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Abstract: In order to enhance the spreading of renewable energy sources in the Italian electric power
market, as well as to promote self-production and to decrease the phase delay between energy
production and consumption, energy storage solutions are catching on. Nowadays, in general, small
size electric storage batteries represent a quite diffuse technology, while air liquid-compressed energy
storage solutions are used for high size. The goal of this paper is the development of a numerical
model for small size storage, environmentally sustainable, to exploit the higher efficiency of the liquid
pumping to compress air. Two different solutions were analyzed, to improve the system efficiency
and to exploit the heat produced by the compression phase of the gas. The study was performed
with a numerical model implemented in Matlab, by analyzing the variation of thermodynamical
parameters during the compression and the expansion phases, making an energetic assessment for
the whole system. The results show a good global efficiency, thus making the system competitive
with the smallest size storage batteries.

Keywords: energy analysis; compressed air energy storage; heat exchange; electric power generation

1. Introduction

The rise in the energy demand in recent years has led to an increase in the development and use
of renewable energy sources throughout the world. Since the production of energy from renewable
sources is intermittent because it depends on weather conditions, the storage of electricity and heat
is of considerable and growing importance. Energy storage technologies are gaining much attention
due to their ability to level electrical loads, to manage and compensate for the intermittent nature
of renewable energies according to the demand of the various users and also to store excess power
during the day and move closer to energy self-sufficiency. Various energy storage technologies can
be classified for different physical operating principles, although according to the different final
applications it is necessary to choose the most advantageous type of storage. In general, according to
the 2016 report [1], 170 GW of energy storage have been installed in the world and Italy currently (with
7 GW) is among the top ten countries in the world. For what concerns installed technologies, 95%
are mechanical while their applications are not in the residential sector but the network services and
energy dispatching since the costs of technology are still not sustainable. Nowadays, in EU countries,
the storage solutions in the residential sector are spreading especially for new buildings developed
according to the “fully electric” concept. Among the common types of storage, hydroelectric pumping
is certainly the most widespread, even if its strong dependence on the morphology of the place will
limit its further development in favor of other technologies such as compressed air storage. In the
residential sector, electrochemical accumulation is the most common technology. However, in the
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future, the compressed air storage could be a viable solution thanks to reliability, low environmental
impact, and energy self-sufficiency. The idea of storing electricity using compressed air dates back
to the early 1940s, although until the 1960s the development of the CAES (Compressed Air Energy
Storage) was not pursued either in research or in the industrial sector. The first installation took place
in Germany in 1969 with the Huntorf plant thanks to appropriate geological formations to accumulate
large quantities of compressed gas. Nowadays, there are two large size plants like Huntfort and
Alabama [2], while for the small size plants, a system with vessel or pipe [3–5], has replaced the natural
cave. In general, CAES technology suffers from very low efficiencies, due to losses in the compressor
and turbine [5–8] and a very high cost, higher than $120/Kwh [3]. At the same time, it is a desirable
technology due to its low environmental impact, its very high life cycle and, above all, its ability to
recover thermal energy, attracting much scientific research. In general, CAES systems can be divided
into three macro-categories: diabatic, adiabatic and isothermal [9]. In the first type (D-CAES) the
heat associated to the compression phase is lost in the environment during the cooling phase, so it
is necessary to use an external heat source for the discharge process. In the second type (A-CAES)
the heat of the compression phase is collected and used to preheat the air, before the expansion. In
the third configuration (I-CAES), the heat produced during the compression phase is reused for other
connected applications. Sciacovelli et al. [10] in the paper show that the round-trip efficiency grows of
25% when the thermal storage is used to help the CAES process to maintain the adiabatic conditions.
There are also hybrid CAES systems with a liquid air energy storage (LAES) [11]. In these systems the
advantages are higher efficiency, lower costs and high energy densities. The most critical challenges
regarding CAES technology are the management of the heat produced during the compression of the
gas and the increase of the efficiency of the system. For this reason, many studies have been performed
about the possible achievement of isothermal or almost isothermal compressions through the use
of liquids in the form of a spray during compression [12–18]. This type of CAES, on the one hand,
increases the efficiency of the system, increasing the efficiency of compression, on the other manages to
recover heat in the compression phase for other uses, thus making the technology CAES a fundamental
technology to reach self-sufficient energy.

In the last years, another relevant field of applications for the CAES technologies is to use the
small-scale energy output for commercial and residential buildings and for individual stand-alone
applications [19,20]. Potential and performance evaluations of CAES have been mainly made by
simulation tools or modeling processes to have energy and exergy results [21]. In general, to study the
CAES system, most of the research use the simulated data of CAES with simulated data of the end
users such as an apartment or buildings and only a few papers proposed an economic analysis [22].

Another significant development of the CAES system is the liquid -gas compressed air energy
storage. The idea of this system born to improve the efficiency of the system, because it is more efficient
to pump the liquid than the air inside of the vessel. In the literature, Odukomaiya et al. [23] analyze
this particular CAES system. Our idea is to use this system for small energy applications, where it
is necessary to obtain self-sufficient energy. The system involves the compression of a gas inside a
tank through the introduction of a liquid that is pumped into the tank through a hydraulic pump
whose efficiency is higher than an air compressor. The storage system is then loaded by pumping the
liquid into the tank, with the consequent reduction in the volume of the gas and the relative increase in
terms of pressure energy. When the user requires electric power, the high-pressure liquid is expanded
using a Pelton turbine coupled to an electric generator. During this phase, the volume of gas inside the
tank expands, and the pressure decreases (Figure 1). Two different configurations of the gas-liquid
storage system have been studied, with the aim of assessing how to use the heat produced during the
compression phase. In a first configuration the heat produced by compression will not be reused; in the
second one, a liquid will be injected into the gas using a spray to increase the efficiency of the system.
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a volume range between 10 and 1000 L. The adopted configurations are shown in Figure 2. 

The first, named “first configuration,” has been described above and is the simplest scheme 
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Figure 1. Scheme of the Energy Storage System.

2. Description of the Configurations

The studied system allows compressed air to be stored in high-pressure tanks, using a
high-efficiency hydraulic pump instead of compressor usually used in storage systems. The system,
as shown in Figure 1, is loaded by pumping water into the tank thus reducing the available gas
volume. As a result, the temperature and gas pressure increase. After the compression, there is a
transitory phase during which all the thermodynamic variables stabilize. When electricity demand
occurs, high-pressure water is released into a Pelton turbine coupled to a high efficiency electric
generator, thus producing electricity. During the discharge phase, the volume of gas expands and the
pressure consequently decreases. The pump used to pressurize the tank is of the “PD” type (positive
displacement). This on purpose designed pump allows particular applications where low flow rates
and pressures up to 200–300 bar are required. The efficiency of the considered hydraulic machines can
reach a value of 90%, and they result commercially available on a large scale (1–500 kW). For what
concerns the tank, high-pressure resistant models (over 300 bar) are available on the market in a
volume range between 10 and 1000 L. The adopted configurations are shown in Figure 2.
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The first, named “first configuration,” has been described above and is the simplest scheme among
those proposed. That named “second configuration” differs from the first because of the presence of a
device that atomizes the water inside the tank. The reason for this solution lies in the fact that through
this nebulization it is possible to consider the transformation as isentropic, in order to increase the
overall efficiency.

3. Mathematical Model

In order to better understand the mathematical model implemented it is possible to start from the
analysis of Figure 3. The equations related to heat transfer are the following:

.
Q1 = UAG(TG − Tamb) (1)

.
Q2 = UAL(TL − Tamb) (2)
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.
Q3 = hG,L AG,L(TG − TL) (3)
.

Q4 = hi,G Ai,G(TG − TT,G) (4)
.

Q5 = ho Ao,G(TT,G − Tamb) (5)
.

Q6 = hi,L Ai,L(TG − TT,L) (6)
.

Q7 = ho Ao,L(TT,L − Tamb) (7)

From these expressions, for each configuration studied, the thermal balances were evaluated both
during the charge phase both during the discharge phase and obviously during the injection phase.

Energies 2018, 11, 3405 4 of 17 

 

𝑄 = ℎ 𝐴 , 𝑇 , − 𝑇  (5) 𝑄 = ℎ , 𝐴 , 𝑇 − 𝑇 ,  (6) 𝑄 = ℎ 𝐴 , 𝑇 , − 𝑇  (7) 

From these expressions, for each configuration studied, the thermal balances were evaluated 
both during the charge phase both during the discharge phase and obviously during the injection 
phase. 

 
Figure 3. Scheme of the energy budget for the storage system. 

To develop the mathematical model some assumptions has been done: 

- Inside of the liquid and gas respectively the temperature is uniform; 
- Air temperature of the environment is constant; 
- Thermophysical properties of the tank constant; 
- The gas inside of the tank follow the ideal gas law; 
- All processes occurring at quasi-steady state; 
- negligible heat transfer between the tank upper (TG) and tank lower (TL); 

To model the transient thermodynamic response of the system, in the Equation (8) we analyze 
the energy exchange inside of the gas.  𝑚 𝐶𝑣 𝑑𝑇𝑑𝑡 = −ℎ , 𝐴 , (𝑇 − 𝑇 ) − 𝑈 𝐴 (𝑇 − 𝑇 ) − 𝑝 𝑑𝑉𝑑𝑡  (8) 

The term on the left is the time rate of change of the energy contained within the gas; the first 
term on the right side of the equation is the net rate of the thermal energy transferred from the gas to 
the liquid; the second term is the net rate of the thermal energy transferred from the gas to the external 
environment through the tank walls and the last term is the net rate at which energy is transferred 
out by boundary work. The last term does not appear during the pause phase for obvious reasons. 

The Equation (9) is the energy equation for the liquid. 𝑚 𝐶𝑣 𝑑𝑇𝑑𝑡 = ℎ , 𝐴 , (𝑇 − 𝑇 ) − 𝑈 𝐴 (𝑇 − 𝑇 ) + 𝑚 𝐶𝑣 (𝑇 − 𝑇 ) (9) 

The term on the left side of the equation represent the time rate of change of the energy contained 
within the liquid; the first term on the right side is the net rate of the thermal energy transferred from 
the liquid to gas; the second term is the net rate of the thermal energy transferred from the liquid to 
external environment through the tank walls; and the last term is the net rate of energy transfer inside 
of the liquid accompanying mass flow. 

The Equation (10) is the energy equation for the tank walls in contact with the gas 𝑚 , 𝐶𝑣 𝑑𝑇 ,𝑑𝑡 = ℎ , 𝐴 , 𝑇 − 𝑇 , − ℎ 𝐴 , 𝑇 , − 𝑇  (10) 

Figure 3. Scheme of the energy budget for the storage system.

To develop the mathematical model some assumptions has been done:

- Inside of the liquid and gas respectively the temperature is uniform;
- Air temperature of the environment is constant;
- Thermophysical properties of the tank constant;
- The gas inside of the tank follow the ideal gas law;
- All processes occurring at quasi-steady state;
- Negligible heat transfer between the tank upper (TG) and tank lower (TL).

To model the transient thermodynamic response of the system, in the Equation (8) we analyze the
energy exchange inside of the gas.

mGCv
dTG
dt

= −hG,L AG,L(TG − TL)− UAG(TG − Tamb)− pG
dVG
dt

(8)

The term on the left is the time rate of change of the energy contained within the gas; the first
term on the right side of the equation is the net rate of the thermal energy transferred from the gas to
the liquid; the second term is the net rate of the thermal energy transferred from the gas to the external
environment through the tank walls and the last term is the net rate at which energy is transferred out
by boundary work. The last term does not appear during the pause phase for obvious reasons.

The Equation (9) is the energy equation for the liquid.

mLCvL
dTL
dt

= hG,L AG,L(TG − TL)− UAL(TL − Tamb) +
.

mLCvL(Tamb − TL) (9)

The term on the left side of the equation represent the time rate of change of the energy contained
within the liquid; the first term on the right side is the net rate of the thermal energy transferred from
the liquid to gas; the second term is the net rate of the thermal energy transferred from the liquid to
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external environment through the tank walls; and the last term is the net rate of energy transfer inside
of the liquid accompanying mass flow.

The Equation (10) is the energy equation for the tank walls in contact with the gas

mT,GCvT
dTT,G

dt
= hi,G Ai,G(TG − TT,G)− ho Ao,G(TT,G − Tamb) (10)

The term on the left side of the equation is the time rate of change of the energy contained within
the corresponding mass; the first term on the right is the net rate of the thermal energy transferred
from the gas to the tank, the second term is the net rate of the thermal energy transferred from the tank
to the external environment.

The Equation (11) is the energy equation for the tank walls in contact with liquid.

mT,LCvT
dTT,L

dt
= hi,L Ai,L(TL − TT,L)− ho Ao,L(TT,L − Tamb) (11)

The term on the left side of the equation is the time rate of change of the energy contained within
the corresponding mass; the first term on the right is the net rate of the thermal energy transferred
from the liquid to the tank and the second term is the net rate of the thermal energy transferred from
the liquid to the external environment.

Equation (12) is the continuity equation for the gas

dVG
dt

= −
.

mL
$L

(12)

Equation (13) is the continuity equation for the liquid.

dmL
dt

=
.

mL (13)

To study the second configuration more equations are utilized, in particular, the following
equations are utilized to model the effect of the direct-contact heat exchange between the gas and the
liquid obtained via spraying [23].

Regarding this phenomena, it is essential to explain that for this high pressure inside of the tank,
the evaporation of the liquid is minimal and then the liquid-gas mass diffusion has been neglected.

In the model, we assumed that the single droplet falls at a constant velocity and the Equation (14)
show the velocity of the single droplet.

vterm =

√
4gDdr$dr
3$GCD

(14)

Obtaining the terminal velocity allows for the calculation of the droplet travel time or residence
time in the gas using Equation (15)

ttrav =
l(t)

vterm
(15)

where the l(t) is the distance from the top of the tank and the liquid below.
Equation (16), show how we can calculate the number of the droplets generated per unit time.

.
Ndr =

6
.

Vspr

πD3
dr

(16)
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Using the value of the time travel obtained from Equation (15) and the number of the droplets
generated per unit time (Equations (16) and (17)) shows how we can calculate the total number of
droplets of liquid traveling through the gas.

Ndr =
.

Ndrttrav (17)

With the Equation (18) we can calculate the trend of the temperature of the droplets during the
time from the exit of the nozzle in the upside of the tank to the bottom side of the tank

Tdr,out − TG

Tdr,in − TG
= e−

ttrav
τdr (18)

Equation (19) show the thermal time constant of the liquid droplet.

τdr =
$drVdrCdr
hdr As,dr

(19)

Equation (20) shows the Nusselt number, utilizing the relation of Ranz and Marshall.

Nudr = 2 + 0.6Re1/2Pr1/3 (20)

Then in the Equation (21), the resulting heat transfer coefficient is calculated:

hdr =
Nukdr

Ddr
(21)

The heat loss (or gain) from the drops can be calculated using Equation (22), that how we can see
depends from the temperatures of the drops as they enter and leave of the gas.

Qdr = $drVdrcdr(Tdr,out − Tdr,in) (22)

The rate of heat loss from the entire spray is then calculated as follows in Equation (23)

.
Qspr =

.
NdrQdr (23)

To calculate the effect of the droplets on the temperature of the bulk liquid at the bottom of the
tank the mixing Equation (24) is utilized. At each time step, the enthalpy of the drops plus the enthalpy
of the bulk liquid must equal to the enthalpy of the combined liquid mixture

TL,mixed =

.
mspr∆tCdrTdr + mLCLTL

(
.

mspr∆t + mL)CL
(24)

The presence of the droplets inside of the gas will change the heat transfer during the charging
and discharging phases. Then the Equations (8) and (9) will change in the second configuration in the
Equation (25) for the gas and Equation (26) for the liquid.

mGCv
dTG
dt

= −hG,L AG,L(TG − TL)− UAG(TG − Tamb)− pG
dVG
dt

−
.

Qspr (25)

mLCvL
dTL
dt

= hG,L AG,L(TG − TL)− UAL(TL − Tamb) +
.

mLCvL(Tamb − TL)+
.

msprCvL(TG − TL) (26)
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The efficiency of the studied system is calculated as follows:

ηind =
∑N

j=1 pj(Vg,j+1 − Vg,j)discharge

∑N
j=1 pj(Vg,j+1 − Vg,j)charge

(27)

where N = 20 is the number of time steps of charging and discharging phases.

4. Results and Discussion

Let’s start by analyzing what happens in the first configuration. The initial parameters of this
configuration are reported in Table 1.

Table 1. Parameter utilized for the first configuration.

Parameter Value

Vser 1.98 m3

mc 178.14 kg
.

ml 0.58333 kg/s
t 20 min
U 8.3 W/(m2K)

tpausa 720 min (12 ore)
Piniz 78 bar
Tamb 298.15 K

TG,iniz 298.15 K
TL,iniz 298.15 K

In order to better understand the energy performance of the two configurations, several
simulations have been implemented. In each simulation explained in the table to make a detailed
sensitivity analysis of the system (Table 2).

Table 2. Description of the Simulations implemented.

Description Value

SIM 1
.

m = 0.5833 kg/s
SIM 2

.
m = 0.865 kg/s

SIM 3
.

m = 1.166 kg/s
SIM 4 V = 1.98 m3

SIM 5 V = 2.97 m3

SIM 6 V = 3.96 m3

SIM 7 U = 8.3 W/m2K
SIM 8 U = 1.5 W/m2K
SIM 9 U = 1 W/m2K
SIM 10 t = 20 min
SIM 11 t = 10 min
SIM 12 t = 5 min

Below are presented the graphs of the first configuration and the second configuration for the 12
simulations performed. The time step assumed during the calculation is equal to 60 s, decreasing of
step size do not influence the obtained value of system efficiency. The charging and discharging phases
take 20 min In Figures 4 and 5 the variation of the temperature of the gas inside the tank was evaluated
for three different values of the liquid flow rate respectively for the first and second configuration.
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In Figures 6 and 7 the variation of the pressure of the gas inside of the tank was evaluated for
three different values of the liquid flow rate respectively for the first and second configuration.
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Figure 6. Pressure gas trend for the First Configuration varying the liquid flow rate.
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Figure 7. Pressure gas trend for the Second Configuration varying the liquid flow rate.

Table 3 shows the values of the system efficiency for the first configuration varying the liquid flow
rate. It can be seen that the efficiency increases when the mass flow rate decrease.

Table 3. Efficiency system for the first configuration varying the liquid flow rate.

Efficiency
.

m = 0.5833 kg/s
.

m = 0.875 kg/s
.

m = 1.167 kg/s

ηind (%) 89.7 82.5 72.5

Table 4 show the values of the efficiency system for the second configuration varying the liquid
flow rate. It can be seen that the efficiency increases when the mass flow rate decrease.

Table 4. Efficiency system for the second configuration varying the liquid flow rate.

Efficiency
.

m = 0.5833 kg/s
.

m = 0.875 kg/s
.

m = 1.1667 kg/s

ηind (%) 96.1 93.4 89.1
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In Figures 4–7 it is possible to see that as the entering water mass flow increases, both the pressure
and the temperature of the gas increase. From figures, we can note that the in the first configuration
the values of the temperature and the gas are higher than in the second configuration.

Using
.

m = 0.875 kg/s for the first configuration would seem to be the best choice, since a final
pressure of the charge phase around 200 bar shows a significant increase in the temperature of the gas
(up to 360 K), while maintaining a significant efficiency (82.5%). The same reasoning, we can have done
for the second configuration. Taking the

.
m = 1.167 kg/s guarantees higher values of temperature but

also high pressure to withstand for the tank (thus increasing construction costs). The first configuration
simulation setting also presents decidedly lower efficiency with respect to the second configuration.,
where the efficiency are considerably higher (Table 4).

Subsequently, it was decided to change the volume of the tank. Figures 8–11 shows the
temperature and pressure inside of the tank for the first and second configuration respectively varying
the volume of the thank.
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Figure 9. Gas temperature trend for the Second Configuration varying the Volume of the tank.
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Figure 10. Pressure gas trend for the First Configuration varying the Volume of the tank.
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Figure 11. Pressure gas trend for the Second Configuration varying the Volume of the tank.

The Figures 8–11 show that as the volume of accumulation increases, a reduction in gas pressure
and temperature is obtained for both configurations.

In Tables 5 and 6, are reported the values of the efficiency varying the volume of the tank
respectively for the first and second configuration.

Table 5. Efficiency system for the first configuration varying the Volume of the tank.

Efficiency V = 1.98 m3 V = 2.97 m3 V = 3.96 m3

ηind (%) 89.7 93.45 95.2

Table 6. Efficiency system for the second configuration varying the Volume of the tank.

Efficiency V = 1.98 m3 V = 2.97 m3 V = 3.96 m3

ηind (%) 96.1 96.9 97.4

In tables are evident that when the volume of the thank increases the value of the efficiency for
both configurations but with slighter efficiency for the first configuration.
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Figures 12–15 show how the temperature and the pressure of the gas inside of the thank varies for
three different values of the transmittance of the thank.
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Figure 14. Gas pressure trend for the First Configuration varying the Transmittance of the tank.
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Figures 12–15 shows that as the transmittance decreases a significant increase in pressure and
temperature occurs thanks to the higher isolation of the tank walls with respect to the external
environmental conditions. Furthermore, the transient phase during which the pressure and
temperature values tend to stabilize is extended. The efficiency, on the other hand, decreases by
almost one percentage point (Tables 7 and 8).

Table 7. Efficiency system for the first configuration varying the transmittance of the tank.

Efficiency U = 8.3 W/(kg·K) U = 1.5 W/(kg·K) U = 1 W/(kg·K)

ηind (%) 89.7 89 89

Table 8. Efficiency system for the second configuration varying the transmittance of the tank.

Efficiency U = 8.3 W/(kg·K) U = 1.5 W/(kg·K) U = 1 W/(kg·K)

ηind (%) 96.1 96.14 96.15

Then, the variation in temperature and pressure was evaluated as a function of the charging time
(Figures 16–19).Energies 2018, 11, 3405 13 of 17 
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Figure 16. Gas temperature trend for the First Configuration varying the charging time.
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Figure 19. Gas pressure trend for the Second Configuration varying the charging time.

Figures 16–19 show that a reduction of the charge and discharge phase results in a significant
decrease in both pressure and gas temperature for the first and second configuration. The efficiency
increases considerably, but the amount of work that can be extracted decreases drastically (Tables 9
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and 10). Therefore, reducing the charge and discharge time does not entail any real advantage to the
system, somewhat it limits its potential.

Table 9. Efficiency system for the first configuration varying the charging time.

Efficiency T = 20 min T = 10 min T = 5 min

ηind (%) 89.7 94.8 97.4

Table 10. Efficiency system for the second configuration varying the charging time.

Efficiency T = 20 min T = 10 min T = 5 min

ηind (%) 96.1 97.2 98.1

5. Conclusions

Energy storage technologies are destined to be increasingly important within the so-called “smart
grids.” Nowadays, CAES represent a valid solution thanks to their reliability, their possible integration
with renewable energies and their ability to integrate themselves into poly-generation systems. Among
the various types and models of CAES studied since the 40s till today, the Gas-Liquid Energy Storage
(GLES) can be a turning point. In fact, they are scalable systems able to reach high pressures, with a
high energy density and low environmental impact. The last feature puts them in an advantageous
position compared to the batteries, which nowadays represent the primary system of accumulation on
a small scale. Also, the batteries have the ability to accumulate only electricity, while with GLES, it is
possible to store electricity and heat, recovering and allocating it to other purposes (such as domestic
hot water or air conditioning systems).

In the first configuration, with the initialization parameters, it can be seen that in 20 min of time
charge, high pressures are reached (slightly above 135 bar), gas temperature around 330 K and an
indicated yield of 89.7%. The sensitivity analysis highlighted how the increase in the mass flow of
water entering the tank entails a substantial increase in pressure and temperature, while the increase
in the volume of accumulation causes an opposite effect. The decrease in transmittance, instead, has as
the main effect the increase in the short interval during the pause phases, due to a better isolation of
the tank. Moreover, a decrease in charge and discharge times does not bring significant benefits to
the system.

In the second configuration, the substantial constructive difference due to the presence of the
nebulizer leads to entirely different results. The presence of the droplets sprayed inside the tank
causes the temperature to drop during the charging phase and rise during the discharge. The main
consequence of the presence of the sprayer is a considerable increase in yield: in fact, it goes from
89.7% of the first configuration to 96.1% of the second; this is due to a reduction in the work required
and an increase in the work extracted.
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Nomenclature

V volume (m3)
m mass (kg)

.
ml mass flow rate in the tank (kg/s)
t time (s)
U thermal transmittance (W/(m2 K))
h heat transfer coefficient (W/(m2 K))
k thermal conductivity (W/(m K))
P pressure (Pa)
T temperature (K)
η thermodynamic Efficiency
L mechanical Work (J)
Q thermal energy (J)
.

Q heat transfer rate (W)
−T medium temperature (K)
A surface (m2)
c specific heat (J/(Kg K))
ρ density (kg/m3)
l length (m)
g gravity acceleration (m/s2)
Cd resistance coefficient
.

N number of drops (s−1)
.

V volumetric flow rate (m3/s)
D diameter (m)
Nu Nusselt number
Re Reynold number
Pr Prandtl number
r radius (m)
h height (m)
R universal gas constant (J/Kg K)
s thickness of the tank (m)
Subscripts
ser tank
g gas
l liquid
t tank
iniz start period
amb environment
max max value
min min value
in input
i internal
out out
o external
tot total
rac collected
ν constant volume
dr drop
trav travel
spr spray
med medium
acc steel
isol insulating
pause time period of pause
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