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Abstract: Steady-state, transient, as well as dynamic analyses of self-excited induction generators
(SEIGs) are generally well-documented. However, in most of the documented studies, core losses
have been neglected or inaccurately modeled. This paper is concerned with the accurate modeling
of core losses in SEIG analysis. The core loss is presented as a function related to the level of
saturation. This relation is determined experimentally and integrated into a nonlinear model of
the SEIG. The nonlinear model is solved using a mathematical optimization scheme to obtain the
performance parameters of the SEIG. A new set of curves describing accurate behavior of the SEIG
parameters is produced and presented in this paper. The computed parameters of the model are
validated experimentally, and the agreement attained demonstrates the functionality and accuracy of
the proposed core-loss model.
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1. Introduction

Fast-depleting fossil fuels and environmental concerns have led to considerable interest in
non-conventional renewable sources of energy. Wind energy has presented itself as an important
pollution-free electrical energy generation alternative to conventional fuels [1,2]. Wind energy
harvesting systems are typically accompanied by generators that convert the harvested motive power
into usable electrical power [1–3]. Of several available generators, the self-excited induction generator
(SEIG) has drawn considerable attention and is preferred for electromechanical energy power recovery
schemes from wind. This is because of its applicability as a standalone generator that can be used
in conjunction with different conventional and non-conventional energy resources. It also has some
advantages over the conventional synchronous generator, such as being cost-effective, requiring less
maintenance, and being brushless [4–8]. Due to the growing interest in renewable energy resources
and isolated power systems, the SEIG is considered one of the most important electromechanical
energy power conversion devices to be used with renewable energy sources.

Steady-state, transient, and dynamic analyses of SEIG have been well studied and
documented [1,3,4]. The core loss analysis and modeling were totally ignored in [5–13]. In addition,
some core-loss modeling was included for SEIG analysis in [14–20] by simply adopting the method
used in motors, by adding a constant resistance across the magnetizing reactance in the equivalent
circuit of the generator. This is acceptable in induction motor application studies, as the motor usually
operates near the unsaturation region, unlike the case of the SEIG, which has to be saturated to
operate normally [5–9]. Furthermore, any variation in speed, load, and its power factor, and/or
excitation capacitor will directly influence the level of saturation, which directly affects the core loss
and, hence, the other performance variables of the machine. The aim of this paper is to provide a more
accurate model for the core loss in SEIGs. This is done by considering the core loss resistance as a
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variable function of the level of saturation in the generator. This can be extremely important, especially
in the modern, well-designed SEIGs with accurate high-saturation designs. This paper derives a
mathematical model for core loss as a function of saturation in the SEIG based on experimental
measurements. Consequently, an accurate representation for the SEIG for advanced theoretical
analysis is re-developed. The computed parameters of the model are validated experimentally, and the
agreement attained demonstrates the functionality and accuracy of the proposed core-loss model.

2. Analysis

The system used to investigate SEIG is shown schematically in Figure 1. A three-phase
synchronous motor was used as a prime mover during experimental tests.

The per-phase equivalent circuit of a three-phase SEIG under R-L load is shown in Figure 2. The
effect of the saturation is considered for the core loss resistance, Rc, and the magnetizing reactance,
Xm. To determine the values of the circuit parameters, the generator is conventionally tested under
DC, locked rotor, and no load [3–8]. Values of Rs, Rr, Xs, and Xr are found from the DC and locked
rotor tests. The magnetization curve of the machine, which includes the relation of Rc and Xm against
air-gap voltage (or magnetization current), is obtained from a no load test (at slip = 0), as shown in
Figure 3. As clearly shown, Xm and Rc are variable according to the level of saturation as it is linked
with the air-gap voltage. The magnetization curve of the machine in Figure 3 is redeveloped and
depicted in Figure 4a, to be used with the circuit shown in Figure 2 to yield the SEIG performance
measures. As the saturation level in the generator is variable, Xm is obviously variable and Rc must
also be variable. To the best of the authors’ knowledge, this fact has been ignored in all the published
research concerning SEIGs [5–13].
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where ki and mi are the polynomial coefficients of the fitted curves that can be determined from 
experimental results. These two polynomial functions are as given in Appendix A. This approach 
does not change the characterization given in [5], yet it can solve the three unknown variables 
simultaneously because Rc is considered as a function of Xm. 
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Figure 3. Variation of magnetizing reactance Xm and core loss resistance Rc/F versus air-gap voltage
Eg/F in the machine under study.

Energies 2018, 11, x FOR PEER REVIEW  3 of 12 

 

 
Figure 3. Variation of magnetizing reactance Xm and core loss resistance Rc/F versus air-gap voltage 
Eg/F in the machine under study. 

 
(a) 

 
(b) 

Figure 4. Variation of air-gap voltage and core loss versus magnetizing reactance Xm: (a) Air-gap 
voltage Eg/F (b) Core loss resistance Rc/(F Xm). 

2.1. Core-Loss Modeling 

To overcome the above-mentioned drawback, variable core loss can be modeled by linking the 
value of change rate of Rc with Xm, as shown in Figure 4b. From the experimental results in Figure 4b, 
the core loss, Rc, varies substantially with Xm, as illustrated by the 4th-degree polynomial fitted curve. 
Now, any change in load, speed or/and excitation capacitance will change the level of saturation, 
which, consecutively, will change the value of Xm and, hence, the value of Rc, which results in a 
variable core loss. For computational purposes, the curve of the air-gap voltage (Eg) versus Xm in 
Figure 4a is expressed either by a set of piecewise linear approximations [4,5], or by fitting the curve 
as a polynomial function of a suitable degree, as developed by the authors in [7]. 

Similarly, the relation of the core loss with Xm is also fitted as another polynomial function, as 
shown in Figure 4b. The fitted curves can be written as: 

0

/
n

i
g i m

i
E F k X

=
=  (1)

0

/ ( )
r

i
c m i m

i
R F X m X

=
⋅ =  (2)

where ki and mi are the polynomial coefficients of the fitted curves that can be determined from 
experimental results. These two polynomial functions are as given in Appendix A. This approach 
does not change the characterization given in [5], yet it can solve the three unknown variables 
simultaneously because Rc is considered as a function of Xm. 

0 0.25 0.5 0.75 1
Air-gap voltage, Eg /F   (p.u.)

0

0.5

1

1.5

2

M
ag

ne
ti

zi
ng

 r
ea

ct
an

ce
, X
m

(p
.u

.)

0

30

60

C
or

e 
lo

ss
 r

es
is

ta
nc

e,
 R
c 

 (
p.

u.
)

   Experimental points

Rc /F

Xm

0.5 1 1.5 2
Magnetizing reactance, Xm (p.u.)

0

0.5

1

A
ir

-g
ap

vo
lta

ge
,E
g

/F
(p

.u
.)

     Experimental points

Fitted curve

Xo 0.5 1 1.5 2
Magnetizing reactance, Xm (p.u.)

0

45

90
C

or
e

lo
ss

re
si

st
an

ce
,
R c

/(
F.
X m

)
(p

.u
.)

    Experimental points

Fitted curve

Xo
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2.1. Core-Loss Modeling

To overcome the above-mentioned drawback, variable core loss can be modeled by linking the
value of change rate of Rc with Xm, as shown in Figure 4b. From the experimental results in Figure 4b,
the core loss, Rc, varies substantially with Xm, as illustrated by the 4th-degree polynomial fitted curve.
Now, any change in load, speed or/and excitation capacitance will change the level of saturation,
which, consecutively, will change the value of Xm and, hence, the value of Rc, which results in a
variable core loss. For computational purposes, the curve of the air-gap voltage (Eg) versus Xm in
Figure 4a is expressed either by a set of piecewise linear approximations [4,5], or by fitting the curve as
a polynomial function of a suitable degree, as developed by the authors in [7].

Similarly, the relation of the core loss with Xm is also fitted as another polynomial function, as
shown in Figure 4b. The fitted curves can be written as:

Eg/F =
n

∑
i=0

ki Xi
m (1)

Rc/(F·Xm) =
r

∑
i=0

mi Xi
m (2)
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where ki and mi are the polynomial coefficients of the fitted curves that can be determined from
experimental results. These two polynomial functions are as given in Appendix A. This approach does
not change the characterization given in [5], yet it can solve the three unknown variables simultaneously
because Rc is considered as a function of Xm.

2.2. Loop-Impedance Solution

Under a steady-state condition, the following equation is applied to the circuit shown in
Figure 2 [5]:

Is Zt = 0 (3)

where Zt is the total impedance of the circuit across Xm and Rc branch, as given in Appendix A.
In steady state, Is 6= 0, which indicates that Zt = 0, or

real(Zt) = 0 (4)

imag(Zt) = 0 (5)

According to the selected characterization measures, two unknowns are going to be solved, using
Equations (4) and (5). These two unknowns can be (F and Xc), (F and Xm), (F and u), or (F and ZL).

To solve the non-linear equations of (4) and (5), several schemes have been presented in recent
literature. Rearranging the equations as two polynomials of a high degree in F and the other
unknown is presented in [5,6]. The Newton–Raphson method is proposed to solve such a formulation
in [14]. However, these methods are not appropriate to obtain the solution under the proposed
varying-core-loss modeling. Alternatively, optimization-based schemes, such as that developed by the
authors in [7], can be applied to solve Equations (4) and (5) under a variable core-loss condition, as
explained below.

2.3. Method of Solution

The method of solution used in this paper involves the development of an optimization-based
scheme that solves Equations (4) and (5) directly. This scheme simultaneously solves F and Xc or Xm,
by minimizing the value of the total impedance (i.e., |Zt| = 0). The performance of the generator
described by the circuit of Figure 2 can be derived once the values of the unknowns are obtained
utilizing data provided by the magnetization curve.

Figure 5 shows a block diagram of the proposed analysis which summarizes the steps that are
followed to determine the value of the two unknowns. Based on these values, the performance of
SEIG can be easily obtained. Figure 6 shows the flowchart of the developed program to obtain the
two unknowns namely F and Xm when varying the speed of the prime mover. Similar programs were
developed to solve for other unknowns such as (F and Xc), (F and u), and (F and ZL).
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3. Results and Discussion

The SEIG performance can be controlled by controlling three parameters: excitation capacitance,
speed, and load. Xm, Rc, F as well as other performance parameters of the generator vary, as these
three parameters are varied. Figure 7a,b show the variations of Xm, Rc, and Vo, Is versus the excitation
capacitor, respectively, under different loading conditions. Results confirm the reliability, accuracy,
and feasibility of the proposed core modeling. In Figure 7a, Xm decreases to a minimum as C is being
increased and then starts increasing. Rc on the other hand increases and decreases independently from
Xm. In Figure 7b, Vo changes in a concave manner, whereas Is increases and then decreases. When
Xm is greater than Xo, the machine does not generate voltage. Figure 7b is plotted for a case when the
machine is generating voltage (i.e., when Xm is less than or equal to Xo) [5–8].
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Figure 7. Variation versus excitation capacitance C for different loads at fixed speed (u = 1.0 p.u.):
(a) Magnetizing reactance Xm and core loss resistance Rc (b) Terminal voltage Vo and Stator current Is.

Figure 8 is a plot of the variations of the minimum excitation capacitor (Cmin) and F versus power
factor (pf ) at different loads. In this case, Xm is kept constant at a value equal to Xo, and speed (u) is
fixed at 1 p.u. Cmin is higher for lower loads and stays nearly constant at lower pf s. When pf increases
to a certain value, Cmin begins to decrease. F is higher for higher loads, but decreases in very small
amounts as the pf increases. Figure 9 shows the variations of Xm and F against pf with C fixed at 40 µF.
It can be seen that Xm is larger for smaller loads. In addition, F is decreasing at smaller amounts as pf
increases, and it decreases more for smaller loads.
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Figure 10 shows the behavior of Vo, and Is as pf is being varied at a speed of 1 p.u. while C is
fixed at 40 µF. At higher loads, Vo is almost constant, and it is obvious that it is higher when Xm is
lower by comparing Figures 9 and 10.

Figure 11 shows the variations of Xm and Rc against speed (Figure 11a) with C fixed at 30 µF
for different loads, as well as Vo and Is against speed (Figure 11b), at the same value of C. As stated
above, the machine will not generate voltage for values of Xm above Xo. It is clear from this figure
that Rc varies as the speed changes which agrees with the measured results depicted in Figure 3.
The assumption in many documented research publications is that it remains constant [16,17,20].
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Figure 9. Variation of magnetizing reactance Xm and frequency F versus power factor pf for different
loads at fixed speed (u = 1.0 p.u.).
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Figure 10. Terminal voltage Vo and Stator current Is versus power factor pf for different loads at fixed
speed (u = 1.0 p.u.).
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Figure 11. Variation versus speed for different loads at capacitance C = 30 µF: (a) Magnetizing reactance
Xm and core loss resistance Rc (b) Terminal voltage Vo and stator current Is.
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4. Experimental Verification

4.1. Setup

The machine investigated above was tested experimentally under different conditions.
The experimental setup used is shown in Figure 12. A variable DC power supply was used to
control the speed of the DC motor as a prime mover of the SEIG. A capacitor bank was utilized to excite
the machine to operate as a generator. A computerized measurement unit (model CEM-U/Elettronica
Veneta) was used to measure the electrical and mechanical quantities such as current, voltage, power,
frequency, power factor, and speed. In some of these tests, a synchronous motor was used to obtain an
accurate fixed speed at 1 p.u. to acquire the measurement shown in Figure 13 as well as the no load
test with a slip = 0 which is used to obtain the machine parameters.
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Figure 12. Experimental setup for SEIG testing.

4.2. Performance Measurements

Figure 13 shows the variations of the terminal voltage, Vo, and stator current, Is, against excitation
capacitor. Figure 14 shows the variations of terminal voltage, frequency, and stator current against
generator speed. Figure 14 is repeated in Figure 15 but under different excitation capacitor values.
From these figures, Vo and Is increase as C, or speed, increases. Frequency also increases, as expected,
as speed increases. These figures show the superiority and accuracy of the modeling presented, as can
be seen from the perfect correlation between computed and experimental results.
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Figure 13. Terminal voltage Vo and stator current Is versus excitation capacitance C under no load
when speed (u) = 1 p.u.
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Figure 14. Variation of terminal voltage Vo, stator current Is, and frequency F versus speed under
no load.
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Figure 15. Terminal voltage Vo, and stator current Is versus speed under no load.

5. Influence of Core Loss

The value of the error that results from ignoring accurate core-loss modeling on the performance
of the generator is studied in this section. The error is computed between the values under the
presented core-loss modeling and a fixed value of Rc.

The variation of the error in the values of terminal voltage (Vo) and efficiency (η) are analyzed
under different conditions for the generator under study and are shown in Figures 16–18. Figure 16
shows the error variation versus excitation capacitance under fixed load and speed, while Figure 17
shows the error variation versus speed under fixed load and excitation capacitance. It can be deduced
from Figures 16 and 17 that the error in the value of Vo is relatively high for low C and u values, and
then this error rapidly decreases as C, or u increase before it reaches an almost constant low value.
On the other hand, the efficiency error variation is relatively high even at high values of C, or u.

The error variation versus load impedance, under fixed speed and excitation capacitance, is shown
in Figure 18. The figure shows that the error of Vo is relatively high at low impedance values and
then it rapidly decreases as the load impedance increases before it reaches a nearly constant low value.
On the other hand, the efficiency error variation increases with a high percentage as the load increases.
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6. Conclusions

This paper presents an accurate modeling scheme of core losses in SEIG analysis, which has
been neglected in most of the documented literature. In this work, the resistance of the core loss
in the equivalent circuit of the generator is derived as a function of the saturation level in the
generator magnetic circuit. An optimization scheme is used to solve the derived nonlinear equations
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by simultaneously computing the values of F and Xc or Xm by minimizing the total impedance.
Accordingly, the performance curves are computed for the machine as shown in Figures 9–11.
Experimental verifications were carried out to compare theoretical results with measurements. Perfect
agreement between the analytical and the experimental results confirms the feasibility and accuracy
as well as the functionality of the modeling presented. It has been found that representing core loss
with a fixed resistance causes an error between (2–12)% in computing terminal voltage while it reaches
between (15–40)% in the value of the efficiency.
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Nomenclature

F, u p.u frequency and speed, respectively
C, Xc value of excitation capacitance (µF) and its p.u reactance (at base frequency), respectively
Cmin minimum excitation capacitance (µF)
Rs, Rr, RL p.u stator, rotor, and load resistances, respectively
Xs, Xr, XL p.u stator, rotor leakage, and load reactances (at base frequency), respectively
Xm, Xo p.u saturated and unsaturated magnetizing reactances at base frequency, respectively
Ic, IL, Is p.u. excitation capacitance, load, and stator currents, respectively
Eg, Vo air-gap and terminal voltages, respectively
Vb, Ib, Zb base voltage, current, and impedance, respectively
fb, Nb base frequency and speed in Hz and rpm, respectively

Appendix A

Appendix A.1. Machine Parameters

The rating of the machine under study is 1 kW. The machine parameters are as follows:

Table A1. The data of the machine under study.

Vb (V) Ib (A) Zb = Vb/Ib (Ω) Nb (rpm) fb (Hz) Rs (p.u.) Rr (p.u.) Xs = Xr (p.u.) Xo (p.u.)

220 2.9 75.862 1800 60 0.086 0.044 0.19 1.89

Appendix A.2. Fitted Curves

The air-gap voltage and core loss variations against Xm of Figure 3 can be, respectively, fitted by two
polynomials of 3rd-degree as follows:

Eg/F =
3

∑
i=0

ki Xi
m and Rc/(F·Xm) =

3

∑
i=0

mi Xi
m

where k and m coefficients are as follows:
k0 = 1.1, k1 =−0.636, k2 = 0.727, k3 =−0.321, m0 = 270.67, m1 =−472.71, m2 = 303.76, and m3 = −67.045.

Appendix A.3. Total Impedance

The total impedance, Zt, of Figure 2 is given by:

Zt = ((Zs + (ZL//ZC))//Zr) + Zm

where Zs = Rs/F + j Xs, ZL = RL/F + j XL, Zr = Rr/(F− u) + j Xr, Zm = (Rc/F)//(j Xm), and Zc = −j Xc/F2.
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