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Abstract: With the deregulation of electricity market, generation companies must take part in strategic
bidding by offering its bidding quantity and bidding price in a day-ahead electricity wholesale market
to sell their electricity. This paper studies the strategic bidding of a generation company with thermal
power units and wind farms. This company is assumed to be a price-maker, which indicates that its
installed capacity is high enough to affect the market-clearing price in the electricity wholesale market.
The relationship between the bidding quantity of the generation company and market-clearing price
is then studied. The uncertainty of wind power is considered and modeled through a set of discrete
scenarios. A scenario-based two-stage stochastic bidding model is then provided. In the first stage,
the decision-maker determines the bidding quantity in each time period. In the second stage, the
decision-maker optimizes the unit commitment in each wind power scenario based on the bidding
quantity in the first stage. The proposed two-stage stochastic optimization model is an NP-hard
problem with high dimensions. To tackle the problem of “curses-of-dimensionality” caused by the
coupling scenarios and improve the computation efficiency, a modified Benders decomposition
algorithm is used to solve the model. The computational results show the following: (1) When wind
power uncertainty is considered, generation companies prefer higher bidding quantities since the
loss of wind power curtailment is much higher than the cost of additional power purchases in the
current policy environment. (2) The wind power volatility has a strong negative effect on generation
companies. The higher the power volatility is, the lower the profits, the bidding quantities, and the
wind power curtailment of generation companies are. (3) The thermal power units play an important
role in dealing with the wind power uncertainty in the strategic bidding problem, by shaving peak
and filling valley probabilistic scheduling.

Keywords: strategic bidding; stochastic optimization; probabilistic scheduling; modified
Benders decomposition

1. Introduction

1.1. Background and Motivations

During the last several decades, the electricity industry all over the world was long dominated
by vertically integrated utilities. In order to improve the energy efficiency and social welfare, as well
as reduce the operational cost of the electricity industry, many countries are struggling to reform
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their electricity sectors. The electricity markets throughout the world are now undergoing huge
restructuring processes. In a liberalized electricity market, the electricity market in each time period
is formed through an auction mechanism, which is called day-ahead power exchange. Using this
mechanism, an independent system operator matches the sellers’ and buyers’ bids to determine the
market clearing price corresponding to the equilibrium point of electricity market. Under this context,
it is of great significance for generation companies to optimize its bidding decisions in order to earn
more profit.

In line with the above government consideration, researchers are intensively studying strategic
bidding. Previously, some traditional energy sources represented by fossil fuels play a dominant
role in the power structure of most countries. Therefore, most previous literature with regard to
strategic bidding focuses on the thermal power generation companies. However, it is known to all that
fossil fuels are limited and unrenewable. Its overconsumption may also bring several environmental
pollution problems. With the increasing concern over the energy security and environmental pollution
caused by the overconsumption of fossil fuel, the development of renewable energy sources such as
wind power will be a prevailing trend. The integration of renewable power sources is expected to
constantly rise. Take China as an example. By 2017, China ranked first in the global ranking of new
installed wind power capacity, with a total installed wind power capacity of 19,660 MW, accounting
for 37% of the market share, and the installed wind power capacity of China will exceed 2 × 103 GW
in 2018, which will be a milestone in the history of wind power development in China [1]. In response
to the rapid development of wind power generation, this paper will focus on the strategic bidding of a
generation company with wind farms.

When considering the strategic bidding of a generation company with wind farms, one of the
most important problems that must be solved is wind power uncertainty. It is worth noting that,
although the integration of wind power has brought considerable environmental benefits, it has also
posed great challenges to the reliability and economic of electric power systems due to its intermittent
and stochastic nature. Since the exact value of wind power output in each time period is unknown, it
may confuse the decision-makers when they offer their bidding quantities in the day-ahead electricity
market. As a powerful tool in dealing with the uncertainty, stochastic programming theory has been
widely used in electric power systems to handle the uncertain parameters. In this paper, we use
two-stage stochastic optimization theory to handle wind power uncertainty.

1.2. Aims and Contributions

This paper provides a two-stage stochastic optimization model for the strategic bidding of a
generation company with both thermal power units and wind farms. Note that the decisions of the
strategic bidding of a generation company usually involve two processes: (1) a bidding process and
(2) a production process. In the former, a generation company offers its bidding quantity and bidding
price in a day-ahead electricity market. After the bidding process ends, the generation company
optimizes the production schedule of electricity to satisfy the bidding quantity the next day. We
divide the decision variables of a generation company into two categories: first-stage and second-stage.
We assume that bidding quantity is a first-stage variable. Since the decision-maker must offer its
bidding quantity in a day-ahead electricity market, the exact value of wind power is unknown. We
assume that wind power uncertainty disappears the next day. The decision-maker then optimizes the
production schedule of electricity based on the first-stage variable and the exact value of wind power.
The proposed model is an NP-hard problem with high dimensions. If we solve it directly through
branch and bound algorithms, the problem of “curses-of-dimensionality” caused by the coupling
scenarios can lead to a heavy computation burden. Based on this consideration, a modified Benders
decomposition algorithm is used to solve this model. The innovations of this paper can be shown
as follows:

• Based on the two-stage stochastic optimization theory, the decision-making of power generation
enterprises is divided into a day-ahead bidding decision and a real-time scheduling decision
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according to the different decision-making stages. A two-stage stochastic optimization model
is constructed.

• An improved Benders decomposition algorithm is used to solve the problem. This algorithm
decomposes the original problem into a master problem that only involves first-stage variables,
and a set of sub-problems that only involves second-stage variable. These problems are much
easier to solve compared with the original problem. This modified Benders decomposition
algorithm does not requires the sub-problem to be a convex optimization problem like the
traditional Benders decomposition algorithm. Note that the sub-problems in this paper are
mixed integer programming since the startup and shutdown decisions of thermal power units
are involved. We use a convex hull approximation method to convexify the feasible region of the
sub-problem, so that the dual information of the sub-problem can be utilized.

• The actual cases from the Latin American electricity market are selected to verify the rationality
and effectiveness of the constructed models and algorithms.

1.3. Paper Organization

The content of the paper is arranged as follows: Section 2 reviews the research status of strategic
bidding of generation companies and the probabilistic scheduling of wind generators. Section 3
expounds the profit function of power generation enterprises in the free competitive power wholesale
market. In Section 4, aiming at maximizing the profit expectation of power generation enterprises,
a two-stage stochastic optimization model is established. The algorithm of the mixed integer linear
programming model is proposed in Section 5. Using the method proposed in this paper, the actual
cases are selected for analysis and discussion in Section 6, and Section 7 summarizes the conclusions of
the study.

2. Literature Review

In order to adapt to this trend, many scholars have begun to pay attention to the research on
strategic bidding of power generation companies in the deregulated market environment. There are
two streams of literature that are closely related to our paper: one is about the strategic bidding of a
generation company as a price taker; the other is the probabilistic scheduling of wind generators.

2.1. Strategic Bidding of Generation Company

In terms of strategic bidding of a generation company as a price taker, Ahmet D. Yucekaya [2] et al.
considered power operating constraints and price uncertainty within the market to establish bidding
models, and two particle swarm optimization algorithms are proposed to determine bidding price
and bidding scalar in a competitive power market. Ettore Bompard [3] et al. established a strategic
bidding model in oligopoly electricity markets and introduced a demand elasticity model used for
assessing the mitigation effects on the strategic bidding of the producers. Based on the strategic
bidding problem and Nash equilibrium (NE) concepts, Luiz Augusto Barroso [4] et al. used Nash
equilibrium theory to discuss the calculation method of the electricity market-clearing price under the
oligopolistic competition market, and discussed the optimal bidding strategy of generation companies
based on this clearing price. Li [5] et al. established the bidding strategy model in terms of supply
function equilibrium. John W. [6] et al. proposed a framework in which strategies of generating
companies may be developed for the individual participants in an energy brokerage, and obtained an
optimal bidding strategy. Mario Veiga Pereira [7] et al. considered the strategic bidding problem under
the uncertainty of a short-term power market environment, established pure price, pure quantity, or
joint price/quantity bidding models, and proposed a binary expansion (BE) solution approach to
solve the above problem. Meanwhile, some scholars have studied the bidding of power generation
companies in the future free competitive market environment. Kazemi M et al. [8] considered the
uncertainty of clearing price in the power market and built an uncertain bidding model for thermal
power generators based on information gap decision theory. Ren et al. [9] discussed the optimal
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bidding strategy for thermal power producers under the dynamic bidding game mode of incomplete
information. Considering the real time wind power uncertainties, the pre-bidding model under
different bidding strategies was proposed [10]. Ding et al. [11] studied the bidding problem of wind
power generators with energy storage systems, and verified the role of energy storage systems in
bidding for power generation enterprises. Agustín et al. [12], based on the conditional risk value
(CVAR) theory, studied the bidding optimization problem of generation companies with two types of
power generation methods: wind power generation and hydropower generation.

2.2. Probabilistic Scheduling of Wind Generators

With regard to probabilistic scheduling of wind generators, many scholars have conducted
in-depth research from different angles. Yan et al. [13] classified the uncertainty analysis methods from
different perspectives, and summarized and evaluated the commonly used optimization algorithms
and future development trend, but did not compare the accuracy of various algorithms quantitatively.
Li et al. [14] considered the uncertainty of wind power under the day-ahead market environment, and
established a clearing model based on the day-ahead market, which effectively solves the problem
of power system scheduling. Zhang et al. [15] established a probabilistic optimization model based
on user demand, wind power, and the uncertainty of carbon trading. Aiming at minimizing the
total cost of power generation in the system, Bin et al. [16] introduced the scene method into the
wind power grid-connected system to establish an optimization model with the goal of minimizing
expected cost. Jiang et al. [17] separated wind power into three scenarios, and chose the Benders
decomposition method to solve the wind and hydro coordinated optimization model. Fu et al. [18]
proposed an operational method to satisfy the fluctuation of wind power in the range, and established
a robust optimization economic scheduling model. Álvaro Lorca et al. [19] used a combination of
adaptive theory and robust optimization to establish an economic dispatch model to automatically
adjust system parameters when wind power changes. Sun et al. [20] proposed a multi-time scale
intra-day ultra-short-term scheduling strategy combining intra-day rolling optimization and real-time
optimization. Tan et al. [21] used the concepts of demand response and energy storage system to
establish a scheduling optimization model of grid-connected wind power. Zhao et al. [22] proposed
the expectation and opportunity constraint feathering method for solving random unit combinations.
Liu et al. [23] and Guan et al. [24] pointed out various types of uncertain sets and solved the problem
of wind power uncertainty. Hu [25] et al. used interval numbers to solve the uncertainty problem of
wind power and load. Compared with the traditional method, the proposed method has improved
the robustness and economy of the scheduling plan. Suresh K. Damodaran [26] et al. presented the
modeling of hydro-thermal-wind generation scheduling considering economic and emission factors,
and proposed a modified particle swarm optimization (MPSO) algorithm to solve it.

3. Generation Company Return Function

3.1. Problem Description

Generation companies are no different from other companies whose objective is to make profits.
Therefore, it is important to discuss the return function of power generation companies. The return
function of selling the electricity during time period t is shown as follows:

Rt(bt, ct) = btct (1)

where bt is the bidding quantity during time period t. ct is the market clearing price of the electricity
wholesale market during the time period t. One of the important differences between a deregulated
electricity market wholesale market and a traditional highly regulated power wholesale market is the
formation mechanism of electricity prices. In a deregulated wholesale electricity market, electricity
prices are not determined by national energy policies but are based on market supply and demand.
Based on the market clearing rules, the independent system operators of the wholesale electricity
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market will find an equilibrium point in each time period according to the bidding quantity and
quotation provided by the power purchasers and power sellers. The electricity price corresponding to
the equilibrium point is called “market clearing price,” which is the unit return of electricity sellers
and the unit cost of electricity buyers. Note that different power supply and demand may correspond
to different equilibrium points, leading to a different market-clearing price. At present, electricity
sellers in the wholesale electricity market fall into two categories, the price maker and the price taker.
For price takers, since their installed capacities and bidding quantities are not large, the changes in
their bidding quantity are not substantial enough to significantly affect the balance between supply
and demand in the market. There is no significant relationship between bt and ct. ct can be regarded
as a given parameter for the price taker. However, for price makers, the change in the bidding quantity
may result in changes in market clearing prices due to their high installed capacities. Therefore, we
need to discuss the relationship between bt and ct when power generation companies are price makers.

3.2. Electricity Wholesale Supply and Demand Relationship

Considering an electricity wholesale market with one price maker and multiple price takers, this
paper focus on the decision-makings of the price maker. The following assumptions are made:

(1) The relevant information in the wholesale electricity market is completely transparent to the price
maker. In other words, the uncertainty of the market information is not considered.

(2) The bidding prices of the price maker are assumed to be 0 during the entire planning horizon.
This ensures that all bidding quantities of the price maker will be sold in the market. This is
because the market clearing price in each time period must be greater than 0.

Figure 1 provides the supply and demand in an electricity wholesale market. We use Figure 1
to illustrate how the market clearing price is formed. The green curve and red curve represent the
demand of electricity buyers and the supply of electricity sellers, respectively, as well as their bidding
prices. The electricity price corresponding to the intersection point between these two curves is the
so-called market clearing price. This intersection point is called the equilibrium point in the electricity
market. This is because the supply and demand at this point is equal.

Figure 1 also shows how the market clearing price changes with the change in the bidding
quantity of a price maker. After the price maker reduces its bidding quantity, the equilibrium point
changes from X to Y. Note that X and Y correspond to different market clearing prices, which means
that the reduction of the bidding quantity may break the equilibrium state, thus increasing the market
clearing price.

The corresponding market clearing price under different bidding quantity can be obtained by
changing the length of the step corresponding to the price maker, then observing the electricity price
corresponding to the new equilibrium point. The function diagram of a price maker can then be shown
as follows:

Let e1t, e2t, e3t be the break points. If the bidding quantity of a price maker exceeds a break
point, the equilibrium state will be broken, which will affect the market-clearing price. p1t, p2t, p3t
are the corresponding market clearing prices under different bidding intervals, which is the slope
corresponding to the return function diagram under this interval. Note that, in the bidding interval
corresponding to the red image, we can see the case that the bidding amount is higher than the
previous break point but the revenue is lower. In this case, a wise decision-maker will not offer the
bidding quantity corresponding to the interval of read lines. Therefore, the real return function image
of the price maker should be the black stepped curve shown in Figure 2.

When there is a piecewise linear relationship between bt and ct, the return function of the power
generation company Rt(bt, ct) = btct will appear in a nonlinear form. For efficient computation,
we reformulate Rt(bt, ct) = btct into mixed integer linear formulations, which are shown in the
Appendix A.
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4. Two-Stage Stochastic Bidding Model for Generation Company

4.1. Method Introduction

The decision-making of strategic bidding for power generation enterprises can be divided into two
objectives: One is to determine the bidding quantity and price in the day-ahead electricity market. The
other is to optimize its generation schedule the next day to satisfy the bidding quantity. Note that these
two decisions are made during different time periods. This feature is consistent with the two-stage
stochastic optimization process in stochastic optimization theory. We assume that the decision-maker
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does not know the exact value of wind power when offering its bidding quantity in the day-ahead
electricity market. This is because the wind power forecasting techniques are unable to provide the
precise point value of the wind power. On the next day, the wind power uncertainty is eliminated.
The decision-maker then optimizes the production schedule of thermal power units and wind farms.
Based on this considered, the decision variables in the optimization model are divided into one-stage
decision variables and two-stage decision variables, as shown in Figure 3. The variables related to the
bidding decision of the power generation companies in the day-ahead electricity market are defined
as first-stage decision variables. This is because once the power generation company determines the
bidding quantity, it must sign a corresponding transaction contract, and the power generation company
is not allowed to change its bidding quantity on the next day. The decision variables related to the
unit commitment are defined as two-stage decision variables, which are also called “wait-and-see”
decision variables. This indicates that the power generation company does not need to determine the
production schedule in the day-ahead electricity market but can optimize the production schedule
according to the different wind power scenarios that may occur. Based on the above considerations,
this paper constructed a two-stage stochastic bidding model for generation companies.
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4.2. Objective Function

The goal of a power generation company is to maximize the expectation of its profit. The
expectation of its profit is derived from the return of selling the electricity minus the expectation of
operating costs, as follows:

max∑
t∈T

R(bt, ct)−∑
s∈S

ps

(
∑
i∈I

∑
t∈H

( f (Ps
it) + SUs

it + SDs
it) +∑

t∈H
Us

t cad

)
(2)

where ps is the probability of the occurrence for the scenario s; f (Ps
it) is the power generation cost unit

i during the time period t of the scenario s, which is a quadratic convex function that can be linearized
by piecewise linear approximation; SUs

it and SDs
it are the startup and shutdown cost in the time period

t of the scenario s. Qs
t is the wind power curtailment in time period t in the scenario s. cab is the unit
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cost of the wind power curtailment. Us
t is the additional power purchase for the power generation

company in the time period t of the scenario s. cad is the additional cost of electricity for the unit.

4.3. Restrictions

(1) Electric Quantity Balance Constraint

The electricity balance constraint guarantees that the output of electricity generated by the power
generation enterprise, plus the additional purchased electricity and minus the abandoned wind power,
is equal to the bidding quantity at each time point in any scenario, described as follows:

∑
i∈I

Ps
it + WPs

t −Qs
t + Us

t = bt, t ∈ H, s ∈ S (3)

where WPs
t is the wind power generation in the time period t of the scenario s.

(2) Calculation of the Start–Stop Cost of the Thermal Power Unit

SUs
it ≥ sui

(
ys

it − ys
i(t−1)

)
, i ∈ I, t ∈ H, s ∈ S (4)

SDs
it ≥ sdi

(
ys

i(t−1) − ys
it

)
, i ∈ I, t ∈ H, s ∈ S (5)

where sui and sdi are the cost of the unit i each time it is turned on or off. ys
it is a 0–1 variable. Only in

the scenario s is the unit i 1 when the time period t is in the power-on state; otherwise, it is 0.

(3) Minimum On–Off Time Constraint

ys
it = 1, i ∈ Ion, t ∈ [1, (Ton

i − Xon
i )yi0], s ∈ S (6)

t+Ton
i −1

∑
τ=t

ys
iτ ≥ Ton

i

(
ys

it − ys
i(t−1)

)
, i ∈ I, t ∈ [(Ton

i − Xon
i )yi0, T − Ton

i + 1], s ∈ S (7)

T

∑
τ=t

[
ys

iτ −
(

ys
it − ys

i(t−1)

)]
≥ 0, i ∈ I, t ∈ [T − Ton

i + 2, T], s ∈ S (8)

ys
it = 0, i ∈ Io f f , t ∈

[
1, (To f f

i − Xo f f
i )(1− yi0)

]
, s ∈ S (9)

t+To f f
i −1

∑
τ=t

(1− ys
iτ) ≥ To f f

i

(
ys

i(t−1) − ys
it

)
, i ∈ I, t ∈

[
(To f f

i − Xo f f
i )(1− yi0), T − To f f

i + 1
]
, s ∈ S (10)

T

∑
τ=t

[
1− ys

iτ −
(

ys
i(t−1) − ys

it

)]
≥ 0, i ∈ I, t ∈

[
T − To f f

i + 2, T
]
, s ∈ S (11)

where Ion and Io f f are the sets of thermal power units which are on and off at the start of time period 1

respectively. Ton
i and To f f

i are the minimum startup time and minimum shutdown time of the thermal

power unit i. T is the number of time periods of the entire planning horizons. Xon
i and Xo f f

i is the
number of time periods that the unit i has been on and off before the start of the time period 1.

(4) Power Generation Constraint

ys
itPLi ≤ Ps

it ≤ ys
itPUi, i ∈ I, t ∈ H, s ∈ S (12)

where PLi and PUi correspond to the minimum and maximum power generation per unit in the
power-on state.

(5) Climbing and Downhill Constraints
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Ps
it − Ps

i(t−1) ≤ ruiys
i(t−1) + PLi

(
ys

it − ys
i(t−1)

)
, i ∈ I, t ∈ H, s ∈ S (13)

Ps
i(t−1) − Ps

it ≤ rdiys
it + PLi

(
ys

i(t−1) − ys
it

)
, i ∈ I, t ∈ H, s ∈ S. (14)

5. Solution Methodology

5.1. Improved Benders Decomposition

The model built in the last section is a large-scale mixed integer linear programming model.
A generation company needs to optimize the unit commitment decisions in each scenario. The
second-stage decisions are not independent but are coupled due to the first-stage decision variables.
This causes a huge computational burden. As an effective algorithm for solving the two-stage stochastic
optimization model, Benders decomposition has been widely used. The algorithm usually decomposes
the two-stage stochastic optimization model into a master problem and |S| sub-problems. The Benders
cut constructed by the dual information of the sub-problems is used to connect the master problem and
sub-problems, by realizing the update of the Lagrangian multiplier in the master problem and reflecting
the effect of the bidding quantity on the objective function. In a classical Benders decomposition
algorithm, the first-stage variables are usually considered in the master problem, while the second-stage
variables are considered in the sub-problems. However, note that some two-stage decision variables
in this paper are 0–1 variables describing the start–stop state of the units, which means that the
sub-problems are not convex optimization problems. The implementation steps of the classic Benders
decomposition algorithm cannot be directly applied since the construction of a Benders cut relies on
the dual information of the sub-problems. If the dual theory is directly applied in a mixed integer
programs, there may be a dual gap, leading to Benders cuts. Based on this consideration, this paper
uses the convex hull approximation method proposed in [15] to convexify the feasible domain of the
sub-problems. Each sub-problem is then reformulated as an equivalent convex optimization problem,
so that the implementation of dual theory is realized. The specific implementation steps are show
as follows. For the simplicity of description, the model built in the third section is rewritten into a
compact form of vector and matrix representation, as follows:

maxNT · b + ∑
s∈S

ps
(
CT · Ps + DT ·Ys +HT ·Qs)

s.t.
ET · (Ps + Qs) = b−WPs, s ∈ S
BT ·Ys ≤ g, s ∈ S
FT · Ps + GT ·Ys ≤ h, s ∈ S
b, Ps, Qs ≥ 0, Ys ∈ {0, 1}

(15)

Obviously, the bidding amount b is called the “complex variable” in the two-stage stochastic
optimization model. Once the bidding amount is fixed, the unit commitment optimization between
scenarios is independent of each other, so parallel computation can be used to speed up the solution.
Based on this consideration, Equation (15) is decomposed into a master problem that only involves
the optimization of bidding quantity b and |S| sub-problems, which involves the optimization of unit
commitment decisions. The main problem is as follows:

maxα

s.t.
α ≤ NT · b + ∑

s∈S
ps

(
(b−WPs)T · γ̂ + gT · δ̂ + hT · π̂ +

(
(b−WPs)Tλ̂s + hT µ̂s

)
· ζ̂
)

b ≥ 0.

(16)
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The first constraint in the main problem is called the Benders cut. Its construction method
will be explained later. Solving the main problem can provide an upper bound of the original
problem and obtain the value (b) of a one-stage decision variable. As the value of b is fixed, the
optimization problems corresponding to the scenes in the set S become independent of each other, so
that independent sub-problems |S| can be obtained. The s sub-problem is as follows:

maxCT · Ps + DT ·Ys + MT · v,
s.t.
ET · (Ps + Qs) + v = b̂−WPs,
BT ·Ys ≤ g,
FT · Ps + GT ·Ys ≤ h,
Ps, Qs ≥ 0, Ys ∈ {0, 1}.

(17)

It is worth noting that there is no limit on the maximum value of an additional power purchase
or the abandonment of electricity in the model. For any given bid amount, there must be a feasible
solution to the sub-problem. Obviously, the optimal objective function value corresponding to the
solution obtained after solving all sub-problems is the lower bound of the optimal objective function
value of the original problem. Sub-Problem (17) is a mixed integer linear programming model, which
is a kind of non-convex optimization problem. There is a dual gap between the dual solution of
the linear relaxation problem and the sub-problem, so that the objective function value obtained
by the main problem is not the upper bound of the original problem. Therefore, the sub-problems
need to be corrected. First, the sub-problem needs to be solved directly and the value Ys obtained
under the optimal solution. This value is then substituted into the sub-problem. The linear relaxation
sub-problem as shown in Equation (18) is obtained.

maxCT · Ps + MT · v,
s.t.
ET · (Ps + Qs) + v = b̂−WPs, : λs

FT · Ps ≤ h− GT · Ŷs, : µs

v, Ps, Qs ≥ 0.

(18)

The first and the second constraint in the above Equation (18) are the dual variables. After solving
Equation (18), the value of the dual variable can be obtained λ̂s and µ̂s.

β ≤ (b̂− wps)
T

λ̂s + (h− GT ·Ys)
T

µ̂s. (19)

Constraint (19) reflects the influence of the value Ys of the Benders cut on the value of the
objective function of the sub-problem. Since λ̂s and µ̂s are the dual variables in the optimal case of the
sub-problem, the upper bound of the sub-problem is provided by β. After relaxing the type constraint
of variable value Ys in Sub-Problem (17) and substituting Constraint (19) into Sub- Problem (17), the
following linear sub-problems can be obtained:

maxβ

s.t.
ET · (Ps + Qs) + v = b̂−WPs, : γ

BT ·Ys ≤ g, : δ

FT · Ps + GT ·Ys ≤ h, : π

β ≤ (b̂−WPs)
T

λ̂s + (h− GT ·Ys)
T

µ̂s, ζ

v, Ps, Qs ≥ 0.

(20)

The linear Sub-Problem (20) has the same objective function value and optimal solution as
the original Sub-Problem (17), and Sub-Problem (20) is a linear programming problem. By solving
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Sub-Problem (20), it is possible to construct the Benders cut of the main problem, the first constraint in
the main problem.

In order to illustrate this algorithm more intuitively, we present a simple numerical example with
only one seller and one buyer. The bidding price and bidding quantity of the buyer are 350 $/MWh
and 1000 MWh, respectively. The seller has only one thermal power unit. The maximum limitation and
minimum threshold of the generation quantity of this thermal power unit are 20 MWh and 50 MWh,
respectively. The unit generation cost of this thermal power unit is 280 $/MWh. The startup cost of
this thermal power unit is 30 $. There are two possible wind power scenarios: 40 MW and 60 MW.
The probability of each scenario is 0.5. The unit curtailment cost of wind power is 100 $/MWh. The
unit additional power purchase cost is 400 $/MWh. We only consider one time period in this simple
example. The original two-stage stochastic optimization model can be formulated as follows.

max350 · b− 0.5 ·
(
280 · P1 + 30 · y1 +100 ·Q1 + 400 ·U1)

−0.5 ·
(
280 · P2 + 30 · y2 +100 ·Q2 + 400 ·U2)

s.t.
P1 + 40−Q1 + U1 = b,
P2 + 60−Q2 + U2 = b,
20y1 ≤ P1 ≤ 50y1,
20y2 ≤ P2 ≤ 50y2.

, (21)

In Model (21), the first and second constraints are power balance constraints, and the third and
fourth constraints are generation quantity constraints. Some other constraints are not considered
since there is only one time period here. However, this will not prevent us from shedding light on
the algorithm. We first fix the first-stage variable b and decompose the original problem into two
sub-problems associated with these two wind power scenarios. One of the sub-problems can be shown
as follows. 

min0.5 ·
(
280 · P1 + 30 · y1 +100 ·Q1 + 400 ·U1)

s.t.
P1 + 40−Q1 + U1 = b,
20y1 ≤ P1 ≤ 50y1,
y1 ∈ {0, 1}.

, (22)

Model (22) is mixed integer programming, which is a non-convex problem. We first directly solve
this problem and obtain the optimal solution y1 = 1. We then substitute this optimal solution into
Model (22) and obtain the following linear relaxed sub-problem.

min0.5 ·
(
280 · P1 + 30+100 ·Q1 + 400 ·U1)

s.t.
P1 + 40−Q1 + U1 = b,
20 ≤ P1 ≤ 50.

, (23)

After solving Model (23), we can obtain the value of dual variables of these two constraints, which
are both 175. We can then obtain the Benders cut and add it to Model (22). Constraints used to restrict
the type of y1 can then be relaxed, so that Model (22) can be transformed into an equivalent linear
programming model, which is called a linear sub-problem.

minβ

s.t.
P1 + 40−Q1 + U1 = b,
20y1 ≤ P1 ≤ 50y1,
β ≥ 40× 175 + 50y1 × 175.

(24)
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Since Model (24) is a linear programming model, we can use its optimal solution to construct the
Benders cut. The Benders cut is then added to the master problem. The master problem can then be
shown as follows: 

max350 · b− α1 − α2

s.t.
Benders cut associated with the subproblem of scenario 1,
Benders cut associated with the subproblem of scenario 2.

(25)

5.2. Improve the Calculation Process of the Benders Decomposition Algorithm

Because the two-stage stochastic optimization model of power generation enterprise bidding
established in this paper contains the constraints of unit startup and shutdown, it cannot be solved
directly by the classical Benders decomposition algorithm. Therefore, a convex hull approximation
method is proposed for the feasible domain of sub-problems, which realizes the convexity of the
feasible region of the sub-problem, as shown in Figure 4.
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According to Figure 4, the improved Benders decomposition method can be used to calculate
the two-stage optimization model of power generation enterprise bidding. The specific process is
as follows.

Step 1: Initialize the upper bound LB = +∞ and the lower bound UB = 0, and set the maximum
tolerance of the difference between the upper and lower bounds θ.

Step 2: Enter a set of initial bid amount b and calculate Sub-Questions (17) in each scenario, obtain
the optimal value b, and update the lower bound UB of the original problem.

Step 3: Substitute the optimal value Ys in the second step into Equation (18) for solving, and construct
Constraint (19).

Step 4: Substitute Constraint (19) into model (18) and relax the constraint which restricts the type of
variable Ys. Then we can obtain model (20), which is a linear program. Solve model (20) and
construct the benders cut based on the optimal values of its dual variables. The benders cut
is then substituted into the master problem (16) so that the master problem is updated. Solve
the new master problem and update the upper bound LB.

Step 5: Observe if UB − LB ≤ θ is satisfied. If it is satisfied, the quality of the solution satisfies
the decision-maker’s requirement, that is, the difference between the obtained optimal
objective function value and the true optimal objective function value does not exceed θ. The
calculation is stopped, and the current result is output as the optimal solution. Otherwise,
substitute the obtained one into the sub-problem and return to Step 2.

6. Case Analysis

6.1. Basic Date

This section introduces the data needed for the analysis of the example. This paper draws on a
data from the Latin American (including Savardo, Honduras, and Nicaragua) wholesale electricity
markets provided by [8]. Since there are too many parameters related to the clearing price of the
electricity market, it cannot be enumerated in detail and can be obtained by referring to [8]. The
parameters of the two thermal power units held by the price maker are derived from [27], as shown in
Table 1. Quadratic function Ax2 + Bx + C is used to formulate the generation cost of thermal power
units. Thus, A, B, and C in Table 1 correspond to the coefficient of generation cost function of each
thermal power unit.

Table 1. The parameters of thermal power units.

Nominal Capacity
(MW)

Number of Thermal
Power Units (units)

Minimum Output
(MW)

Climbing Speed
(MW/h)

Downhill Speed
(MW/h)

1200 10 400 600 600

1000 10 300 500 500

A (Dollar/MW2h) B (Dollar/MWh) C (Dollar/h) Start-up cost
(Dollar/per)

Shut-down cost
(Dollar/per)

0.00148 1.2136 82 1600 1000

0.00289 1.2643 49 1400 800

Assume that the two units are turned off at the beginning of the scheduling period and are
allowed to start immediately. The method for generating the wind power scene is as follows:

(1) Use the nuclear density estimation method to analyze the historical data of wind power and
obtain its approximate probability distribution function.

(2) Use the Latin hypercube sampling method to discretize the probability distribution function and
generate a wind power scene tree.
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(3) In order to avoid too many scenes, the back-generation reduction method is used to pre-process
the scene, merge similar scenes, and finally obtain 50 wind power scenes, as shown in
Figure 5 below.
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Figure 5. The scenarios of wind power.

The YALMIP toolbox [28] is a free toolbox based on the Matlab R2017a platform proposed by
Dr. Johan Lofberg. It has a wide range of applications. In solving the optimization problem, it shows
obvious advantages. One is that you can not only use the internal solution algorithm but also call
other commercial solvers, such as CPLEX, GLPK, and Gurobi, which may greatly improve the ability
to solve optimization problems. The YALMIP toolbox separates the modeling from the algorithm
by simply setting parameters and specifying a solver. Based on this, the model uses the YALMIP
toolbox to call the Gurobi 8.0 solver via the Matlab R2017a platform, which is equipped with an Intel(R)
Core(TM) i7-8750H@2.20 GHZ CPU, 16 GB. In addition, the maximum error tolerance of the Benders
decomposition algorithm is set to 0.001.

6.2. Results and Discussion

6.2.1. Additional Power Purchase Cost vs. Wind Curtailment Cost

Since generation companies do not know the exact value of wind power in each time period, one
of the most important problems in strategic bidding is the trade-off between the additional power
purchase cost and the wind curtailment cost. If the bidding quantity is too high, generation companies
are unable to satisfy the electricity demand by themselves in scenarios where the wind power output
is low. They must purchase the electricity from other places, leading to the additional cost. However,
if the bidding quantity is too low, the output of generation companies may also exceed the bidding
quantity, so that extra wind power will be abandoned, leading to the wind curtailment cost. We are
interested in the following question: Should generation companies select an aggressive decision with
a high bidding quantity or a conservative decision with a low bidding quantity? We selected two
scenarios from the set of these 50 scenarios, and the differences in scheduling decisions of power
generation companies between these two scenarios were observed. As shown in Figures 6 and 7, one
scenario is the most optimistic, which means the wind power output during the entire horizon is the
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highest among all scenarios. Another scenario is the most pessimistic scenario, which means the wind
power output during the entire horizon is the lowest among all the scenarios.
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Figure 6. The optimal decision-making under the most optimistic scenario.

Figure 6 shows the optimal results in the most optimistic scenario. The additional power purchase
is 0 during the entire planning horizon. Wind power curtailment quantities are also 0 in most time
periods. Even if in some periods the wind curtailment quantities are not 0, they are relatively low
compared with the bidding quantities in these time periods. As for the thermal power units, their
generation quantities do not reach their maximum limitation in most time periods.

 

2 

 
Figure 7 Figure 7. The optimal decision-making under the most pessimistic scenario.



Energies 2018, 11, 3527 16 of 21

Figure 7 shows the optimal results in the most pessimistic scenario. Different from the most
optimistic scenario, the wind curtailment quantities are 0 during the entire planning horizon. Although
the generation quantities of all thermal power units reach their maximum limitation, generation
companies still need to purchase additional power in all time periods. The generation quantities of
thermal power units do not reach their maximum limitation during Time Periods 5 and 6. This is
because the market-clearing price in Time Periods 5 and 6 is lower than the unit generation cost of
these thermal power units. One can refer to Figure 8 to see the market-clearing prices during the entire
planning horizon.

(1) Thermal power units play a significant role in coping with wind power uncertainty. In the most
optimistic scenario where the wind power is high, the generation company reduces the generation
quantities of thermal power units. Since the unit generation cost of wind power is much cheaper
than the thermal power, most electricity demands are satisfied through wind power in order to
save the generation cost. On the contrary, in the most pessimistic case, where the wind power is
low, the generation company increases the generation quantities of thermal power units in the
case of an additional power purchase cost.

(2) Aggressive bidding quantities, compared with conservative bidding quantities, are preferred by
the generation company. Note that, even in the most optimistic case, the wind power curtailment
is still very low. However, in the most pessimistic case, the additional power purchase is relatively
high. If a generation company offers low bidding quantities in the day-ahead electricity market,
it will not only suffer the wind curtailment cost in some scenarios when wind power is high
but also lose the opportunity of earning more revenue. Therefore, a generation company would
rather offer high bidding quantities since the loss of revenue and wind curtailment cost is much
higher than the additional power purchase cost.
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Figures 6 and 7 lead to the following conclusions.

6.2.2. The Effect of Additional Power Purchase on Decision-Makings

In the strategic bidding of generation companies, many models have an important assumption
that the generation quantities of a power generation company in some time period do not have to
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equate to its bidding quantity. If a generation company cannot produce that much electricity, it is
allowed to purchase the electricity from other places, with a higher unit price compared with the
market-clearing price. However, additional power purchases are not always possible, especially
when the power generation company is a price maker with the largest installed capacity. In this
case, other price takers may not able to provide enough electricity to fill the gap between bidding
quantity and generation quantity for price makers. Based on the above consideration, we discuss
the effect of additional power purchases on decision-makings. The effect of additional electricity on
decision-makings is shown in Table 2.

Table 2. The effect of additional electricity on decision-makings.

Y/N Expected Profit
(Dollar)

Total Bidding
Quantity (MWh)

Expected Additional
Power Purchase (MWh)

Wind Power
Curtailment (MWh)

Y 4.38 × 108 1.17 × 106 5.82 × 104 269.99
N 4.00 × 108 9.54 × 105 0 2.97 × 104

Table 2 shows that, if an additional power purchase is allowed, the expected profit of the
generation company is much higher. This generation company also offers higher bidding quantities in
the day-ahead electricity market. The expected wind curtailment will be much higher if an additional
power purchase is not allowed.

The comparison shows that an additional power purchase provides a generation company
with high flexibility in its decision-making. Note that an important feature of two-stage stochastic
optimization theory is the robustness of the constraints, i.e., the constraints must be satisfied in all
scenarios. As mentioned earlier, we find that a generation company always prefers high bidding
quantities when an additional power purchase is allowed. This is because, even if the generation
quantities of the generation company cannot satisfy the bidding quantity, a generation company is
allowed to purchase electricity from other places to fill the gap. However, if an additional power
purchase is not allowed, the generation company must offer lower bidding quantities in case of a
violation of power balance constraints. Note that wind power in some scenarios may exceed these low
bidding quantities, which lead to a higher expected wind power curtailment.

6.2.3. The Effect of Wind Power Volatility on Decision-Makings

One of the important purposes of the two-stage stochastic optimization model is to help power
generation companies deal with wind power uncertainty. Note that wind power uncertainty can be
characterized by its variance, which is used to measure the expectation of the squared deviation of a
random variable from its mean. Based on this consideration, sensitivity analyses with regard to the
variance of wind power is conducted. Assume that the variance of wind power in the original case is
σ2. We use aσ2 to represent the variance of wind power in different cases. By changing the value of a,
the sensitivity analyses of the variance of wind power are realized. The results are shown in Table 3
and Figure 9.

Table 3. The effect of the variance of wind power on decision-makings.

a Expected Profit
(Dollar)

Total Bidding
Quantity (MWh)

Expected Additional
Power Purchase (MWh)

Expected Discarding
Electricity (MWh)

0.5 4.38 × 108 1.17 × 106 5.82 × 104 269.99
0.8 4.27 × 108 1.14 × 106 5.87 × 104 287.45
1.0 4.15 × 108 1.10 × 106 5.93 × 104 309.78
1.2 4.00 × 108 1.06 × 106 5.98 × 104 328.14
1.5 3.80 × 108 1.00 × 106 6.04 × 104 349.61

Table 3 and Figure 9 shows that, even if the expectations of wind power are maintained and only
the variance is increased, the decision-making of power generation companies will become more and
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more conservative and the profit is expected to be lower and lower. This is related to the robustness of
the electric balance expressed by Constraint (3). When the variance of the wind power increased, the
amount of wind power generated under the “worst case” is reduced. Since Constraint (3) guarantees
that the bidding amount of the power generation company must be satisfied even in the “worst
scenario,” the power generation enterprise has to reduce the bid amount to meet the “worst case
scenario” requirement. The computational results show that reducing the forecasting error of wind
power is significant for the strategic bidding of generation company.

In order to show the rationality and effectiveness of the proposed algorithm in dealing with the
model, two kinds of methods are used to solve the model, and the efficiency of the solution under
different methods is compared. In the first case, the improved Benders decomposition algorithm
is used, and in the second the Gurobi 8.0 solver is directly called to solve the model. In order to
improve the solution dimension of the sub-problem, the number of thermal power units held by power
generation enterprises is increased to 20, and the proportion of wind power generation is adjusted
accordingly. The maximum allowable CPU time is 3600 s. If the result is still not obtained after 3600 s,
the solution is considered unsuccessful. The result is shown in Figure 10.
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Figure 10 shows that, when the number of scenarios is small, the advantages of the improved
Benders decomposition algorithm are not obvious, and in some cases the efficiency is even lower than
the direct solution (branch and bound). However, as the number of scenario increases, the advantages
of improving the Benders decomposition algorithm begin to manifest. When the number of scenario
exceeds 150, it is impossible to obtain the optimal solution by direct solution in the CPU time of
1800 s. However, even if the number of scenario reaches 300, the Benders decomposition still shows a
correspondingly better solution efficiency. It can be seen that the improved Benders decomposition
algorithm is reasonable and effective for the model constructed in this paper.

7. Conclusions

This paper examines the bidding of power generation companies with wind and thermal power
units in a free deregulated electricity market. Considering that the decisions of the power generation
companies can be divided into day-ahead market bidding decisions and unit combination decisions,
this paper constructs a two-stage stochastic optimization model considering wind power uncertainty
and unit combination constraints. From the solution results, the following conclusions can be drawn:

(1) The key to strategic bidding is the tradeoff between high bidding quantities and low bidding
quantities. Too much or too little bidding can result in loss for a generation company. Various
factors discussed in the examples will have an impact on the bidding quantities of power
generation companies. In addition, unless the cost of additional electricity purchases is high
enough, power generation companies will be more inclined to make aggressive decisions to avoid
the loss of opportunity costs due to excessive power abandonment.

(2) The goal of power generation companies is to maximize their expected benefits. However, even
if we do not change the expected value of wind power but only increase their volatility, it will
still cause the expected profit of power producers to decrease.

(3) Properly retaining a certain proportion of thermal power units is important for promoting wind
power consumption and improving the profitability of power generation companies.
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Appendix A

The equivalent linearization of the price maker’s profit function is as follows.
As can be seen in Figure 2, the profit function of the price maker is Rt(bt) = btct, and bt and ct

satisfy the following relationship:

ct =


p1t, 0 ≤ bt ≤ e1t,

p2t, e1t ≤ bt ≤ e2t,
. . .

pkt, e(k−1)t ≤ bt ≤ ekt,

t ∈ H. (A1)

There are a total of k kinds of market clearing prices that may appear. First, linearize ct. Let αφt be
the auxiliary 0–1 variable. Then Equation (A1) is equivalent to the following linear system:
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
ct = P1t +

di−1
∑

φ=1
αφt(P(φ+1)t − Pφt),

(eφt − bt)− (1− αφt) ·M ≤ 0, φ = 1, 2, . . . , k− 1
(eφt − bt) + αφt ·M ≥ 0, φ = 1, 2, . . . , k− 1

(A2)

where M is a positive number that is large enough. The αφt in Equation (A2) plays an indicative role,
and the second and third constraints ensure that the corresponding αφt is 1 when the bid amount
exceeds a certain breakthrough point. αφt then guarantees the market clearing price obtains the correct
value through the first constraint. The revenue of the power generation company can then be written
as follows:

Rt(bt) = bt

(
P1t +

k−1

∑
φ=1

αφt(P(φ+1)t − Pφt)

)
. (A3)

Note that there is still a nonlinear product btαφt, so the auxiliary variable ψφt is reintroduced and
made equivalent to btαφt by the following linear system:{

−ektαφt ≤ ψφt ≤ ektαφt

bt − ekt(1− αφt) ≤ ψφt ≤ bt + ekt(1− αφt)
. (A4)

The revenue function of the power generation enterprise can thus be written in the following
linear form:

Rt(bt) = P1t +
k−1

∑
φ=1

ψφt(P(φ+1)t − Pφt). (A5)
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