; all the WTs are subject to the same voltage and power. In order
to ensure that the voltage does not violate the limits and the active power generation is not influenced
by reactive power dispatching, the reactive power demand at the PCC is set in the range of −0.2 pu to
0.2 pu. This case tests the effect of two random algorithms (GA and PSO algorithm) on the proposed
strategy. Moreover, to demonstrate the effectiveness of the proposed strategy, a proportional dispatch
strategy is also tested.

4.1. Wind Farm Model Description

To verify the effectiveness of the proposed strategy, a simulation model based on the parameters
of a large-scale WF is established using MATLAB/Simulink. This model has 25 5-MW turbines and
the distance between the WTs is 882 m. The layout of the WF model is shown in Figure 6.

This WF model has three types of cables that are 95, 150, and 240 XLPE-Cu; the distribution of
the cables is also shown in Figure 6. Appendix A describes the required parameters of the WT and
the cables.
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The structure of the WF model implemented in Simulink is shown in Figure 7. Five WTs on the
same cable are packaged together and each WT is calculated independently. The outlet voltage of the
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WT is 690 V, the voltage on the high-voltage side of the package transformer is 35 kV, and the PCC is
the bus with 110 kV.
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4.2. Case 1: V = 9 m/s, Qre f
pcc = 0.2

In this case, the wind velocity of the WF is assumed to be uniform because the wake effect is
basically ignored by the distribution of the WTs in the current WF design. The two-parameter Weibull
distribution of the wind source data is shown in Figure 8. In this case, 9 m/s is the highest input wind
velocity and the reactive power demand of the PCC is 0.2 pu based on 125 MVA.
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The traditional reactive power control of WFs is based on a proportional distribution and the total
reactive power demand of the WF is evenly distributed based on the reactive power capacity of the
WTs; it is calculated by Equation (21).

Qre f
WTi =

Qa
WTi

nWT
∑

i=1
Qa

WTi

Qre f
Total (21)

where Qre f
WTi is the reactive power instruction of WT i, Qa

WTi is the reactive power capacity of WT i at

this moment, Qre f
Total is the total reactive power demand of the WF at this moment.

The reactive power dispatching instruction of the WTs for the proposed ORPD strategy optimized
by the GA and PSO algorithm and the reactive power reference of the proportional dispatch are
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shown in Figure 9. It is observed that the reactive power reference is the same for each WT when the
proportional dispatch strategy is used because the wind distribution in the WF is uniform. However,
the reactive power reference in each cable has a downward trend when the proposed ORPD strategy
optimized by the GA and PSO algorithm is used. If the WT is closer to the PCC in this WF, the
connecting cable is much shorter and, as a result, the loss in the cable will be lower and the WT will
obtain a higher reactive power reference in the proposed ORPD strategy.
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common coupling (PCC) are set to 0.2 pu.

Meanwhile, the bus voltage at PCC optimized by GA is 1.0097 pu, the result optimized by PSO
is 1.0098 pu and the result of traditional method is 1.01 pu. All of the WT bus voltages are shown in
Figure 10. It can be seen that each voltage is within the constraints after optimization, moreover, the
bus voltages optimized by GA and PSO maintain better balance and have greater stability margin.
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Figure 10. Wind turbine (WT) bus voltage when required reactive power references at PCC are set to
0.2 pu.

In order to compare the effect of different reactive power dispatching strategies, the active power
losses are recorded for each component of the collector system; the results are shown in Table 1 and
Figure 11. It is clear that the reactive power optimization control reduces the loss in the collector circuit
and the package transformers remarkably, whereas the main transformer is less affected.
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Table 1. Losses in the WF using different dispatching strategies.

WF Loss (kW)

Strategy of Dispatch

Proportional Dispatch

ORPD Strategy

Optimized by
GA

Optimized by
PSO

Cable + Package Transformers 529.03 452.44 452.35
Main Transformer 682.30 681.15 681.15

Total 1211.34 1133.59 1133.49
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Figure 11. Losses in the WF using different dispatch strategies.

The change in the solution space of the GA and PSO algorithm is shown in Figure 12, the initial
populations are all randomly distributed, and the final solution space distributed differently. In the
final solution space, all individuals in GA reach the same value, while only half of the PSO reach
the optimal solution. However, both algorithms converge to the same solution, which represents the
consistency of the optimization results. The convergence curves of the active power losses based
on the GA and PSO algorithm are shown in Figure 13. The results show that there are no obvious
differences in the optimization results for the GA and PSO algorithm, which illustrate the stability of
the optimization strategy.
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4.3. Case 2: V = 9 m/s, Qre f
pcc = (−0.2,−0.1, 0, 0.1, 0.2)

The total losses of the active power for different dispatching methods and for values of Qre f
pcc

ranging from−0.2 pu to 0.2 pu are shown in Figure 14. It is evident that the reactive power optimization
control strategy reduces the active power loss of the WF effectively under the different reactive power
demands of the PCC. The optimization results are better for the GA than the PSO algorithm at
Qre f

pcc = −0.2 pu and Qre f
pcc = 0.1 pu.
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4.4. Total Annual Losses in the WF

Since the total losses of the WF vary with wind speed, it is essential to verify the effectiveness
of the proposed strategy by calculating the annual losses of the WF and to further compare the
performance of the GA and PSO algorithm for addressing the reactive power optimal control problem.
Based on the annual wind resources (Figure 7) and assuming the normal operation of the WTs, the
estimated annual power generation of the WF under different reactive power demands of the PCC is
in the range of 448 GWh to 453 GWh.

The calculation results are shown in Table 2. It is evident that the results optimized by the
GA and PSO are much better than the proportional dispatch method under different reactive power
requirements of the PCC. Moreover, the difference between the GA and PSO is in the range of 0.03 GWh
to 0.05 GWh and the energy savings are little better when the GA is used for the optimization.
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Table 2. Total annual losses.

Qref
pcc (pu)

Proportional
Dispatch (GWh)

Proportion
of Losses

ORPD Strategy

GA
(GWh)

Proportion
of Losses

PSO
(GWh)

Proportion
of Losses

−0.2 9.57 2.12% 8.81 1.94% 8.86 1.96%
−0.1 9.37 2.07% 8.7 1.92% 8.74 1.93%

0 9.37 2.07% 8.74 1.93% 8.77 1.93%
0.1 9.58 2.12% 8.91 1.97% 8.94 1.97%
0.2 9.9 2.21% 9.18 2.04% 9.22 2.06%

4.5. Environmental Indicators Analysis

We also calculated the reductions in the standard coal consumption and the carbon and CO2

emissions as suggested in reference [22]. We use the ORPD strategy optimized by the GA as an
example and the annual WF loss reduction shown in Table 2. The results in Table 3 show the annual
reductions in the standard coal consumption and the reductions in CO2 and carbon emissions. It can
be observed that, compared with the proportional dispatch strategy, the proposed ORPD strategy
saves up to 308 tons of standard coal every year, which is equivalent to cutting 604.45 tons of CO2

emissions and 209.44 tons of carbon emissions when the reference of the reactive power at the PCC is
−0.2 pu.

Table 3. Reductions in standard coal consumption and carbon emissions.

Qref
pcc (pu)

Annual Loss
Reduction (GWh)

Standard Coal
(t/year)

CO2 Emissions
(t/year)

Carbon Emissions
(t/year)

−0.2 0.77 308 604.45 209.44
−0.1 0.67 272 533.8 182.24

0 0.63 256 502.4 171.36
0.1 0.66 268 525.95 179.52
0.2 0.73 284 557.35 198.56

5. Conclusions

In this paper, we proposed a reactive power control strategy for WFs aimed at energy savings.
A reactive power optimization model is established and simulation experiments are conducted under
several working conditions. The following conclusions are drawn based on the results:

a. Combining the reactive power/voltage control with the loss reduction control of the collector
system reduces the operating loss of the WF effectively; this is verified by a simulation based on
an actual wind farm.

b. Both the GA and PSO optimization methods designed in this paper can reduce the operating
loss effectively but the GA has a better performance of energy savings with regard to the annual
loss in this case.

c. The control strategy proposed in this paper would be used to improve the automatic control
level, reduce the cost of electricity production, and improve the energy savings under various
operating conditions of a WF, which has good application prospects.
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Appendix A

The parameters of 5 MW WT used in this paper are shown in Table A1.

Table A1. 5-MW wind turbine specifications.

Parameter 5 MW NERL Wind Turbine

Cut-in, Rated, Cut-out Wind Velocity 3 m/s, 11.4 m/s, 25 m/s
Rotor, Hub Diameter 126 m, 3 m

Rated Power 5 MW
Cut-in, Rated Rotor Velocity 6.9 rpm, 12.1 rpm

Gearbox Ratio 97:1

The cable parameters of the collector system in the WF model are shown in Table A2.

Table A2. Network Parameters.

Cable Types Cross Section
(mm2)

Specific
Resistance (Ω/km)

Specific Capacitance
(µF/km)

Specific Inductance
(µH/km)

Type 1 95 0.1842 0.18 0.44
Type 2 150 0.1167 0.21 0.41
Type 3 240 0.0729 0.24 0.38
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