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Abstract: Since different incident waves will cause the same array to perform differently with respect
to the wave energy converter (WEC), the parameters of the incident wave, including the incident
angle and the incident wave number, are taken into account for optimizing the wave energy converter
array. Then, the differential evolution (DE) algorithm, which has the advantages of simple operation
procedures and a strong global search ability, is used to optimize the wave energy converter array.
However, the traditional differential evolution algorithm cannot satisfy the convergence precision
and speed simultaneously. In order to make the optimization results more accurate, the concept of
an adaptive mutation operator is presented to improve the performance of differential evolution
algorithm. It gives the improved algorithm a faster convergence and a higher precision ability.
The three-float, five-float, and eight-float arrays were optimized, respectively. It can be concluded
that the larger the size of the array is, the greater the interaction between the floats is. Hence, a higher
efficiency of wave energy extraction for wave energy converter arrays is achieved by the layout
optimization of the array of wave energy converters. The results also show that the optimal layout of
the array system is inhomogeneously distributed and that the improved DE algorithm used on array
optimization is superior to the traditional DE algorithm.

Keywords: wave energy converter; array; improved differential evolution algorithm; interaction;
adaptive mutation operator

1. Introduction

Consumption of fossil energy, such as oil, coal, and natural gas, has grown rapidly with the
industrialization process. It is highly necessary to capture natural energy resources and convert them
into electric energy or heat, going beyond non-renewable energy. Currently, the earth’s surface area
is 510 million km2, the ocean area of which is 361 million km2, accounting for 71% of the total area.
It is estimated that the marine energy accounts for more than 70% of the world’s total energy [1].
China is a marine country whose sea area is vast and whose marine resources are abundant. Thus,
the comprehensive utilization of marine energy has been proposed in China.

There is a large amount of renewable energy in the ocean, including wave energy, thermal energy,
wind energy, salinity energy, tidal current energy, and tidal energy [2]. Wave energy has gained
considerable attention owing to its greater energy density compared to others. It is estimated that the
wave energy reserve in the world is about 2.5 billion kW [3]. As early as a century ago, people began
to explore how wave energy can be used to generate electricity [4,5]. There are various kinds of wave
energy converters, such as point absorbers, attenuators, and terminators [6].

However, a single WEC has a low power efficiency, unstable power generation, and only
small-scale generated electricity because it generally cannot absorb the ocean wave energy in different
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positions and directions at the same time [7,8]. Therefore, multiple WECs are arranged as an array
to generate more power so as to improve the efficiency of wave power generation. Although the
research on the WEC array is still in its infancy, many related devices have been developed and put
into practice.

Research on wave energy converter arrays began in the late 1970s. The method of approximating
WEC to a point absorber was used by Budal [9] to simplify calculations. The scattered wave field
could be neglected due to the assumed small devices. Multiple body diffraction was later applied to
axisymmetric wave energy converter arrays in [10]. Yilmaz and Incecik [11,12] merged the solution of a
single WEC [13] with the interaction process of an array, which was studied by Kagemoto and Yue [14].
In addition, the influences of radiation were taken into consideration when all devices moved together.
Child and Venugopal [15] applied a parabolic cross algorithm and a genetic algorithm to optimize
arrays of wave energy converters. The differential evolution (DE) algorithm was introduced to design
the geometry size of a WEC by Blanco [16] and others according to the type, position, hydrodynamics,
parameters, and control strategy of devices. The array configuration of two and four devices was
determined by simulating the array in the time domain with a coupled hydrodynamic-electromagnetic
model [17]. Ruiz investigated the algorithms of seeking an optimal layout between WECs in different
orientations and positions [18]. Ferri [19] applied derivative-free global optimization algorithms to
explore the optimal energy absorbed by WEC arrays. MILDwave was used to model WEC arrays by
Verbrugghe et al. [20]. A glowworm swarm optimization algorithm, a genetic algorithm, and a covariance
matrix adaptation evolution strategy were compared in terms of performance with respect to WEC
arrays and computational cost, and the covariance matrix adaptation evolution strategy had less
computational complexity and slightly lower accuracy [21]. Thomas [22] and others presented a robust
and reliable control strategy, called the model-free collaborative learning method, for WEC arrays in
irregular wave conditions. Further, a novel approach that combines the MILDwave wave-propagation
model with NEMOH BEM model was adopted to explore how the distance of the WEC array affects
the generating efficiency [23].

In addition, at the University of Edinburgh, UK, a five-float array was analyzed, and the results
showed that the array had higher energy efficiency than did a single-float array in an optimized state.
Dr. David Forehand from this university created software called OceanEd [24], in which the WECs of
an array can be designed with any shape, layout, and degrees of freedom, to work out and test linear
hydrodynamic time-domain models of rigid-body WEC arrays [25]. Ghent from the University of
Belgium conducted an experiment of a 5 × 5-float array in a wave tank in a laboratory, focusing on
the interaction between the floats. The FO3 wave energy converter was developed at Norway’s Oslo
University, in which a 1:20 scale simulation was performed in a wave tank and a 1:3 scale experiment
was carried out in real sea conditions. Additionally, a multi-float array wave energy converter test
system called “Trident” was built by the Trident Energy Company (Blyth, UK ). The advantages of this
system are the small distance between the floats and the linear machines used to generate electricity.
In China, WEC arrays have also been studied in many colleges. For example, an WEC array named
“Motor Wave” was developed in Hong Kong University. The “Haiyuan No. 1” wave energy converter
platform, which has three oscillation floats, was carried out at Zhejiang Ocean University. A four-float
wave energy converter was developed at China Ocean University as well [26].

An array of oscillating buoy WECs, which are point-absorber WECs, was studied here.
The influences of incident angle β and incident wave number k0 on the WEC array were examined.
These two incident wave parameters will influence the efficiency and output of WEC arrays. It was
found that, when the incident angle is set to zero and the wave number satisfies 2ak0 = 0.8 (a is
the radius of float), a larger interaction coefficient can be obtained. This can be used to research
the layout optimization of WEC arrays. Further, the DE algorithm was used to optimize the WEC
array. In addition, the concept of an adaptive mutation operator is introduced to modify the DE
algorithm, which not only meets the requirements in calculation convergence speed but also makes
the optimization result more accurate. The adaptive mutation operator shows that a larger mutation
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operator F used at an early stage prevents population diversity from local convergence and that a
smaller F used later ensures accuracy with minimum error. The value of F is maintained in the best
range for optimization results. The positions of each WEC in the array are determined by the improved
DE algorithm, under more suitable incident wave parameters, so that greater wave energy is extracted
from the ocean. The results show that the optimal layout is inhomogeneously distributed and that
there are improved results after modification.

2. The Hydrodynamic Model of an Array System

In this paper, an improved oscillating buoy WEC system is adopted as shown in Figure 1.
This system has a strong adaptability in nearshore and offshore regions. The float in the figure
is connected with the reaction body through a pulley. The float can move up and down so that
the wave energy can be converted to drive the permanent magnet synchronous generator (PMSG)
continuously. The PMSG will then rotate in one direction under the automation control of the clutch
and the bidirectional ratchet. The reaction body can maintain the cable tension and control the natural
frequency of the WEC [27].
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Figure 2. Simplified diagram of the float in wave. 

In Figure 2, in the polar coordinate system, the submerging depth of the float is b, and the 
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Figure 1. Float-type wave energy converter (WEC): (a) front view; (b) side view.

In this paper, it is supposed that the fluid is non-viscous and the fluid density ρ is invariable.
The depth of the water is a finite value d, and the equation of wave free plane is z [28].
The corresponding float model is cylindrical, and the state of it in seawater can be simplified as
shown in Figure 2.
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In Figure 2, in the polar coordinate system, the submerging depth of the float is b, and the distance
between the bottom of the float and the seafloor is h (h = d − b). The radius of the float is a. The size of
the array is N (i.e., there are N floaters), and each float is numbered by j, j ∈ 1, 2, 3, . . . , N, where the
radius of float j is aj, and the quality is Mj. When 0� rj � aj, it represents the internal zone of float j.
When rj � aj, it represents the external zone of float j. The elastic effect of the cable can be equivalent
to a spring with a coefficient of elasticity δj and a damper with a damping coefficient of γj [29]. Further,
it is assumed that the center coordinate Oi of the float i is (0, 0), the center coordinate Oj of the float j is
(xj, yj), the distance between Oi and Oj is Lij, the angle between the positive direction of the z-axis and
the connecting line of float j and float i is θij, and β is the angle between the incident direction and the
abscissa. The amplitude of the incident wave near field is H, the wave number is k0, the wave length
is λ = 2π/k0, and the acceleration of gravity is g. The example of the two-float array in the Cartesian
coordinate system is shown in Figure 3.
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The analysis is under the theory of linearized potential flow, which has been validated in [30].
The wave energy absorbed by the float can be calculated by the velocity potential ϕ, which can be
decomposed into three components as [15,28,31]

ϕ = ϕI + ϕS + ϕR = ϕA + ϕD (1)

where ϕI represents the velocity potential of the incident wave, ϕS represents the scattered waves, ϕR

represents the radiated waves, ϕD = ϕI + ϕS represents the velocity potential of the diffraction wave,
and ϕA represents the velocity potential of the incident wave near field. The ϕA of the j-th float [32] is

ϕA
j =

gH
ω

αT
j Ψ I

j (2)

where the angular frequencyω satisfies thatω2 =−km × g× tan(km × d), and km is the wave number of
the evanescent wave. The superscript T in αj indicates the transpose, and the Ψj

I and αj are represented
as follows [14]:

(ΨI
j )

n

m
=


cosh k0zJn(k0rj)

cosh k0dJn(k0aj)
einθj , m = 0

cos kmz
In(kmrj)

In(kmaj)
einθj , m ≥ 1

(3)

(αj)
n
m =

{
Ij Jn(k0aj)ein(π/2−β), m = 0
0, m ≥ 1

(4)

where Jn is the n-order primal Bessel function, In is the n-order modified primal Bessel function, and Ij
is the phase conversion factor of float j from the Cartesian coordinate system to the polar coordinate
system. m (0 ≤ m ≤ +∞) is the discretization value of the z-axis in the Cartesian coordinate system. n
(−∞ ≤ n ≤ +∞) is the discretization value of the θ axis in the polar coordinate system.
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In the external zone of the j-th float, the scattered wave velocity potential ϕS [31,33] is expressed as

ϕS
j =

gH
ω

AT
j ΨS

j =
gH
ωp

PAT
j TjiΨ

I
i (5)

where Aj
T is a coefficient matrix of float j, and the matrix for coordinate transform Tji from Ψj

S to Ψi
I

is represented as

(Tji)
nl
mm =


Jl(k0ai)

Hn(k0aj)
Hn−l(k0Lji)e

iθj(n−l), m = 0

Il(kmai)

Kn(kmaj)
Kn−l(kmLji)e

iθj(n−l)(−1)l , m ≥ 1
(6)

where Hn is the n-order primal Hankel function, and Kn is the n-order modified second Bessel function.
For the velocity potential of the incident wave near field, the value of the external zone of the float

is different from that of the interior case. The internal scattering wave and the incident wave near field
of the float are difficult to distinguish. Therefore, ϕD is referred to as the diffraction wave field in the
interior region of the float. In the interior region of the j-th float, ϕD is expressed as

ϕD
j =

gH
ω

Ã
T
j Ψ̃D

j (7)

where Ψ̃D
j is calculated as

(Ψ̃D
j )

n

m
=

 (
rj
aj
)
|n|

einθj , m = 0

cos(mπz/hj)
In(mπrj/hj)

In(mπaj/hj)
einθj , m ≥ 1

(8)

where z = hj.
Further, in the external region of the j-th float, the radiated wave field ϕR can be represented as

ϕR
j =

gH
ω

X̂jRj(rj, z) =
gH
ω

X̂RT
j ΨS

j (9)

where Rj(rj, z) is the radiation characteristic coefficient of the exterior region for float j, and X̂j is the
non-dimensional motion amplitude of float j, which is the movement amplitude of the float.

In the interior region of the j-th float, the radiated wave field ϕR is represented as

ϕR
j =

gH
ω

X̂jR̃j(rj, z) =
gH
ω

X̂j

[
R̃P

j + R̃
T
j Ψ̃D

j

]
(10)

where R̃i(ri, z) is the radiation characteristic coefficient of the inner region for the j-th float. The R̃P

satisfies R̃p = −iω2(z2 − r2/2
)
/(2gh), where 0 ≤ r ≤ a.

The expression of the total velocity potential of incident wave is represented as

ϕI
j =

gH
ω

αT
j +

N

∑
i = 1
i 6= j

(Ai + X̂iRi)
TTij

ΨI
j . (11)

A transformation matrix Bj is adopted to show a relationship between the coefficient Ψj
I in

Equation (11) and the coefficient Ψj
S in Equation (9) as
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Aj = Bj

αj +
N

∑
i = 1
i 6= j

TT
ij(Ai + X̂iRi)

. (12)

Similarly, a transformation matrix B̃j could be introduced to represent the relationship between
the coefficient Ψj

I in Equation (11) and the coefficient Ψ̃D
j in Equation (7) within the float as

Ãj = B̃j

αj +
N

∑
i = 1
i 6= j

TT
ij(Ai + X̂iRi)

. (13)

Combining Equations (7), (10), and (13), the velocity potential inside the float j can be calculated,
so it is easy to calculate the fluctuating force of the wave.

ϕj =
gH
ω



αT
j +

N

∑
i = 1
i 6= j

(Ai + X̂iRi)
TTij

B̃
T
j Ψ̃D

j + X̂j(R̃P
j + R̃

T
j Ψ̃D

j )


. (14)

The Bernoulli equation is applied to integrate the bottom of the float Sj. Then, in the positive
direction of the z-axis, the hydrodynamic forces of float (FH

j ) can be calculated as

FH
j = iωρ

x

Sj

ϕj(rj, θj, hj)dS. (15)

The elastic force FB
j represents the buoyancy and gravity of a float in water, as follows

FB
j = −ρπa2

j Xjg (16)

where Xj is the movement amplitude of float in the wave, which satisfies Xj = HX̂j. Furthermore,
the float is pulled by the rope, and the elastic effect of the cable can be equivalent to a spring with an
elastic coefficient of δj and a damper with a damping factor of γj. Therefore, the tension of a cable can
be expressed as follows:

FG
j = −δjXj − γjX′j (17)

where X′j is the speed of the float in the wave, which satisfies X′j = −iωHX̂j.
By combining Equations (15)–(17), the following equation can be obtained:

MjX′′ j = FH
j + FB

j + FG
j (18)

where X′′j is the acceleration of a float in the wave, which satisfies X′′j = −iω2HX̂j, Mj is the quality of

the float, which satisfies Mj = ρπa2
j (d− hj).

Ai and X̂j are then given based on the above equations. Therefore, the wave energy extracted
from each float can be calculated as [34]
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Pj =
1
2

γjω
2H2∣∣X̂j

∣∣2. (19)

The energy gained by the WEC is the key to measuring the performance of a single WEC or a
WEC array. However, whether the WEC array is better than a single WEC or what the criterion for
measuring different kinds of WEC arrays should be are still open questions. Thus, an interaction
coefficient q, in proportion to the total output power of the array system, is introduced to evaluate the
quality of an array. The q is defined as follows:

q(k0, β) =
∑N

j=1 Pj(k0, β)

N × P0(k0, β)
(20)

where Pj is the energy gained by the float j in the array, P0 is the energy gained by each isolated
float. It has been found that the different incident waves will cause the same array to obtain different
performances with respect to the wave energy converter. This is mainly due to the incident angle β

and the incident wave number k0. Thus, the effect of these two parameters on the performance of the
WEC will be studied in this paper. Its conclusion will be used to analyze whether the improved DE
can be used to optimize the array layout.

In addition, in order to reflect the energy extraction of each float in an array, the interaction
coefficient qj can also be used to reflect the operation condition of each float as

qj(k0, β) =
Pj(k0, β)

P0(k0, β)
. (21)

3. The Differential Evolution Algorithm

The DE algorithm, simple and powerful, can solve a problem by iterative optimization. It tries to
improve the candidate solution and takes a given measure of quality into account, without making
optimization problems differentiable. Therefore, the DE is widely used by people at home and abroad
due to its accuracy, reliability, and robustness [35]. Its efficiency and operation mainly depend on
three procedures: mutation operation, crossover operation, and selection operation. The mutation
scale factor F, population number Np, and crossover constant Cr are primary parameters that can
control the calculation of the algorithm. Firstly, this algorithm generates randomly a population of
Np candidate solutions, and each of them can be shown as xj

i, where i ∈ 1, 2, 3, . . . , Np and j ∈ 1, 2,
3, . . . , D. Further, there are mutation operations and crossover operations to retrieve optimal values.
In the end, a comparison is made between the previous generation and the individual with improved
results [36,37]. When the optimal solution is not obtained, the process is performed again. In this
case, a maximum iteration number of Gm is defined. Note that each individual Np must carry on the
mutation, crossover, and selection operations and does not directly replace the worst individual in
the population. Therefore, the population size of each generation is constant, and each individual in
the population will gradually approach the optimal value. For this reason, a threshold can be given.
The optimal solution is not obtained until the fitness range of the population is over the threshold.

The specific process of the differential evolution algorithm is presented as follows:

(1) Initialization. Randomly generate the 0-th generation population X(0) = {X1(0), X2(0), . . . , XNp(0)},
where Xi(0) = (x1

i(0), x2
i(0), . . . , xD

i(0)). The initial population is chosen randomly under the
given boundary constraints. It is generally assumed that all initialized populations satisfy the
probability of uniform distribution. Set the bounds of the parameter variable as xj

(L) < xj <
xj

(U). Then

xi
j(0) = rand[0, 1] · (x(U)

j − x(L)
j ) + x(L)

j (22)

where the value i is the integer between one and Np, j is the integer between one and D, and rand
[0, 1] represents a series of random numbers between [0, 1].
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(2) Individual evaluation. Calculate every fitness value f (Xi(G)) in the population.
(3) Mutation operation. Randomly generate three values r1, r2, r3 (r1, r2, r3 ∈ 1, 2, 3, . . . , Np), where

these three different values are integers between one and Np, and they are not the same as i.
The following mutation operations are performed for each Xi(G) to generate a mutation vector
Vi(G + 1), where Vi(G + 1) = (v1

i(G + 1), v2
i(G + 1), . . . , vD

i(G + 1)).

Vi(G + 1) = Xr1(G) + F(Xr2(G)− Xr3(G)). (23)

(4) Crossover operation. Test vectors Ui(G + 1) = (u1
i(G + 1), u2

i(G + 1), . . . , uD
i(G + 1)) are obtained

by the following crossover operation.

ui
j(G + 1) =

{
vi

j(G), (randb(j) ≤ CR)orj = rnbr(i)
xi

j(G), (randb(j) > CR)orj 6= rnbr(i)
(24)

where randb(j) refers to the j-th estimation value of the stochastic number generator between
[0, 1]. rnbr(i), a stochastically selected sequence, is an integer between one and D. The function of
rnbr(i) is to ensure that a value of Vi(G + 1) can at least be obtained in Ui(G + 1), like Xi(G).

(5) Selection operation. Calculate the fitness value f (Ui(G + 1)) of each test vector and compare them
with f (Xi(G)). Take the minimum, for example. There exists

Xi(G + 1) =

{
Ui(G + 1), f (Ui(G + 1)) < f (Xi(G))

Xi(G), f (Ui(G + 1)) ≥ f (Xi(G))
. (25)

It is worth noting that each test vector competes only with the corresponding Xi(G) rather than
with each vector in the population.

(6) Calculate the maximum and minimum for corresponding fitness value f (X(G + 1)) of the new
population X(G + 1). Determine whether the difference between these two values is smaller than
the threshold set in advance. If the calculation result of the difference is over the threshold and
the number of iterations below its maximum (i.e., G < Gm), then repeat the above operation from
Steps (2) to (6).

4. Improvement in the Differential Evolution Algorithm

A large amount of literature and experiments shows that, when scaling factor F ∈ [0, 2] is evaluated
at [0.5, 1], the optimization results obtained will be superior [38]. A larger F can produce a larger
disturbance, which is conducive to maintaining the diversity of the population, but the efficiency of
the search and the precision of the result are low. A smaller F with a strong local search capability is
better able to obtain an optimal result. However, when F is small, it is easy for the population to lose its
diversity quickly and precociously, which will lead to a local convergence. If a larger F can be used at
an early stage to prevent the population diversity from local convergence, and a smaller F is used later
to ensure the accuracy with minimum error, it can be predicted that the optimized results will be better
than those where F is fixed. Therefore, the concept of an adaptive mutation operator is introduced as{

F = F0 · 2λ

λ = e1− Gm
Gm+1−G

. (26)

Equation (26) shows that the range of F is 2F0–F0. If F0 = 0.5, the variation range is exactly
1–0.5, which not only satisfies the ideal range of F, but also can improve the result of Equation (23) as
discussed above.

When crossover probability factor CR ∈ [0, 1] is smaller, a higher accuracy can be ensured.
Theoretically, CR = 0.1 works best. However, because of its extremely slow convergence rate, it is not
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often used in practice. Increasing CR properly is beneficial to improve the convergence rate. It is often
considered that CR = 0.9 is more effective in most cases [39].

Furthermore, the explanation of applying an improved DE algorithm on the optimization of an
array is as follows: Firstly, the initialization is the same as the DE algorithm. Suppose the size of the
array is N. Then there are N − 1 variables that need to be optimized. Each float’s coordinate contains
two components: the vertical and horizontal coordinates. Therefore, the dimension is D = 2 × (N − 1).
Secondly, calculate the interaction coefficient of each float qx(x2, y2, . . . , xN, yN), the optimum objective
function of the array layout varying with the position of the float, at the initial position. Thirdly, set F0

to 0.5. The optimal range of F is 1–0.5 in the mutation operation. Generate mutation vector Vi(G + 1)
= qbest(G) + F × (qr1(G) − qr2(G)) in the form of DE/best/1/bin. Fourth, set CR to 0.9, and generate
vectors Ui(G + 1) by comparing the j-th estimation value with CR in the crossover operation. Fifth,
calculate qu, the interaction coefficient of Ui(G + 1), and compare it with qx. A better value is then
selected. Finally, if G� Gm or the difference between the maximum and minimum of qu is larger than
0.001, end the procedure and determine the optimal value, or go on.

5. Parameters and Interaction Coefficient Analysis for WEC Arrays

It is well known that the size of the array and the distance between WECs will have a major impact
on the output and efficiency of devices. However, the parameters of the incident wave, including the
incident angle β and incident wave number k0, will cause the same array to perform differently. For an
optimal analysis, the influence of β and k0 on WEC output should be studied first. Setting incident
wave parameters at optimal values will be beneficial for analysis.

The solution to the hydrodynamic model of the array system was calculated in MATLAB. All floats
were calculated on a uniform scale to facilitate comparison with the isolated float. The values of the
system parameters as shown in Table 1.

Table 1. Parameters of the float and the WEC array.

Parameters Value

radius of float (m) 5
depth of immersion(m) 5

depth of water (m) 40
the height of the waves (m) 1

gravitational acceleration (m/s2) 9.8
density of sea water (kg/m3) 1025

wave number 0.08
incidence angle(rad) 0

population size 15
basic value of mutation operator 0.5

mutation operator 0.5–1
crossover probability factor 0.9

Equation (20) shows that the interaction coefficient q is related to k0 and β. In order to better
optimize the array, the relationship among the interaction coefficient q, the incident wave number k0,
and the incident angle β deserves to be investigated.

5.1. The Relationship between q and k0

It was found that the effect of the wave number on q is related to the radius of the float. Thus, set
the radius of the float to a constant and the wave number to a variable. The 2ak0 is exactly the abscissa.
Then, calculate the interaction coefficient q to obtain a graph when there are different sizes of float or
different float spacings in MATLAB. Furthermore, set the wave number to a variable and the wave
number to a constant to repeat the operation above. The optimal value of wave number can be chosen
according to the calculation above. Figure 4 shows the relationship between q and k0.
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It can be seen that the value of q will change when the value of wave numbers is different.
Optimizing the WEC array is the purpose here. However, it is impossible to optimize the array under
each wave number. Figure 4a,b show q under the conditions of the same array size and two floats,
but different float spacing, where the float spacing is equal to four times the radius in Figure 4a and
eight times the radius in Figure 4b. Figure 4c,d show q under the conditions of the same float spacing
and four times the radius, but different array sizes, with three floats in Figure 4c and four floats in
Figure 4d. These four subfigures show that a larger q can be obtained in the vicinity of 2ak0 = 0.8 with
arrays of different sizes and float spacings. Therefore, the values of k0 are fixed with the conditions of
2ak0 = 0.8 in the next optimization, as shown in Table 1.

5.2. The Relationship between q and β

Figure 5 shows the influences of the incident angle β on q with different amounts of floats and
float spacing. As shown in Figure 5, the q values vary as the incident angle. Figure 5a–d, with the array
size and float spacing set the same as in Figure 4, show that, if the array or the float spacing is different,
a larger q can be obtained at β = 0. Therefore, β = 0 was selected in the following calculations as shown
in Table 1.
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Select 2ak0 = 0.8 and β = 0, and take a two-float array as an example to verify whether the k0 and β

discussed above are correct. As can be seen from Figures 4 and 5, when the float spacing is eight times
the radius of the float (5 m), the q is larger than that when float spacing is four times the radius of the
float. The two-float array is simple and accurate enough to show the difference. Thus, the two-float
array was selected and the float spacing was set to 40 m. Figure 6 presents the corresponding graphics
of various velocity potentials.

Figure 6a shows that the values and their distributions of the scattered wave velocity potential
of Floats 1 and 2 are different. This indicates that these two floats will affect each other. Figure 6b
shows that the velocity potentials of the radiation wave for Floats 1 and 2 are not the same. However,
radiation waves are generated by the up and down movement of the float, which shows that the
movements of each float are not the same with the interaction between floats. Therefore, it is necessary
to calculate the movements of each float. At the same time, the differences between the floats in
Figure 6a–c is further proof that the captured energy obtained in the array mode is different from that
in isolated mode. This will be further verified with the following calculations.
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(b) radiation wave velocity potential of Float 1 (left) and Float 2 (right); (c) the velocity potential of
Float 1 (left) and Float 2 (right).

6. Simulation and Analysis of WEC Arrays

The simulation of WEC arrays is operated in MATLAB. Figure 7 shows a schematic of the
array position.
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As shown in Figure 7, the position of Float 1 is fixed at the position of (0, 0). The variable that
needs to be optimized is the coordinates of the other float. Suppose the size of the array is N. Then
there are N − 1 variables that need to be optimized, and the dimension is D = 2 × (N − 1).

The optimal results q depend on the required precision and the parameters of the improved DE
algorithm, including the scaling factor, the crossover probability factor, and the size of the population.
The required precision is set to 0.001, the range of the scaling factor is between 0.5 to 1, the crossover
probability factor is set to 0.9, and the size of the population is set to 10. The given initial positions
of the floats cannot influence the optimal layout and output of the WEC arrays. It will only affect
the computation speed of the algorithm, whose difference is not so great. For example, if the initial
position is closer to the optimal position, the computation speed of the algorithm will be faster and
vice versa. The initial conditions are randomly set in the algorithm. Then, during the optimization
of array, there will initially be a random population of float positions to determine a better position.
It was found that the same optimal layout results can be achieved with different initial conditions.

6.1. Simulation of Three-Float, Five-Float, and Eight-Float Arrays

Three typical cases were investigated. Figure 8a shows the optimal result of a simulation of
when there are three floats in the sea, and Figure 8b shows the individual fitness values of each
generation, which reflects the maximum individual and minimum individual in each group. The blue
line reflects the minimum individual in each generation, while the red line reflects the maximum.
When the maximum and the minimum individual fitness value in the population is less than the set
threshold, that is, when the red line and the blue line in the figure are close to coincidence, the result
has converged to its optimal solution.
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for each generation.

Table 2 shows the energy capture coefficients of the WEC array.
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Table 2. Energy capture coefficient of the WEC array (N = 3).

The Float Number j Abscissa x (m) Ordinate y (m)
Interaction

Coefficient qj (pu)
Interaction

Coefficient q (pu)

1 0 0 1.295

1.3582 27.895 49.928 1.554

3 29.175 29.323 1.226

Similarly, a five-float array was optimized. Figure 9a shows the optimal result of the simulation
diagram when there are five floats in the sea. Figure 9b shows the individual fitness values of each
generation. Table 3 shows the corresponding energy capture coefficients of the WEC array.
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Table 3. Energy capture coefficient of the WEC array (N = 5).

The Float Number j Abscissa x (m) Ordinatey (m)
Interaction

Coefficient qj (pu)
Interaction

Coefficient q (pu)

1 0 0 1.408

1.500
2 0.808 26.149 1.673

3 17.149 −29.055 1.459

4 28.355 −12.462 1.438

5 39.021 −41.860 1.524

An eight-float array was then optimized. Figure 10 shows the optimal results for the eight-float array.
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The optimal position result of each float when there are eight floats in the sea is shown in
Figure 10a. The individual fitness values of each generation are shown in Figure 10b. Table 4 shows
the corresponding energy capture coefficients of the WEC array.

Table 4. The situation of each float when N = 8.

The Float Number j Abscissax (m) Ordinatey (m)
Interaction

Coefficient qj (pu)
Interaction

Coefficient q (pu)

1 0 0 1.636

1.898

2 18.661 15.639 2.969

3 19.117 −12.829 2.010

4 23.598 35.684 1.817

5 33.668 2.395 3.076

6 38.959 22.869 1.771

7 43.899 −46.321 1.203

8 49.457 46.982 0.706

From the optimized WEC arrays with N = 3, N = 5, and N = 8, it can be seen that the larger the
array is, the greater the interaction among the floats is. Hence, higher efficiency of the extracted wave
energy is achieved. This means that the array composed of multiple floats can extract more wave
energy compared with that of the single float operation mode.

6.2. Comparison with the Traditional DE Algorithm

In order to determine whether the improved DE algorithm is superior to the traditional DE
algorithm, a comparison of results for these two algorithms was analyzed. Take a three-float array
for example due to its simplicity and representativeness. The optimal position result of each float
when there are three floats in the sea is shown in Figure 11a, and the individual fitness values of each
generation is shown in Figure 11b. Table 5 shows the corresponding energy capture coefficients of the
WEC array.
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Table 5. Energy capture coefficient of the WEC array under the traditional DE algorithm (N = 3).

The Float Number j Abscissax (m) Ordinate y (m)
Interaction

Coefficient qj (pu)
Interaction

Coefficient q (pu)

1 0 0 1.220

1.2952 33.001 60.000 1.505

3 30.401 32.040 1.163

Based on the comparison between the improved DE algorithm and traditional DE algorithm,
the total energy of the three-float array absorbed from the wave under the traditional DE algorithm
is lower than that of the improved DE algorithm. The convergence rate is slower than that of the
improved DE algorithm. Furthermore, the program running time of five floats under the improved
DE algorithm is about 10 min and about 12 min under the traditional DE algorithm. The program
running times of the three floats, under these two algorithms, are both no more than 2 min. If the
array is larger, the difference will be more obvious. That is, the improved DE algorithm presented in
this paper is effective for the layout optimization of an WEC array. The introduction of an adaptive
mutation operator can obtain a better optimal result compared to the traditional DE algorithm.

6.3. Comparison with the Homogeneous Distribution of the Three-Float Array

It was found that the optimum of the three cases discussed above is not in a homogeneous
distribution. Thus, it deserves further analysis compared with the array under the homogeneous
distribution. Take a simple and representative three-float array for example. Three well-distributed
arrays are analyzed as follows, whose distance and distribution are slightly similar to the layout results
under the algorithm. Figure 12 shows the layout and velocity potential of a homogeneous distribution
for a three-float array. Table 6 shows the energy capture coefficient of the WEC array (N = 3) under
these two typical homogeneous distributions.
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It can be seen that the homogeneous distribution cannot improve output compared with the
layout calculated by the improved DE algorithm. In Figure 12, the distances between floats of the
equicrural triangle layout and the linear layout are similar to the obtained optimal position calculated
by the algorithm. However, their interaction coefficients q are far lower than the layout calculated by
the algorithm.
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Table 6. Energy capture coefficient of the WEC array (N = 3) under different homogeneous distributions.

Array Layout The Float
Number j Abscissa x (m) Ordinate y (m)

Interaction
Coefficient qj (pu)

Interaction
Coefficient q (pu)

Equicrural triangle

1 0 0 0.894
0.8732 30 20 0.862

3 30 −20 0.862

Straight line

1 0 0 1.216
0.9832 30 30 1.044

3 60 60 0.691

7. Discussion

The optimization of a WEC array is of interest for the scientific community. In this paper, a DE
algorithm is introduced to optimize a WEC array, by considering the influence of wave radiation
and scattering on WEC systems. It was found that the incident angle β and wave number k0 of the
incident wave have a great impact on the output of WEC arrays. Thus, the relationship between
these two parameters and q is studied first. It was found that, when β = 0 and the wave number
satisfies 2ak0 = 0.8 (a is the radius of float), a large q will be obtained, which is in proportion to the
output power. It is then used to research the layout optimization of WEC arrays later.

The scaling probability factor is then optimized in a differential evolution algorithm in order to
make the optimization result more accurate. This is achieved by introducing an adaptive mutation
operator to improve the differential evolution algorithm, which yields a faster convergence in the
early optimization procedure and, later, a higher precision. The value of the mutation operator will be
maintained in the best range for optimization results.

The analysis results show the following:

(1) When the array is larger, the influence between floats is larger, and more radiation and scattered
wave energy can be extracted.

(2) The total wave energy extracted by WEC arrays is greatly improved compared to that of the
single float running mode.

(3) The optimization of an array under the improved DE algorithm greatly impacts the output of
WEC arrays, simultaneously satisfying both convergence precision and speed.

(4) The optimal layout of the array system is not usually homogeneously distributed. The energy
obtained via an inhomogeneous array distribution is greater than that of a homogeneous distribution.

(5) With the introduction of an adaptive mutation operator, the layout optimization of WEC arrays is
superior to that of a constant mutation operator.

Noted that this model was studied under a regular wave, whose array arrangement law may
be different from that of an irregular wave. However, this can be neglected because there is little
difference in practical engineering. In addition, the damping of a generator can also be considered
with this model. Therefore, WEC arrays optimized by the improved DE algorithm have great potential
for development.
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