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Abstract: The heating of two-component droplets and the following explosive breakup of those
droplets have been extensively studied over the most recent years. These processes are of high
interest, since they can significantly improve the performance of many technologies in fuel ignition,
thermal and flame liquid treatment, heat carriers based on flue gases, vapors and water droplets,
etc. Research throughout the world involves various schemes of droplet heating and supply (or,
less frequently, injection) to heating chambers. The most popular scheme features the introduction of
a two-component or multi-component droplet onto a holder into the heating chamber. In this research,
we study how holder materials affect the conditions and integral characteristics of droplet heating
and explosive breakup: heating time until boiling temperature; minimum temperature sufficient for
droplet breakup; number and size of fragments in the resulting droplet aerosol, etc. Experiments
involve droplets that are produced from flammable (oil) and non-flammable (water) components
with significantly different thermophysical and optical properties, as well as boiling temperature and
heat of vaporization. The most popular elements with the scientific community, such as ceramic, steel,
aluminum, copper, and phosphorus rods, as well as a nichrome wire, serve as holders. We establish
the roles of energy inflow from a holder to a droplet, and energy outflow in the opposite direction.
We compare the holder results with a supporting thermocouple, recording the drop temperature
under a heat transfer provided at 350◦C. Finally, we forecast the conditions that are required for
a significant improvement in the performance of thermal and flame water treatment through the
explosive breakup of two-component droplets.

Keywords: two-component droplet; heating; evaporation; explosive breakup; disintegration; droplet
holder material

1. Introduction

1.1. Motivation

To improve the thermal treatment of sewage and service water (in particular, in the form of an
atomized flow) and to develop new, more effective technologies for it, we need to explore the physics
of droplets of water solutions, slurries, and emulsions traveling through high-temperature gases. Their
temperature exceeds 500 ◦C, and the most frequently used gases are hot air, fuel combustion products,
and their mixtures. Unfortunately, there is still no theory of interconnected heat and mass transfer and
phase transformations for such conditions. However, over the recent years, researchers have obtained
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experimental results (e.g., [1–3]) that can become the premises for such a theory. No research findings
on these processes have been published so far, because mathematical modeling becomes difficult for a
large number of interfaces with highly nonlinear boundary conditions of rapid vaporization. Sazhin [4]
outlined these difficulties in his review paper analyzing the reasons behind the slow development
of models simulating the rapid heating and evaporation of droplets of fuels and emulsions based
on them.

Experimental results [2] established that the leading droplets in a flow through hot gases
significantly affect the heat exchange of the following droplets with the surrounding medium.
Volkov et al. hypothesize [3] that, due to rapid vaporization, the first droplets considerably reduce the
gas temperature in the front of all the following droplets. So, a thermal insulation of sorts is created for
the following droplets in the form of a vapor curtain with a lower temperature, as compared to that of
the gas medium in front of the first droplets. Until now, there have been no experimental or theoretical
research findings on the thermal insulation of rapidly evaporating liquid droplets. It is important
to obtain reliable experimental data and use them to develop adequate physical and mathematical
models of heat and mass transfer. When analyzing the overview by Sazhin [4], we concluded that most
likely, it is only possible to solve the formulated problem using optic techniques. Reliable information
is necessary on temperature distributions in droplets of water and water-based solutions, slurries,
and emulsions when rapidly heated. At the same time, we can infer from the findings by Sazhin [4]
that the unsteady heating of a droplet has a significant impact on its lifetime. Under such conditions,
the assumption of a constant temperature field of an evaporating and shrinking droplet cannot really
be considered valid.

Snegirev [5] made attempts at analyzing the temperature gradient of an evaporating droplet to
develop simplified mathematical models of phase transformations. He formulated dimensionless
criteria to estimate the temperature gradient within a droplet, and its impact on liquid evaporation
rate. However, no experimental data to support the reliability of such estimates have been published
so far. The task also becomes more complex, because the research needs to be done at relatively
high temperatures of the gas medium (over 500 ◦C). Vysokomornaya et al. [6] show that traditional
evaporation models also known as kinetic and diffusion models based on the assumed dominating
process [7–9] provide a good agreement between the theoretical research and experimental data only
at moderate gas medium temperatures (under 500 ◦C).

The evaporation of liquids also remains understudied because its intensity depends on the surface
temperature of the phase transition and the concentration of liquid vapors in the small-size area next
to the interface region. Diffusion and heat transfer in this area are the main drivers of evaporation.
Experimental data on the main characteristics of heat and mass transfer near the surface of evaporating
droplets are not yet published.

In the considered research area, an unsolved problem is the need to provide the controlled
conditions for the crushing droplets due to overheating and micro-explosions. The use of the controlled
effects of explosive breakup will solve a number of problems in the areas of unmixed and mixed
fuels: combustion stabilization throughout the combustion chamber, reducing heating and ignition
costs, increasing calorific value, reducing anthropogenic emissions, improving rheological properties,
etc. [10]. These impact on the research in this area.

Explosive breakup of water emulsion and slurry droplets in a high-temperature gas environment
was studied experimentally [11–13]. For the explosive disintegration of heterogeneous droplets to
happen, the temperature at the interface must reach that of water boiling. A non-contact method, planar
laser-induced fluorescence (PLIF), made it possible to establish that the temperature near this interface
reached 100–120 ◦C before disintegration. The authors determined the threshold temperatures at the
onset of this effect for a group of solid and liquid organic additives (slurry and emulsion components).
As a result of the explosive fragmentation of multi-component droplets, the evaporation surface area
increases up to 15 times. It is important to expand the experimental database with the evaporation
characteristics of typical sewage and service water compositions to improve their treatment.
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The most popular approach to the experimental research into the breakup of boiling liquid,
solution, emulsion, and slurry droplets is placing them on a holder into a heated gas flow (e.g., [11–16]).
Some setups do not include different holders [14–16] or use substrates [17]. Each of these recording
schemes has its own strengths and weaknesses [10]. In terms of the costs and difficulty of the
experiment, as well as the reliability of the recording procedure, a holder seems to be the most rational
option. However, the choice of the holder material for the fragmentation of boiling droplets of liquids,
solutions, emulsions, and slurries is yet to be studied. It is of interest to study how this factor affects
the heating and disintegration of typical two-component droplets using a large group of popular
materials. A solution to this problem is of principal importance for the development of high-potential
gas-vapor-droplet technologies considered in [18–27]. Vershinina et al. [10] established the impact of
the holder material on the ignition of fuel slurry droplets. They show that there are two temperature
ranges. Above 600 ◦C, the impact of the holder material is negligible, while below 600 ◦C, the properties
of the said material have a significant influence on heat transfer. It is important to make such estimates
for a group of promising two-component droplets.

Another approach [28,29] consists of suspending the emulsion drop onto a thermocouple junction,
enabling to measure its temperature during its evaporation under heating. Its results are compared to
the present study, since the experimental conditions are similar concerning both emulsion properties
and heat source temperature.

The purpose of this work is to study experimentally how the holder material affects the heating,
evaporation, and explosive breakup of two-component droplets.

1.2. Review of Time Ranges of Droplet Breakup through Microexplosion

This subsection presents a review of the time ranges of droplet breakup through microexplosion.
We considered the experimental results of microexplosion times published in studies [30–33]. Table 1
contains the main suitable data from these papers.

Table 1. Review of time ranges of droplet microexplosion established in the experiments accomplished
by using different experimental techniques.

Article Components Material of Holder

Range of
Two-Component
Droplet Breakup

Times

Experimental Setup

[30]

Water + n-dodecane
Water + n-tetradecane

Droplet size Vd =
5–15 µm

Quartz fiber D =
0.25 mm

On the holder
(0.22–0.85 s)
During fall

(0.25–0.95 s)

A droplet is placed on the holder inside the combustion
chamber with a temperature of 30 ◦C. After that, the droplet
ignites by an electrically heated wire. The temperature of
the droplet is measured by the Pt–PtRh thermocouple. A

video camera records the microexplosion process. The fall
process lies in the simultaneous motion of the chamber and

the droplet during ~ 1 s.

[31]

Pure bio-oils D0 =
1.12 mm

Pure bio-oils D0 =
1.08 mm

A droplet is fixed
on a thermocouple
junction (K-type)

t~7s (Ta = 300 ◦C)
t~4s (Ta = 500 ◦C)

A droplet is fixed on a thermocouple. By using a linear
module, it is introduced into the space between two plates

heated by electricity.

[32]
Ethanol +

Jet A-1;
D0 = 2 mcl

Quartz holder
D = 0.2 mm (1.5–2.3 s)

By using a dispenser, a droplet is placed on a holder. The
droplet ignites by using a nichrome wire. The process under

study is recorded by a high-speed video camera.

[33] Heptane C7H16 +
Hexadecane C16H34 Without holder (170–205 ms)

A device is applied to collide two droplets of the required
size, and to form a two-component droplet. The droplet

moves through the combustion chamber heated up to 1050
◦C. High-speed video recording allows the determination of
droplet lifetimes and their breakup times. In addition, as a

comparison, the experiments are performed with the
preliminary formed two-component droplets.

[28,29]
Sunflower oil, distilled

water, non-ionic
surfactant SPAN 83

K-type
thermocouple

(Nickel–Chromium,
Nickel–Alumel)

(0.9–1.3 s)

A bare K-type thermocouple (wire diameter 76.2 µm) is
heated from below by the means of a highly resistive coil
with its asymptotic temperature of 350 ◦C. The emulsion

drop is maintained on the thermocouple junction by
interfacial tension. The thermocouple signal is acquired by
an oscilloscope, and the shadowgraph frames are visualized

using a high speed camera (10,000 fps).

An analysis of data presented in Table 1 enables the conclusion that when using the different
holders examined in the study, the explosive breakup times of the droplets are the upper estimates of
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the actual values in the practical applications. Therefore, the values presented in the research can be
used to predict the maximum possible times of heating until droplet breakup.

In addition, the challenging task is to determine the times of the heating until breakup,
the complete volatilization of impurities, and the ignition of different heterogeneous droplets at
free fall, i.e., without the holder [33]. Nowadays, such experiments are labor-intensive and expensive.
Thus, the various holders, including those used in the study, will be employed for a rather long
time. In such a situation, a utilization of the research results can help to predict differences between
droplet-heating characteristics for a large group of experimental studies performed or planned to be
carried out by using various holders.

2. Experimental Setup and Procedure

2.1. Components of Two-Component Droplets and their Production Procedure

The experimental research featured two components: water (with a specialized dye–fluorophore
Rhodamine B) and transformer oil. The main properties of components are presented in Table 2.
The component concentrations were varied over a wide range as per recommendations. The fusion of
these liquids resulted in a two-component droplet. The Rhodamine B dye was used to control water
temperature in a two-component droplet, similar to the methods used in [16,17]. It was important
to provide the same conditions as those used in experiments [16,17] in order to extrapolate the
experimental results to various schemes of energy supply to a two-component droplet. Unsteady
and inhomogeneous temperature fields of droplets obtained experimentally were in good agreement
with the results from [16,17]. Therefore, further analysis will focus on the impact of holder materials
on heating.

Table 2. Main properties of the liquids under study.

Component Thermal Physical Properties Kinematic Viscosity, m2/s
Surface

Tension, N/m
Boiling

Temperature, ◦C
Heat of Vaporization,

MJ/kg

Transformer Oil
ρ = 877 kg/m3, λ = 0.12

W/(m·◦C), C = 1670 J/(kg·◦C),
a = 8·10−8 m2/s

22·10−6 m2/s at 20 ◦C,
0.295·10−6 m2/s at 100 ◦C 26.15·10−3 320 0.209

Water
ρ = 1000 kg/m3, λ = 0.6

W/(m·◦C), C = 4200 J/(kg·◦C),
a = 14·10−8 m2/s

1.006·10−6 m2/s at 20 ◦C,
2.56·10−6 m2/s at 100 ◦C 72.86·10−3 100 2.258

Sunflower Oil ρ = 865 kg/m3, λ = 0.165
W/(m·◦C), C = 2500 J/(kg·◦C) 6.03·10−5 m2/s at 25 ◦C 33.7·10−3 225 0.21

2.2. Holder Materials

Copper, aluminum, ceramics, steel, nichrome, and phosphorus were the main materials used to
produce the holders for two-component droplets under study, since these materials have a wide range
of values of thermal and physical characteristics (Table 3).

Table 3. Thermal and physical characteristics of holder materials (average values for the temperature
range of 200–500 ◦C in line with the experiments).

Material λ, W/(m·◦C) C, J/(kg·◦C) ρ, kg/m3 a·106, m2/s

Copper 376.86 416.12 8770.31 103.4

Aluminum 229.56 1044.76 2642.526 83.62

Ceramic 1.4 770 2355 0.772

Steel 42.8 561.8 7723 9.912

Nichrome 22.5 460 8660 5.648

Phosphorus 0.236 23.82 1820 5.444

Figure 1 shows the images of the holders used in the experiments: 1—ceramic; 2—steel tube;
3—aluminum; 4—copper; 5—nichrome; 6—phosphorus; 7—steel. When using each of the holders,
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we measured its contact area with the droplet. The largest holder/droplet contact area was found
in the experiments with ceramic and aluminum rods, and the smallest one, with a nichrome wire.
The contact surface area of the droplet and holder surface (Sh) mainly depended on the droplet
radius (Rd) and the holder size (dh), considering that the radius of an evaporating droplet decreases
nonlinearly. The contact area was calculated using the formula from Figure 1.
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specified) 1—ceramic; 2—steel tube; 3—aluminum; 4—copper; 5—nichrome; 6—phosphorus; 7—steel.

The holders were chosen to provide similar schemes of droplet fixation and contact surface.
This made it possible to record in the experiments quite a similar geometry for the contact line
(interface) between the liquid component and the holder. Under such conditions, the heating or
cooling rates of a droplet mostly depended on the thermal and physical properties of the holder
material (Table 3). The results of this analysis are presented further.

2.3. Methods for Studying the Disintegration of Boiling Droplets

Figure 2a shows the two-component droplet heating scheme at convective heating, as well as
Figure 2b illustrates the actual photo of the two-component droplet during experiments. The Leister
CH 6060 hot air blower (air velocity 0.5–5 m/s) (LEISTER Technologies AG, Switzerland) and a Leister
LE 5000 HT air heater (temperature range 20–1000 ◦C) were used as a heating system, generating
the necessary parameters of the flow of high-temperature gases (flow rate Ua and temperature Ta).
The flow of high-temperature gases was formed in a hollow transparent cylindrical channel (internal
diameter 0.1 m, wall thickness 2 mm). A two-component droplet was placed on the holders under
study (Figure 1), which were introduced into the flow of high-temperature gases using a motorized
coordinate device (motorized manipulator).

We recorded the heating, boiling, and disintegration of two-component droplets by a high-speed
video camera. The recordings were processed using the Tema Automotive and ActualFlow software
packages for the continuous tracking of moving objects. In the course of processing, we determined
the initial droplet radius Rd and the total liquid evaporation surface area, S. The video recordings
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were processed in two stages. At first, we tracked how the frontal cross-sectional area Sm of an
evaporating and deforming droplet changed until it finally broke up (Figure 2c). Using the Airbag
and Advanced Airbag tracking algorithms, we observed the changes in the shape of an evaporating
droplet. After that, the frontal cross-sectional area of a droplet was calculated, and the curves Sm(t)
were plotted. The droplet was assumed to be spherical and its frontal cross-sectional area to be a circle.
Using the formula Rd = (Sm/π)0.5, we calculated the average droplet radius Rd. The errors of the
Rd calculation did not exceed 2.5%. After that, the total area of the droplet evaporation surface was
calculated using the formula S = 4πRd

2.
Video recordings following the explosive breakup of the heterogeneous droplet into separate

smaller fragments were analyzed at the second stage. A polydispersed aerosol was usually formed.
The shadow image was analyzed using the Actual Flow software to determine the location, boundaries,
and dimensions of separate droplets. Median, Low Pass, and Average software filters were used to
screen off the noises, and Laplace Edge Detection was used to determine the boundaries of droplet
surface. When determining the droplet dimensions, we applied the Bubble Identification algorithm.
The error of the Rd calculation using this approach was under 3%.Energies 2018, X x FOR PEER REVIEW 7 of 18 
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To obtain the droplet size distributions, all of the droplets were classified into m groups. We then
determined the number of droplets n and the average droplet size Rdn in each group. The liquid
evaporation surface for the droplets in each group was calculated using the formula Sn = n·4πRdn

2.
As the final step, we calculated the overall evaporation surface area: S = Sn(1) + Sn(2)+ . . . + Sn(m).

2.4. Main Registered Parameters and Tolerances

Table 4 presents the parameters recorded in the experiments, and the systematic errors of the
measurement tools. The next section outlines the random errors calculated as part of statistical analysis
of the results in a series of experiments.

Table 4. Main registered parameters and tolerances.

Physical
Magnitude

Droplet
Volume (Vd) Droplet Radius (Rd)

Temperature
Inside the

Droplet (Td)

Two-Component
Droplet Breakup

Times (τ) and
Lifetimes (τh)

Air Temperature
(Ta)

Air flow Velocity
(Ua)

Measurement
Tool/Technique

Finnpipette
Novus

dispensers

High-speed cameras
Phantom Miro M310
and Photron Fastcam

SA1, Tema
Automotive software

Planar Laser
Induced

Fluorescence
(PLIF)

High-speed cameras
Phantom Miro M310,
Photron Fastcam SA1,
and Phantom V 411,
Tema Automotive

software

Temperature
meter (IT-8)

Particle Image
Velocimetry (PIV)

Systematic Errors ±0.05 µL ≤ 4% ±1.5–2 ◦C ≤ 4% ±(0.2+0.001T) ◦C ± 2%

3. Results and Discussion

3.1. Droplet Disintegration Regimes

In this section, we present typical video frames showing the heating and disintegration of
two-component droplets on holders made of different materials (Figure 3). The smallest droplets were
formed in the cases when holders were made of materials with low thermal diffusivity (ceramics and
phosphorus).

On a copper holder, the droplets did not reach the temperature sufficient for an explosive breakup,
but gradually evaporated in a wide range of the main parameters: air temperature and component
concentration. Explosive breakup was only observed at 450 ◦C, and with a 50/50 concentration
of the flammable and non-flammable components. The heating time before disintegration was
25–30 s, most likely because copper is good at removing heat from the droplet. Copper holders
have the highest thermal diffusivity (around 117·10−6 m2/s). Droplets do not reach the conditions
of micro-explosion (even boiling is not observed). The video frames of the experiments only showed
monotonous evaporation.

Aluminum, however, with its thermal diffusivity of 90·10−6 m2/s (close to that of copper),
provided quite a stable explosive breakup. The heating time until explosive breakup was longer than
with the other holders, except for copper. The experiments established two factors prolonging the time
of two-component droplet disintegration: heat removal from a droplet due to relatively high thermal
diffusivity, formation of thermal stresses, nucleation, and growth of bubbles with high pressure in a
droplet, which disintegrates to form smog or mist.
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3.2. Impact of Key Factors

Figure 4 shows the times of two-component droplet disintegration vs gas medium temperature.
The longest disintegration times were observed when using an aluminum rod as a holder for a
two-component droplet. This results from the above-described possible rapid heat removal from
a droplet due to high thermal diffusivity of aluminum. This plot also shows that the times of the
two-component droplet disintegration decreased rapidly with an increase in the temperature. Such a
pattern is typical of each holder material under study.
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Figure 4. Two-component droplet heating times until explosive breakup vs gas medium temperature
with various holders: 1—ceramic; 2—steel; 3—aluminum; 4—steel tube; 5—nichrome; 6—phosphorus.
The value Ta ≈ 250 ◦C is the threshold for explosive breakup.

The temperatures at which the main experimental studies were performed to observe explosive
breakup, ranged from 250 ◦C to 450 ◦C. The optimal temperature that steadily provided an explosive
droplet breakup within a short time was 350 ◦C. Below that, the disintegration times increased
non-linearly, and above that, they remained practically the same. Further increase in the Ta is redundant
and unpractical for water treatment and other energy-consuming applications.

Apart from temperature functions, the plots of two-component droplet disintegration times vs
flammable component concentration were among the key ones. The resulting functions are highly
non-linear, which suggests a significant impact of the flammable liquid concentration on a group of
interconnected processes promoting the breakup of the initial two-component droplets (Figure 5).

These results can be compared to the recorded lifetime of the water-sunflower oil emulsion drop,
supported by a K-type wire thermocouple [28,29] under the asymptotic temperature of 350 ◦C. It ranges
from 0.9 to 1.3 s, close to the same order of magnitude. This result confirms that reproducibility of
lifetimes can be obtained under the same conditions of heat transfer that are mainly determined by
the temperature of the heat source. The emulsion temperature acquired by the thermocouple steadily
increased until the boiling point of oil, which is less than 250◦C (see Table 1).

Figure 5 shows the maximum droplet heating times until breakup with equal relative fractions of
the flammable and non-flammable components. This stems from a set of factors and processes that are
opposite in terms of their impact. Due to the higher heat capacity and the vaporization heat, water
heats up rather slowly as compared to oil, but the thermal conductivity and thermal diffusivity of
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the latter are several times lower than those of water. Therefore, under identical heating and equal
component concentrations, these factors counterbalance each other. As a result, a two-component
droplet is heated more slowly until it reaches the conditions of explosive breakup. Moreover, with a
low proportion of water in a droplet, the film of the flammable component is thick, and it is heated
faster than water. Thus, the heating times of the initial (parent) droplet until breakup are minimum.
With the highest possible fraction of water and lowest fraction of the flammable component, the trend
changes. A thin film of the flammable component is heated fast and locally overheats the near-surface
water layer. This is enough for bubble nucleation at the interface and the explosive breakup of the
initial droplet.

Moreover, the results shown Figure 5 can be compared to the emulsion drop lifetime of 0.9 to
1.3 s obtained using 70 vol % sunflower oil. The lifetime is close to the same order of magnitude.
It confirms that reproducibility is not only a function of the heat source temperature, but also that of
the emulsion properties.
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Figure 5. Droplet breakup times vs. relative mass fraction of the flammable component with various
holders: 1—ceramic; 2—steel; 3—aluminum; 4—steel tube; 5—nichrome; 6—phosphorus.

3.3. Droplet Disintegration Outcomes

By analyzing the outcomes of the explosive breakup (Figure 6) of a two-component droplet,
we have established that hollow steel and phosphorus tubes as well as a nichrome wire used as a
holder yield droplet aerosols with a maximum quantity of small fragments. The liquid evaporation
surface area increased more than 40 times under such conditions.

In the experiments with an aluminum holder, the evaporation surface area increased massively
with the growing concentration of the flammable component. This results from the longer droplet
heating time (Figure 5). The longer the period of droplet heating until breakup, the greater the volume
of the two liquids that is heated to high temperatures. The droplet broke up into a greater number
of fragments, which boiled and disintegrated in the process, into even smaller droplets. Presumably,
the chain-like breakup of droplet aerosols may potentially intensify.

For a phosphorus holder, on the contrary, a low concentration of flammable liquid provides
the largest evaporation surface area of droplets, most likely due to water boiling that is in contact
with the holder surface. Since a phosphorus rod removes very little energy from the droplet, almost
all the energy that is supplied is spent on heating the liquid components. The explosive breakup
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occurred when the liquid–liquid interface was heated to water boiling temperature. A thin flammable
component film quickly reached high temperatures, and so did a thin water layer at the interface,
which was recorded in the experiments.Energies 2018, X x FOR PEER REVIEW 12 of 18 
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Figure 6. Ratios of surface areas of small droplets formed after the breakup of two-component droplets
to their initial areas depending on the concentration of flammable liquid (oil) on various holders:
(a): ceramics; (b):steel; (c): aluminum; (d): steel tube; (e): nichrome; (f): phosphorus.

For the other holder materials, the emerging droplets had the largest evaporation surface areas
with 50/50 component concentrations. With this concentration of the flammable liquid, the breakup
times were the longest. Therefore, a droplet has more time to form the temperature stresses and
nucleation sites of vapor bubbles, i.e., to reach the temperatures sufficient for rapid vaporization near
the inner water–flammable liquid interface.
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A literature analysis shows that it is possible to significantly reduce the size of the droplets of
various liquids (respectively, to increase S/S0), due to several mechanisms. The most common are the
following: the impact of the droplets between themselves; the interaction of droplets with an obstacle;
the acceleration of droplets to the conditions under which they lose their stability and are significantly
transformed; micro-explosive crushing due to overheating.

In Figure 7, we added the results of additional test experiments (carried out in accordance with
the methods [34,35]) with droplets of oil–water emulsions (50% transformer oil, 50% water; 50% castor
oil, 50% water). The choice of oils is due to the fact that we worked with transformers when studying
micro-explosive effects (Figure 6), and the viscosity, density, and surface tension of castor oil are
significantly different from transformer oil. Figure 7 shows that with an increase of the speed and size
of the colliding drops, it is possible to ensure a multiple increase of the ratio S/S0. The values of this
parameter grow especially on a large-scale with temperature increasing, since the surface tension and
viscosity of liquids decrease. At the same time, the scale of growth of this ratio correlates well with
Figure 6 at micro-explosive decay. These results are the basis for the formulation of the hypothesis that
the combination of the effects of droplet collisions and their overheating will increase the S/S0 ratio
by a 100 times or even more. Thus, it is possible to provide a significant increase in the efficiency of
modern technologies of secondary grinding of droplets.
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3.4. Generalization of Research Findings

The experimental results made it possible to determine how the holder material affects the heating
of multi-component droplets, and to discover that in some cases, additional heating of such droplets
due to their contact with the holder intensifies their explosive breakup. A major role belongs to the
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direct contact of the non-flammable component (water) with the heated holder surface. Moreover,
the experiments have established that the heating of the two-component droplets is more rapid if the
core of the droplet is made of water, and the envelope, of oil. This happens because oil has a high
absorption ability, and less energy is spent on its evaporation. Therefore, oil is heated faster than water,
although water has a higher thermal conductivity and diffusivity than oil.

To demonstrate the heating conditions of multi-component droplets on a holder, we have developed
a simplified one-dimensional mathematical model of heat transfer in the holder–two-component droplet
system (Figure 8) similar to the one in [36]. This model determined the temperature variation trends
for the holder, core and envelope of a droplet (Figure 9). Signature domains are divided by different
colors in Figure 8. Similarly to the model in [36], we took into account the droplet heating through
both thermal conductivity and radiation absorption, according to the Beer–Lambert–Bouguer law. At a
first approximation, we used a one-dimensional statement to evaluate the variation of the vertical
temperature profile, as shown in Figure 8. From the analysis of the temperature fields established in
experiments [16,17], we can conclude that highly unsteady and inhomogeneous temperature profiles,
which further determine the intensity of droplet breakup, are formed in such sections.
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Figure 9. Temperature distributions (along x in a holder–two-component droplet system, see Figure 8)
at Ta = 300 ◦C for 10 s (a) and Ta = 400 ◦C for 5 s (b) using various holders: 1—phosphorus,
2—aluminum, 3—steel, 4—copper, 5—ceramics, 6—nichrome; the holder and droplet dimensions were
chosen in line with the conditions of the experiments; the boundaries of areas showing the holder, core,
and envelope of a droplet are not marked, since they were slightly different for each of the holders
used (see Figure 1).



Energies 2018, 11, 3307 14 of 17

Theoretical plots (Figure 9) show the following: with aluminum, steel, copper, ceramic, and
nichrome holders (2-6), the heat inflow to the droplet comes mostly from the flammable liquid (oil),
and in the case of the phosphorus holder, from the holder (1). From this, we can conclude that the
longest period of droplet heating will be provided by using a phosphorus holder, since the heat inflow
comes from both the holder and the flammable liquid. Moreover, these curves (Figure 9) show that
smallest heat inflow from the holder will be provided by using steel (3) and copper (4) holder materials.

In Figure 9, a significant increase in the temperature of a two-component droplet outpaces
the increase in the temperature of most holders used. Before the breakup, the water–flammable
liquid interface exceeded the water boiling temperature (100–120 ◦C). It was difficult to show such
trends in one measurement system in Figure 9, since for various holders, droplets are heated and
they disintegrate at various typical rates (the simulation results for water droplets are considered in
research [29]). Therefore, to demonstrate the highly inhomogeneous temperature profile, Figure 9
presents the calculations for temperatures, at which a droplet remains in one piece, i.e., before
explosive breakup.

In terms of practical importance, the experimental research proved that it is possible to provide
adequate high-temperature liquid treatments by the explosive breakup of droplets containing various
components in various proportions. In chambers used for high-temperature evaporation and the
burnout of impurities, multi-component droplets swirl through high-temperature turbulent and
pulsating gas media. Therefore, droplets are heated almost uniformly throughout their surface until
they reach the conditions sufficient for heat removal (droplet cooling), e.g., when a droplet is fixed on
a holder [15,16] or its substrates [17]. The fixation scheme of a two-component droplet on a holder,
chosen in this research, is fully in line with such conditions. This scheme provides adequate evaluation
of the main parameters of high-temperature liquid treatment from any impurities promoting a rapid
(explosive) breakup of multi-component droplets (e.g., slurries, emulsions, and solutions).

Experiments with droplets fixed on the holders used in this study (especially the phosphorus one)
make it possible to reproduce the conditions of liquid heating in high-temperature chambers. Droplets
move in such chambers at almost the same velocities as the carrier medium-heated gas. The carrier
medium velocities are as low as several meters per second. Therefore, liquid droplets are mostly
heated by the radiative heat flux. Droplet fixation on a holder with a very low thermal diffusivity leads
to a slight increase in the convective component of the flux as compared to the real-life evaporation
and burnout of impurities. However, our estimates show that these deviations do not exceed 10%,
and they decrease with the growing temperature of the carrier medium (Figure 9). Also, the research
results can be used for development of effective approaches to the secondary atomization of droplets
in fuel technologies [37–39].

4. Conclusions

(i) The breakup of a two-component droplet is connected with the overheating of the
water–flammable liquid interface above the water boiling temperature (100–120 ◦C). Liquid surface
tension forces suppress the free release of the vapor bubbles formed near the interface. When the
vapor pressure in a droplet exceeded the threshold value, the droplet broke up to form a mist, aerosol,
or several droplets.

(ii) When analyzing the heating times of the two-component droplets until breakup, we discovered
that the disintegration times of two-component droplets are minimum when holders with a low thermal
diffusivity are used (a < 10 m2/s), and maximum when thermal diffusivity is high (a > 80 m2/s).

(iii) In comparison with the results obtained onto a suspending thermocouple junction, under
similar conditions of heat source and emulsion properties, the lifetime of the drop is close to the same
order of magnitude (2–6 s).
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Nomenclature and Units

a thermal diffusivity, m2/s
C specific heat capacity, J/(kg·◦C)
dh holder diameter, mm
m number of groups
n number of droplets in each group
Rd droplet radius, mm
Rd0 initial two-component droplet radius, mm
Rd1 droplet radius before breakup, mm
Rdn mean radius of droplets in a group, mm
S total area of droplet evaporation surface after breakup, mm2

S0 initial droplet surface area, mm2

S1 droplet surface area before breakup, mm2

Sh contact surface area of a droplet and holder surface, m2

Sm frontal cross-sectional area of droplet, mm2

Sn evaporation surface area in each droplet group, mm2

T temperature, ◦C
Ta gas flow temperature, ◦C
Td temperature in a droplet, ◦C
t time, s
Ua high-temperature gas flow velocity, m/s
Vd drop volume, µL
We Weber number
x coordinate in a one-dimension model, mm
η flammable liquid concentration, vol%
λ thermal conductivity, W/(m·◦C)
ρ density, kg/m3

τ two-component droplet breakup times, s
τh two-component droplet lifetimes, s
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