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Abstract: In this study, the concept of grounding systems is related to the voltage tolerance of the
human body (human body voltage tolerance safety value). The maximum touch voltage target and
grounding resistance values are calculated in order to compute the grounding resistance on the basis
of system data. Typically, the grounding resistance value is inversely proportional to the laying depth
of the grounding grid and the number of grounded copper rods. In other words, to improve the
performance of the grounding system, either the layering depth of the grounding grid or the number
of grounded copper rods should be increased, or both of them should be simultaneously increased.
Better grounding resistance values result in increased engineering costs. There are numerous solutions
for the grounding target value. Grounding systems are designed to find the combination of the
layering depth of the grounding grid and the number of grounded copper rods by considering
both cost and performance. In this study, we used a fuzzy algorithm on the genetic algorithm
(GA), multi-objective particle swarm optimization (MOPSO) algorithm, Bees, IEEE Std. 80-2000,
and Schwarz’s equation based on a power company’s substation grounding system data to optimize
the grounding resistance performance and reduce system costs. The MOPSO algorithm returned
optimal results. The radial basis function (RBF) neural network curve is obtained by the MOPSO
algorithm with three variables (i.e., number of grounded copper rods, grounding resistance value,
and grounding grid laying depth), and the simulation results of the electrical transient analysis program
(ETAP) system are verified. This could be a future reference for substation designers and architects.

Keywords: genetic algorithm; multi-objective particle swarm optimization algorithm; artificial bee colony;
IEEE Std. 80-2000; Schwarz’s equation; fuzzy algorithm; radial basis function; neural network; ETAP

1. Introduction

The harmful effects of electric current on the human body can be broadly categorized as
electric shock and electrical injury. The harmful effects on the normal functions of the heart, lungs,
and nervous system when an electric current flows through the human body can be referred to
as electric shock. Such effects can include numbness, paralysis, difficulty in breathing, and even
respiratory and/or cardiac arrest and ventricular fibrillation. Low-voltage electrocution can occur if
the heart is unable to function. Most electricity-induced deaths are caused by electric shocks from
low-voltage power systems.

Electrical injuries, also known as electrical burns, refer to localized damage to human tissue due
to the thermal, chemical, or mechanical effects of current flowing through the body. Such electrical
burns can harm the skin, muscles, blood vessels, bones, internal organs, and the nervous system.
In a high-voltage power system, faulty operation can cause severe burns. Strong electric arcs can be
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produced by high-voltage discharges, harming humans near the charged equipment. The temperature
of electric arcs can reach 8000 ◦C, which can cause large and deep burns; severe arc burns can be lethal.
When a current-carrying conductor comes into contact with the human body for a period of time,
the skin at the contact site hardens and forms an imprint-like lump called an “electric imprint” due
to the chemical and mechanical effects of the current. In addition, when splashed, metal particles
penetrate the skin by chemically reacting with it, and the skin becomes rough and hard. This condition,
which is commonly observed with arc burns, is referred to as “skin metallization”.

The human body suffers different degrees of harm when an electric current flows through vital organs.
The extent of damage depends on the duration, amplitude, and frequency of the current. Ventricular
fibrillation, which causes the heart to stop beating, is among the most severe types of damage [1]. Previous
studies have indicated that humans are easily affected by alternating current (AC) at frequencies of 50–60 Hz.
At such frequencies, a current of approximately 0.1 A can be fatal. However, the human body can tolerate
frequencies that are slightly higher than 25 Hz, which represents an intensity that is approximately five
times that of direct current (DC). At this frequency, DC is five times more intense than AC at a frequency
of 50–60 Hz [2]. A stronger current can be tolerated between 3 and 10 kHz [3]. The effects of current
flowing through the human body can be expressed in increments of current flow: muscle contraction,
unconsciousness, cardiac fibrillation, respiratory obstruction, and burning.

Various algorithms that are designed for optimizing the grounding resistance, improving grounding
efficiency, and reducing engineering costs have been proposed. For example, Alik et al. proposed a genetic
algorithm optimization (GAO) based on the safety and cost-effectiveness of the grounding system design
of the Ain El-Melh substation in M’Sila, Algeria [4]. Here, the primary objective was to minimize the
cost function of the grounding system in accordance with the requirements of the American National
Standards Institute (ANSI)/IEEE Std. 80-2000. The variables that were involved in their cost function model
included the number and size of the grounding conductors, the number and length of the grounding bars,
and the total area of the grounding grid. They demonstrated that their GAO achieved a cost-effective
grounding system design. They also proposed a method to minimize the grounding system costs of the
Labreg Power Plant located in Khenchela (400 km east of Algiers). The grounding system was designed
using particle swarm optimization (PSO), GAO, and hybrid particle swarm genetic algorithm optimization
(HPSGAO). Their objective was to implement the number of iterations and convergence times of PSO,
GAO, and HPSGAO, as well as the cost function of the grounding system, to evaluate the effectiveness of
cost reduction [5].

This study presents the grounding prediction line in different regions that was drawn up using the
grounding resistance divided by the grounding resistance coefficient in the study area, and multiplied
by the grounding resistance coefficient in the replacement area (i.e., by replacing the grounding
resistance of the area). The grounding prediction line and relative grounding material cost can serve as
additional design references for the grounding system designers. In addition, previous studies have
combined PSO and genetic optimization algorithms to compare the convergence time and the number
of iterations. Using modern computers, these algorithms can be processed quickly. Therefore, in this
study, we have focused on an algorithm to reduce the material costs of grounding systems and to
maintain good grounding resistance performance. In this study, we compared the advantages and
disadvantages of the fuzzy system in the grounding system of each algorithm, and the simulation
results of the ETAP system were verified. The remainder of this study is organized in the following
manner. Section 2 recalls the representation of the grounding system material cost function to prevent
electric shocks, and Section 3 details the system structure. The simulation results are shown and
analyzed in Section 4, and the conclusions are summarized in Section 5.

2. Representation of the Grounding System Material Cost Function to Prevent Electric Shocks

Current can be categorized relative to its effect [6].

(1) Current that causes a slight tingling sensation when it passes through the fingertips is called
a perception current [7]. The minimum current that can be felt is known as the perception
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current threshold. Note that the threshold is not related to the duration of the current flow.
The American National Standards Institute (ANSI) Std. 80 identifies the perception current
threshold as 1 mA [3], and the International Electrotechnical Commission (IEC) sets the threshold
at 0.5 mA (IEC 479-1) [6].

(2) Current that causes discomfort but does not hinder muscle control is referred to as a let-go current.
As the current increases, heat and tingling sensations increase, and when the current reaches
a certain level, the muscles contract, causing muscle spasms, and the current-carrying body
becomes unable to let go of the contact point. Generally, let-go currents do not cause adverse
effects. The let-go current threshold represents the current value that a human body can tolerate
without adverse effects. The ANSI Std. 80 sets the let-go current threshold for women and men at
6 and 9 mA, respectively, and the IEC sets the threshold value at 10 mA for both men and women.
When the current exceeds this threshold, people may panic and experience unbearable pain.
Depending on the duration, currents that exceed the threshold may result in a coma, suffocation,
and even death.

(3) The current that causes a rapid disorganized electrical activity in the heart is called a ventricular
fibrillation current. The heart functions in humans are controlled by an internal electrical system,
and when an external current exceeds the let-go threshold and continues to increase, the heart’s
normal electrical signals become disturbed and myocardial vibration is induced (i.e., ventricular
fibrillation occurs). If the heart cannot pump blood normally, death can occur within minutes.

In order to avoid injuries or death, a safe grounding system must be designed to keep the current
below the current threshold. According to Dalziel et al., the human body’s tolerance can be represented
by the following energy relationship [8,9]:

SB = (IB)
2ts, (1)

where IB is the maximum current (unit: ampere) that the human body can tolerate, ts is the duration of
current flow through the body (unit: seconds), and SB is the experimentally known energy constant
that 99.5% of people can safely withstand without experiencing ventricular fibrillation; it is also the
ratio of energy absorbed by the body to the body’s resistance in joules per ohm. Assuming that
SB holds, from Equation (1), it can be deduced that the magnitude and duration of the current are
expressed as follows:

IB =
k√
ts

. (2)

By the corollary of Equation (1) (i.e., k =
√

SB), it can be inferred the human body absorbs
the energy. Dalziel et al. found that, for people weighing approximately 50 kg, SB50 = 0.0135;
therefore, k50 = 0.116 [6]. Thus, the relationship between human-safe current and duration is expressed
as follows:

IB50 =
k√
ts

=
0.116√

ts
. (3)

Dalziel and Lee found that, based on Equations (1) and (2), for people weighing 70 kg, k70 = 0.157
and SB70 = 0.0246 [10,11]. Therefore, we obtain the following:

IB70 =
k√
ts

=
0.157√

ts
. (4)

Conservative grounding grid models are often used when assessing human safety. Typically,
workers at the target AC substation weigh more than 50 kg; thus, the human-safe current is calculated
using Equation (3). Therefore, the grounding design is most easily overlooked; however, it is one of the
most important parts of power system safety. In substation systems, in addition to protecting the power
system from the effects of grounding malfunctions, grounding grids protect substation maintenance
personnel. Current grounding grid designs, including touch voltage, step voltage, surge voltage,
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ground resistance, and other parameters, are determined by IEEE Std. 80TM [3]. However, in the
design of the overall grounding grid, grounding resistivity is significantly influenced by earth resistivity.
According to IEEE Std. 80TM, a single average calculation is used to determine earth resistivity. After
construction is complete, the measured grounding value is frequently greater than the calculated
grounding value in multilayered complex geology [12]. Blindly increasing the number of grounding
grids and grounding copper rods would be uneconomical.

The Taiwan Power Company’s Electric Power Construction Unit designs grounding grids and
grounding rods, and selects grounding conductors to achieve lower ground resistance on the basis
of several factors, including the location of various equipment, the building configuration, and the
land size of the substation. The grounding resistance value is also calculated using grounding system
data in order to ensure that it does not exceed the target value. To ensure the safety of human life and
property, as well as stable and reliable power system operation, uncharged parts of machinery, iron
frames, and low-voltage loops, among others, should be grounded so that the ground current will not
cause abnormal voltages when a grounding malfunction occurs. The calculation of the grounding
resistance target value assumes that the touch voltage [Etouch50 in Equation (5)] should not exceed the
allowable value when a grounding malfunction occurs. Assuming that the touch voltage is calculated
using a ratio of a safety factor to the ground potential rise (GPR), this GPR value is divided by the
ground current [Ig in Equation (6)] to obtain the required grounding resistance target value [Re in
Equation (7)] and the correlation factor for the ground resistance target value. The earth surface
resistance coefficient (ρs), based on a 20 cm-thick gravel layer, is 3000 Ω-m. Here, the malfunction
clearing time (t) is calculated as 0.5 s. (If) is the single-phase fault current of the final stage for the
substation. The power system split rate K =

If−Ig
If

depends on the power line transmission method.
Without connection station in substation K = 0.8. With connection station in substation K = 0.7. All lines
are cables K = 0.9. All lines are overhead cables K = 0.7. The safety coefficient α = 5.

Etouch50 = (1000 + 1.5ρs)
0.116√

ts
, (5)

Ig = (1−K)If, (6)

Re = α
Etouch50

Ig
. (7)

The grounding system contains grounding grids, grounding rods, and grounding lead.
The grounding grids comprise horizontal copper conductors, where the distance between wires
is 8–10 m outside the indoor substation building, and less than 6 m inside the house. Relative to
buildings, the grounding grid must be laid on the base layer of the underground excavation to obtain
low grounding resistance. The area of the grounding grid outside the house should be as large as
possible (within 1 m from the fence). If metal structures are used in fences, the distance between the
grounding grid and the fence must not be less than 1 m, and the fence should be grounded separately.
The grounding rod cooperates with the ground network node, and every two grounding nodes have
one grounding rod. Ideally, each rod should be installed at the corner zone of the grounding grid.
In addition, major equipment, such as iron towers, iron structures, transformers, and surge arresters,
requires more rods to improve performance. The indoor substation must include copper strips to
connect its grounding grid to the outdoor substation. Here, there should be at least two copper
strips per wall, and an additional passage should be employed for walls exceeding 45 m in length
(one passage for a wall that is less than 20 m). In order to keep the building and grounding grid at the
same potential, the grounding grid must be connected to the building’s rebar via iron plates welded at
four corners.
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The designed grounding resistance values are obtained according to Schwarz’s formula [13] using
the following equations:

Mesh electrode grounding resistance (Ω) : R11 =
ρ[In2 L

a′ +
LK1√

A
−K2]

πL
. (8)

Rod electrode grounding resistance (Ω) : R22=

ρ[In 2ι
r1 + 2ιK1√

A(
√

n−1)
2 − 1]

2πnι
. (9)

Mesh and rod combined grounding resistance (Ω) : R12=
ρ[In 2L

ι + LK1√
A
−K2 + 1]

πL
. (10)

Synthesis resistance (Ω) : Rg=
R11R22 − R12

2

R11 + R22 − 2R12
. (11)

Here, ρ is the earth resistance coefficient (Ω-m), r is the grounding line radius (m), and z is the
grounding rod depth (m); thus, a’ =

√
(2rz). r1 is the grounding rod radius (m), L is the total length of

the grounding grid (m), ι is the length of the grounding rod (m), n is the number of grounding rods,
and A is the mesh electrode area (m2). K1 = 1.41 − 0.04 L/W and K2 = 5.5 + 0.15 L/W [where L is the
grounding grid length (m) and W is the grounding grid width (m)].

A schematic calculation of the designed grounding resistance value (according to the IEEE Std.
80-2000 formula) is given by

Rg = ρ

 1
LT

+
1√
20A

1 +
1

1 + h
√

20
A

, (12)

where A is the mesh electrode area (m2), LT is the total length of the grounding line and grounding
rods, and h is the grounding grid depth.

Regardless of which calculation (i.e., the IEEE Std. 80-2000 formula or Schwarz’s formula) is used
to obtain the grounding resistance value, Rg (designed value) < Re (target value) must hold.

3. System Structure

In this section, we introduce the design flow and function of the fuzzy system in the grounding
system of each algorithm along with the function of the RBF neural network. This section can
be structured as follows: Section 3.1 introduces the structure of the grounding prediction system;
Section 3.2 introduces the grounding resistance design flow; Section 3.3 introduces the design flow
of the grounding system with GAO; Section 3.4 introduces the design flow of the grounding system
with MOPSO; Section 3.5 introduces the design flow of the grounding system with artificial bee
colony algorithm optimization; Section 3.6 introduces the membership function of the fuzzy Integral;
and Section 3.7 introduces the function of the RBF neural network.

3.1. Grounding Prediction System

The grounding prediction system employed in this study can help evaluate grounding resistance
and grounding system costs in any area. The system design is shown in Figure 1. Figure 1 shows
designs for lightning protection systems of high-rise constructions in various regions of the world
and the grounding system resistance value plus the grounding system cost planning required for
transient elimination of high-energy currents, such as fault currents or lightning strikes at power
company facilities. The substation design parameters are optimized by grounding systems using
various algorithms, such as genetics algorithm (GA), multi-objective particle swarm optimization
(MOPSO), and bee swarm algorithm (BA). The adaptive function used is dominated by the Schwarz
equation to solve the grounding resistance value Rg, grounding cost, where the net grounding depth h
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= 0.6 m. The result is then compared to the IEEE Std. 80-2000 at h = 0.6 cm to evaluate the effectiveness.
However, the grounding resistance is typically inversely proportional to the grounding grid depth
and the number of grounding copper rods. In other words, in order to achieve better grounding
system performance, either the grounding grid depth or the number of grounding copper rods must
be increased (or both). Note that a better grounding resistance value will result in higher relative
engineering costs. Based on this characteristic, the fuzzy membership function is used to establish
the integral to identify the best algorithm. The fuzzy membership function identified MOPSO as
the optimal algorithm from among GA and Bee. Therefore, the depth of the grounding network is
optimized at 0.4–0.6 m to find the best grounding resistance value and number of grounding copper
rods in a radial basis function (RBF) prediction module.Energies 2018, 12, x FOR PEER REVIEW  6 of 19 
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3.2. Grounding Resistance Design

The current design of the grounding system, used by Taiwan Electric Power Co., Ltd., calculates
the maximum allowable touch voltage and the grounding resistance target value according to the
grounding design criterion (i.e., the safe voltage that the human body can withstand). In addition,
the design calculates the grounding resistance using the grounding system data in the guideline
that has been stated by the Taiwan Power Company’s Electric Power Construction Unit. As stated
previously, the value must be less than the target value. Calculations of the grounding resistance in the
grounding design criteria are based on the planned area of the grounding grid associated with the
ground network node. IEEE Std. 80-2000 is used to calculate the grounding resistance (Rg designed
value) of Em, Es, Etouch, Estep, GPR, the total number of grounding rods, the measurement report of the
depth resistivity of the base of Taipower Institute of Research, as well as the area, length, and width of
the grounding grid. Simultaneously, the grounding resistance is calculated precisely using Schwarz’s
equation, where the value must be less than the target value. At present, the surface resistivity



Energies 2018, 11, 3484 7 of 19

coefficient is gravel 3000, and the ground network is buried at a depth of 0.6 m. The company uses
Microsoft Excel 2010 to design the grounding system to perform calculations for item (2) IEEE Std.
80-2000. The ground resistance design flow is illustrated in Figure 2.
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3.3. GA Optimization Flow Chart

The flow chart of the grounding system designed using GA optimization [14] is shown in Figure 3.
According to the grounding resistance design process, the number of grounded copper rods required
to solve the grounding resistance design value is used as the chromosome mother number. Since there
are numerous grounding system data items collected by the grounding target value, it is necessary to
determine the search range, by designing the number of grounded copper rods, and to use Schwarz’s
equation in an adaptive function calculation.
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3.4. MOPSO Flow Chart

In the MOPSO flow chart [15–17], the number of grounding copper rods required to ground the
resistance design value is calculated on the basis of the ground resistance design flow chart. There are
many grounding system data items collected by the grounding target value; thus, it is necessary
to determine the search range by determining an effective number of grounding copper rods for
optimization, and to use Schwarz’s equation as the adaptive function, as shown in Figure 4.
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3.5. Artificial Bee Swarm Algorithm Flowchart

As for the grounding system that employs the artificial bee colony algorithm [18], the number of
grounded copper rods is used as the initial value for the grounding resistance design. Furthermore,
the search solution m is divided into a local search using the adaptation function of the Schwarz’s
function as a local search. The optimal solution e is determined from an m local search; further,
the optimal global solution is updated until the terminal condition is reached, as depicted in Figure 5.
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3.6. Fuzzy Integral

The fuzzy rule [19] semantic notation is summarized as follows: If (x is A) and (y is B), then (z
is α), and if (x is A) or (y is C), then (z is β); this expression represents the Fuzzy logic grammar.
This study employs a fuzzy membership function. The two established inputs are Rg (grounding
resistance) and tip (engineering cost), as depicted in Figure 6. Further, the conditions can be given
as follows:

If (Rg is bad i.e., Rg (designed value) > Re (target value) = 1.315 Ω) or (tip is high), then (performance is poor). (13)

If (Rg is significant), then (performance is good). (14)

If (Rg is significant) and (tip is low), then (performance is excellent). (15)
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output performance.

3.7. RBF Neural Network

The RBF neural network [20] is the first function to use the real multivariate interpolation method.
Its main structure can be divided into three layers. The first layer is the input layer with input
dimension p, and the second layer is the hidden layer, that is, a nonlinear transformation from
the input layer space to the hidden layer space, which is an application of high-dimensional space.
The third layer is the output layer, which is converted by the activation function of the network.
The output of the third layer has linearly-segmentable features. To predict the grounding resistance
value of the soil layer in any area, the number of grounding copper rod, grounding depth of the
grounding grid, and other grounding parameters, the three variable values of the grounding parameter
are input into nine neurons of every input variable of the hidden layer along with the three output
variables. The RBF neural network of the hidden layer neurons (i.e., the basis function used by the
neuron output) is dominated by a Gaussian function, and its mathematical representation is expressed
as follows:

φj(x) = exp (

∣∣x−mj
∣∣2

2σj
2 ). (16)

4. System Simulation

Typically, the grounding resistance value is inversely proportional to the laying depth of the
grounding grid and the number of grounded copper rods. In order to achieve a better grounding
system performance, the laying depth of the grounding grid and the number of grounded copper rods
should be either alternatively or simultaneously increased. A better grounding resistance value results
in a higher relative engineering cost. The fuzzy algorithm is more suitable to comparatively evaluate
the degree of goodness and weakness of the entire system with various algorithms. The grounding
resistance value and grounding system engineering cost are taken as fuzzy input/disadvantage scores
to identify the best algorithm relative to outputting the fuzzy integral score (Table 1). Among the
various algorithms used, the MOPSO integral of 19.9989 was the highest input, as shown in Table 1.
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Therefore, MOPSO was used as the input module for subsequent prediction of the grounding
system data.

Table 1. Fuzzy integrals of grounding data for each algorithm in the fixed network laying depth.

Parameters of the
Grounding-Parameter

Algorithm

Grounding
Copper Rod

(n)

Ground Network
Excavation Depth

(m)

Grounding
Resistance

(Ω)
Project Cost Fuzzy Integral

Schwarz’s equation 82 0.6 1.24 13,136.76 USD 15.0000
IEEE Std. 80-2000 82 0.6 1.19 13,136.76 USD 15.0000

GA 61 0.6 1.25 12,832.05 USD 15.0000
MOPSO 28 0.6 1.24 12,353.22 USD 19.9989

Bees 139 0.6 1.14 13,963.83 USD 13.2965

Grounding copper rod price: approx. 14.51 USD. Grounding network excavation cost: 7.24 USD/m (total ground
line length: approximate 1650.13 m). Ground net area: 75 × 67 m; target value < 1.315 Ω.

MOPSO is the most suitable algorithm for the grounding system relative to predicting various
grounding data. In order to quickly establish the prediction line of the grounding system, MOPSO’s
adaptation function (i.e., Schwarz’s equation) is replaced by IEEE Std. 80-2000, which has a small value
gap, as a prediction line adaptation function. The trend of grounding rods used and the grounding
resistance value simulating grounding grid depth at 0.1–0.6 m is shown in Figure 7. Here, after MOPSO
simulated-result for h = 0.35 m, Rg = 1.3482 Ω exceeded the design target value Rg = 1.315 Ω of this
substation. Thus, we used h = 0.4–0.6 m as a sample for the input of the ground resistance prediction
line simulation. The follow-up MOPSO simulation results are given in Table 2. The data in Table 2 were
used to create a three-dimensional (3D) space curve, as shown in Figure 8. To construct a general model of
grounding parameters, such as the grounding resistance value, grounding copper rods, and ground net
depth for any region, any of the three variable values of the parameters in Table 2 is inputted into RBF neural
networks. The constructed neural network can input any grounding resistance, grounding copper rod,
and grounding grid depth parameter values. After the RBF neural network process, the results mostly pass
through the prediction line of the IEEE Std. 80-2000 adaptation function calculated by MOPSO, as shown
in Figure 9.

Table 2. Simulation results of the adaptation function for IEEE Std. 80-2000 by MOPSO at grounding
grid depths of h = 0.4–0.6 m.

Laying Depth of Grid (m) Grounding Copper Rod (n) Grounding Resistance Rg (Ω)

h = 0.4 m 101 1.1897
h = 0.425 m 53 1.1949
h = 0.45 m 34 1.1967

h = 0.475 m 33 1.1960
h = 0.5 m 34 1.1950

h = 0.525 m 34 1.1942
h = 0.55 m 34 1.1934

h = 0.575 m 33 1.1927
h = 0.6 m 28 1.1926
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Figure 7. IEEE Std. 80-2000 adaptation function calculated by MOPSO at grounding grid depths of
0.1–0.6 m. The first objective is the number of grounding copper rods; the second objective is the trend of
grounding resistance value (Ω) (red stars represent the local l best; black circles represent the global best).
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After the MOPSO calculation, the best result of the IEEE Std. 80-2000 adaptation function was at
a grounding depth h = 0.6 m, grounding resistance 1.1926 Ω, and 28 grounded copper rods (the other related
parameter data are given in Appendix A). ETAP [21] ver. 4.0.0. is a simulating software. We use the finite
element method (FEM) of the ETAP toolbox to construct the grounding copper rod, grounding depth of the
grounding grid, and other grounding parameters that are required to perform the simulation [22], as depicted
in Figure 10. The simulation results of the best grounding parameters for the prediction line of the RBF neural
network grounding system comply with Em = 686.3 V < Etouch50 = 775.8 V, Es = 593.9 V < Estep50 = 2611 V,
and GPR = 4096.2 V > Etouch50 = 775.8 V, with a considerable safety margin (Figure 11). The result of ETAP
simulating a 50 kg human body using If was Rg = 1.19 Ω, which is similar to the set of ground resistance
values obtained by the MOPSO algorithm at a grounding grid depth of 0.4–0.6 m. Figures 12–14 show 3D
plots of the step voltage, touch voltage, and absolute voltage for the ETAP simulations, respectively.
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5. Conclusions

The contributions of this paper may be summarized as follows.

(1) The grounding system data were optimized with numerous set solutions for GA, MOPSO,
and Bees for same grounding target values.

(2) By establishing a fuzzy integral table to count the score of the optimization algorithms, IEEE Std
80-2000, and Schwarz, we identified a suitable algorithm for optimizing the grounding system.

(3) Using the RBF neural network as the prediction line of the grounding system is conducive
to different soil layer resistivity in different regions, and it can predict the optimal grounding
resistance and grounding system cost.

In future, these approaches can be optimized using optimization algorithms for uniform and
non-uniform grounding grids as research directions.
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Appendix A

A. Target Value of Grounding Resistance
1. Maximum single-phase grounding malfunction current If 34.3 kA
2. Main neutral point shunt In 0 kA
3. Grounding current shunt rate at fault K 0.9
4. Maximum allowable touch voltage value (consider surface resistance coefficient = 3000 Ω-m) Et = 902 V
5. Safety coefficient (the fence is not connected to the ground network) α = 5
6. Target value of grounding resistance (Re)

(a) Fault current flowing into the earth through the ground network is Ie = (If − In) × (1 × k) 3430 A
(b) Ground network allowable maximum voltage rise value V = Et × α, 902 × 5 = 4510 V
(c) Re = V

Ie 1.315 Ω

B. Design Data
1. Earth resistance coefficient 176 Ω-m
2. Grounding wire of the grid 80 cm2 1650 m
3. Laying area of the grid 75 × 27 = 5025 m2

4. Grounding copper rod (diameter:14mm
∮

length: 2.4 m) 82 pieces

C. Formulas

R11 =
ρ[In2 L

a′ +
LK1√

A
−K2]

πL .

R22 =
ρ[In 2ι

r1 +
2ιK1√

A(
√

n−1)
2 −1]

2πnι .

R12 =
ρ[In 2L

ι
+ LK1√

A
−K2+1]

πL .

Rg = R11R22−R12
2

R11+R22−2R12
.

D. Calculation Results
Laying depth of grids 0.6 m
R11 1.25 Ω
R22 1.72 Ω
R12 1.17 Ω
Synthetic resistance Rg 1.238 Ω (design value ≤ target value)

References

1. IEEE. Std 80TM-2013: Revision of IEEE Std 80-2000, IEEE Guide for Safety in AC Substation Grounding; American
National Standards Institute (ANSI): Washington, DC, USA, 2015.

2. Dalziel, C.F.; Mansfield, T.H. Effect of frequency on perception currents. Trans. Am. Inst. Electr. Eng. 1950, 69,
1161–1168. [CrossRef]

3. Dalziel, C.F.; Ogden, E.; Abbott, C.E. Effect of frequency on let-go currents. Trans. Am. Inst. Electr. Eng. 1943,
62, 745–750. [CrossRef]

4. Alik, B.; Teguar, M.; Mekhaldi, A. Optimization of grounding system of 60/30 kV substation of Ain
el-Melh using GAO. In Proceedings of the 4th International Conference on Electrical Engineering (ICEE),
Boumerdes, Algeria, 13–15 December 2015.

5. Alik, B.; Teguar, M.; Mekhaldi, A. Minimization of grounding system cost using PSO, GAO, and HPSGAO
techniques, IEEE Trans. Power Deliv. 2015, 30, 2561–2569. [CrossRef]

6. IEC TS 60479-1(1994-09), Effect of Current Passing through Human Body—Part I: General Aspects. Available
online: https://webstore.iec.ch/publication/16330 (accessed on 29 September 1994).

7. Dalziel, C.F. Dangerous electric currents. Trans. Am. Inst. Electr. Eng. 1946, 65, 579–585. [CrossRef]
8. Dalziel, C.F.; Massoglia, F.P. Let-go currents and voltages. AIEE Trans. Part II Appl. Ind. 1956, 75, 49–56.

[CrossRef]
9. Dalziel, C.F.; Lagen, J.B.; Thurston, J.L. Electric shock. Trans. Am. Inst. Electr. Eng. 1941, 60, 1073–1079.

[CrossRef]
10. Dalziel, C.F. Electric Shock Hazard. IEEE Spectr. 1972, 9, 41–50. [CrossRef]
11. Dalziel, C.F.; Lee, W.R. Reevaluation of lethal electric currents. AIEE Trans. Ind. Gen. Appl. 1968, IGA–4,

467–476.
12. El-Tous, Y.; Alkhawaldeh, S.A. An efficient method for earth resistance reduction using the Dead Sea water.

Energy Power Eng. 2014, 6, 47–53. [CrossRef]
13. Schwarz, S.J. Analytical expressions for the resistance of grounding systems. Trans. Am. Inst. Electr. Eng.

Part III Power Appar. Syst. 1954, 73, 1011–1016.
14. Holland, J. Adaptation in Natural and Artificial System; University of Michigan Press: Ann Arbor, MI, USA, 1975.

http://dx.doi.org/10.1109/T-AIEE.1950.5060274
http://dx.doi.org/10.1109/T-AIEE.1943.5058642
http://dx.doi.org/10.1109/TPWRD.2015.2445979
https://webstore.iec.ch/publication/16330
http://dx.doi.org/10.1109/T-AIEE.1946.5059386
http://dx.doi.org/10.1109/TAI.1956.6367148
http://dx.doi.org/10.1109/T-AIEE.1941.5058236
http://dx.doi.org/10.1109/MSPEC.1972.5218692
http://dx.doi.org/10.4236/epe.2014.64006


Energies 2018, 11, 3484 19 of 19

15. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the Fourth IEEE International
Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.

16. Shi, Y.; Eberhart, R.C. A modified Particle swarm optimization. In Proceedings of the IEEE International
Conference on Evolutionary Computation (ICEC), Anchorage, Alaska, 4–9 May 1998; pp. 69–72.

17. Hu, X.; Shi, Y.; Eberhart, R.C. Recent advances in particle swarm. In Proceedings of the IEEE Congresson
Evolutionary Computation, Portland, OR, USA, 19–23 June 2004; Volume 2, pp. 90–97.

18. Pham, D.T.; Ghanbarzadeh, A.; Koc, E.; Otri, S.; Rahim, S.; Zaidi, M. “The Bees Algorithm,” Technical Note;
Manufacturing Engineering Centre, Cardiff University: Cardiff, UK, 2005.

19. Zadeh, L.A. Fuzzy sets. Inform. Control 1965, 8, 338–353. [CrossRef]
20. Chang, Y.W.; Hsieh, C.J.; Chang, K.W.; Ringgaard, M.; Lin, C.J. Training and testing low-degree polynomial

data mappings via linear SVM. J. Mach. Learn. Res. 2010, 11, 1471–1490.
21. Tabatabaei, N.M.; Mortezaeei, S.R. Design of grounding systems in substations by ETAP intelligent software.

Int. J. Tech. Phys. Probl. Eng. (IJTPE) 2010, 2, 45–49.
22. Lee, H.S.; Kim, J.H.; Dawalibi, F.P.; Ma, J. Efficient ground designs in layered soils. IEEE Trans. Power Deliv.

1998, 13, 745–751.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Representation of the Grounding System Material Cost Function to Prevent Electric Shocks 
	System Structure 
	Grounding Prediction System 
	Grounding Resistance Design 
	GA Optimization Flow Chart 
	MOPSO Flow Chart 
	Artificial Bee Swarm Algorithm Flowchart 
	Fuzzy Integral 
	RBF Neural Network 

	System Simulation 
	Conclusions 
	
	References

