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Abstract: This editorial summarizes the performance of the special issue entitled Data Science and Big
Data in Energy Forecasting, which was published at MDPI’s Energies journal. The special issue took
place in 2017 and accepted a total of 13 papers from 7 different countries. Electrical, solar and wind
energy forecasting were the most analyzed topics, introducing new methods with applications of
utmost relevance.
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This special issue has focused on the forecasting of time series with data mining and big data
techniques, paying particular attention to energy related data. Energy was understood to be of any
kind, such as electrical, solar and wind.

Authors were invited to submit their original research and review articles on exploring the issues
and applications of energy time series and forecasting.

Topics of primary interest included, but were not limited to:

(1) Energy-related time series analysis;

(2) Energy-related time series model;

(3) Energy-related time series forecasting;
(4) Non-parametric time series approaches.

From all the submissions received, only those with very high quality scientific content and clear
contributions to the state of the field were accepted, after rigorous peer review. A total of thirteen
papers were accepted, with the following author’s geographical distribution:

(1)  Spain (5
(2) China (2);
(3) Taiwan (2);
(4) Canada (1);
(5) Poland (1);
(6) Chile (1);
(7)  France (1).

The submissions received can be broadly divided into the following topics. First, electricity demand
forecasting has been addressed by using deep learning [1], ensemble learning [2] and the functional state
space model [3]. Analogously, data from the UK and Canada were analyzed in [4], generating accurate
forecasts. Unsupervised techniques have also been used to discover relevant patterns within consumption
time series. In particular, data from a Spanish public university were analyzed in [5] in order to discover
load profiles and reduce costs. Similar strategies were applied to determine whether Polish customers
choose proper tariffs or not in [6].

Two key aspects in wind energy have been studied in this special issue: Wind speed and wind
power generation. On the one hand, a hybrid wind speed forecasting system based on a decomposition
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and ensemble strategy and fuzzy time series can be found in [7]. One the other hand, wind power
forecasting based on echo state networks and long short-term memory was analyzed in [8]. Three more
papers studied wind turbines from a temporal point of view. In particular, a reduced order model
to predict transient flows around straight bladed vertical axis wind turbines was proposed in [9].
Moreover, self organizing maps and interpretation-oriented post-processing tools were used to identify
the health status of wind turbines [10]. Last, a new method to predict the wind velocity upstream of
a horizontal axis wind turbine from a set of light detection and ranging (LiDAR) measurements was
introduced in [11].

Another interesting manuscript was published in the field of solar energy; predictions of surface
solar radiation on tilted solar panels using machine learning models were reported in [12], using data
from Taiwan as a case study. Also in Taiwan’s Northeastern Coast, nearshore wave was predicted by
means of data mining techniques during typhoons [13].
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