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Abstract: It is difficult to investigate the formation process and occurrence states of water in multi-type
reservoirs, due to the strong heterogeneity and complex microstructure of the fracture–cavity
carbonate gas reservoirs. To date, there is no systematic study on the occurrence characteristics
of multi-type formation water, especially through visual observation experiments. In this paper,
a new creation method for visual micromodels based on CT scan images and microelectronic
photolithography techniques was described. Subsequently, a gas–drive–water visual experiment
was conducted to intuitively study the formation mechanism and the occurrence states of formation
water. Then, the ImageJ gray analysis method was utilized to quantitatively investigate the gas-water
saturation and the proportion of residual water film. Finally, the occurrence characteristics of
formation water and its effects on gas seepage flow were comprehensively analyzed. Visual
experimental results showed that: the migration processes of natural gas in different types of
reservoirs are different; the water in multiple media consists of native movable water and residual
water, and residual water is composed of secondary movable water and irreducible water; the
residual water mainly occurs in different locations of different reservoirs with the forms of “water
film”, “water mass”, “water column” and “water droplets”; the main influencing factors are capillary
force, surface tension, displacement pressure and channel connectivity. Quantitative results reflect
that the saturation of movable water and residual water are the parameters related directly to reservoir
physical properties, pore structure and displacement pressure—the smaller the size of flow channel,
the larger the space occupied by water film; the thickness proportion of water film is increasing
exponentially with the channel size; the thickness proportion of water film decreases as the increase
of displacement pressure; the thickness proportion of water film is essentially constant when the
displacement pressure increases to a certain extent. The conducted visual investigation not only
improves our intuitive understanding of the occurrence characteristics of formation water, but also
provides a theoretical basis for the efficient development of fracture-cavity gas reservoirs.

Keywords: visual experiment; ImageJ gray analysis; occurrence characteristics; residual water;
irreducible water; fracture–cavity carbonate gas reservoir
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1. Introduction

Carbonate reservoirs play a crucial role in the production and world reserves of oil and gas, water,
and other mineral resources. The fluid flow mechanism in these reservoirs is of interest to petroleum
engineers, geothermal engineers, and geologists. Significant progress has been achieved over the past
few decades in terms of understanding and modeling the seepage processes in carbonate rock [1].
However, most studies are focused mainly on fracture carbonate reservoirs, ignoring the cavities and
the combination media of pore-cavity-fracture in rocks. A number of fracture–cavity carbonate gas
reservoirs has been found worldwide and have become an important global natural gas supply resource.
They have the characteristics of complex structures, strong heterogeneity, macroscopic development
of pore–fracture–pore, and complicated seepage laws [2–6]. These characteristics are different from
those of conventional reservoirs, making the occurrence states and seepage characteristics of formation
water in multi-type reservoirs complicated.

In recent years, the investigations on gas-water two-phase flow has aroused the concern of
scholars and engineers. Understanding the occurrence characteristics and flow laws of formation
water in gas reservoirs has become the key to enhanced natural gas recovery. However, most studies
on the occurrence of formation water are concentrated in the low-permeability and tight sandstone
gas reservoirs, and the conventional investigation methods are displacement experiment, magnetic
resonance imaging (MRI) and mercury penetration. Hu et al. [7] reported that the formation water
in low-permeability gas reservoirs consists of movable water and residual water, and the physical
properties and pressure are the main influencing factors of the occurrence state. Wang et al. [8] revealed
that the formation water in tight sandstone gas reservoirs is composed of irreducible water, capillary
water and free water. Zhu et al. [9,10] concluded that the occurrence state of formation water in tight
reservoirs is determined by the physical properties, pore structure and gas flow model. Although
these studies reported some achievements, they can only predict the occurrence characteristics of
formation water in singular reservoirs by analyzing experimental curves. Furthermore, the common
methods of studying gas-water two-phase flow characteristics, such as gas-water saturation and
flow capability, are core flooding experiments and numerical simulations. For example, Li et al. [11]
tested the gas-water permeability in full diameter cores to analyze the features of gas-water relative
permeability curves and gas well inflow dynamics. Xiao et al. [12–14] derived an analytical model
considering saturation of water and tortuosity fractal dimension to predict the capillary pressure and
relative water permeability of unsaturated porous rocks. However, no fundamental study has been
conducted for visualizing the dynamic characterization of formation water in multi-type media at a
micro level.

Currently, various types of microscopic visual models have been widely utilized to investigate
the multiphase flow characteristics and oil recovery mechanism at the micro scale because they can
structurally simulate the porous structure of oil or gas reservoirs [15–18]. The prominent advantage of
micromodels is that they allow the direct visualization of different multiphase fluid flow phenomena
in porous media. Mattax and Kyte [19] first created visual micromodels with a regular network of
channels. Then, several studies improved the creation method to make the suitable micromodels for
different applications. Recently, Mohammad et al. [18,20] fabricated dual-porosity visual micromodels
by adding random fractures to regular pore structures. However, all the micromodels reported in
the previous studies refer to the base images of uniformly or randomly patterned structures, which
cannot fully depict the actual reservoir structures. Therefore, investigations of the characteristics of
multiphase flow and other aspects in multi-type reservoirs are not systematic and comprehensive.

Microscopic visual models have been applied as new multi-functional simulation physics models
to the field of petroleum engineering, and have been generally accepted by many scholars [21].
Thess model can not only fundamentally investigate the mechanism or effect of various enhanced
oil recovery (EOR), including water flooding [22], gels for conformance control [23], steam
flooding [24], foam flooding [25], microbial EOR [26], carbonated water flooding [27], solution
gas driving [28], miscible displacement [29], and spontaneous imbibition [30], but also intuitively
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describe the essential aspects of multiple fluid or rock–fluid interactions in porous media, including
asphaltene deposition [31], capillary force [32], polymer retention [33], wettability [34], interfacial
tension [35], and multiple-contact miscibility [36]. However, there is no visualization study on the
occurrence characteristics of formation water in porous media, especially for the multi-type media of
fracture–cavity carbonate gas reservoirs.

The purpose of our study is to intuitively investigate the formation mechanism and occurrence
states of formation water. In this paper, three types of micromodels (fracture, cavity, and fracture–cavity
type) were primarily designed and constructed using a technique involving a combination of
CT scanning and microelectronic photolithography, which could approximately replicate the
microstructures of fracture–cavity carbonate gas reservoirs. Subsequently, two-dimensional
gas-drive-water visual experiments were conducted to observe the process of gas–water flow by
gas injection. Next, the formation mechanism and occurrence states of multi-type residual water was
intuitively investigated based on the visual images. Then, the ImageJ gray analysis method was used to
quantitatively study the gas–water saturation and residual water film ratio under different differential
pressures. Finally, the effects of formation water on gas seepage capability were synthetically analyzed
based on the study results.

2. Materials and Methods

2.1. Similarity Principle

The similarity principle is the most important prerequisite for physical simulation experiments.
According to the requirements of similarity principle in visual simulation experiment, five aspects of
similarities were designed:

(1) Similarity in microstructures and heterogeneity: three types visual micromodels with
representative microstructures were designed and fabricated based on the CT images of three
typical cores in study area.

(2) Similarity in wettability: float glass with similar wettability and wetting angles to the study area
rocks was chosen to construct the visual micromodel.

(3) Similarity in formation conditions: customized holder and constant temperature oven for the
visual micromodels were used to simulate the formation conditions.

(4) Similarity in flow mode: gas-drive-water physical simulation experiments were conducted to
simulate the formation process of formation water in gas reservoir according to the theory of
hydrocarbon migration and accumulation.

(5) Similarity in fluid properties: water used in the visual experiment was prepared according to the
chemical composition of formation water, and gas used in the visual experiment was produced
by an actual gas well.

2.2. Visual Micromodels

Glass micromodels can be used for visualization and simulation of two-dimensional seepage
processes in oil and gas reservoirs. The application of these micromodels can facilitate to get an
enhanced insight into the formation mechanism of remaining oil, trapped gas and residual water,
thus providing a theoretical basis for enhancing oil or gas recovery. The development of improved
micromodels presented in this paper consists of the mask creation based on CT scanning images
and the micromodel fabrication based on microelectronic photolithography, which have never been
reported in previous studies.

2.2.1. Mask Creation Based on CT Scan Images

Mask creation is one of the most important processes in visual micromodel fabrication, because
the creation level of mask directly influences the accuracy and complexity of microstructures. Mask
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creation starts by depicting a base image that allows for some digital modification to improve the
characteristics and connectivity of the microstructure. In order to fully simulate the microstructure
characteristics and distribution of pore–cavity–fracture in reservoir rocks, the Micro XCT-400 CT
scanner (Xradia Corporation, Concord, CA, USA) was used to obtain the base images for the three
types of reservoirs. The voltage and power of the CT scanner is 40–150 kV and 1–10 W. Each CT
scan image is 1778 × 1800 pixels, with a pixel size of 13.15 µm. The photographs and petrophysical
properties of the scanned cores are presented in Table 1 and Figure 1, respectively. These core samples
were obtained from the Anyue Gasfield in Southwest China, a typical fracture–cavity carbonate gas
reservoir. Through the screening and extraction of more than 6000 CT scan images, three types of
images with evident structure characteristics and complex distribution of pore–cavity–fracture, as
shown in Figure 2, were selected as the base images.

Table 1. Petrophysical properties of cores.

Core Number Length (cm) Diameter (cm) Porosity (%) Permeability (mD) Core Type

201400270147 4.384 2.518 2.75 2.658 Fracture-type
201400830059 4.900 2.518 6.48 0.734 Cavity-type
201400830021 4.560 2.510 8.31 3.928 Fracture–cavity
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Once the base images were selected, they were converted to binary images by setting the threshold
of the gray value. Referring to the 3D CT scan images, the ineffective pores in the porous media were
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removed, and the fractures or throats isolated in the 2D images were reconnected manually. In these
binary images, white pixels correspond to the rock matrix whereas black pixels represent the porous
media. After the binary images were modified, the creation of the mask frame diagram continued.
Figure 3 shows that channels were added along the entire length of the inlet and outlet sides of the
micromodel. Furthermore, several ports were added in the channels which can permit fluids flow into
and out of the valid region. This improved design can promote flow communication and guarantees a
linear flow boundary condition. Compared with the traditional boundary condition of one point, the
displacement process simulated by linear flow boundary condition is more consistent with the actual
situation. The pixel size of the base image must be enlarged on condition that the heterogeneity and
relative pore-size distribution remain constant, because of the resolution limitation of the Computer
Numerical Control (CNC) milling machine. Three types of base images made by the Corel Draw X8
software (Corel Corporation, Ottawa, Canada) are presented in Figure 4.
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2.2.2. Micromodel Fabrication Based on Microelectronic Photolithography Techniques

A float glass was used as the glass substrate to construct the micromodel, because of its favorable
flatness, suitable transparency, and satisfying durability during etching. The micromodel fabrication
process includes pretreatment, etching, cleaning, bonding, and testing, as depicted in Figure 5.
The fabrication procedure for each micromodel is the same, except that the mask is changed according
to the different base images. In addition, the duration of acid etching is changed depending on the
desired etch depth. After the glasses were cooled down, the resistance to pressure and the sealability to
fluids are tested to guarantee that the micromodels are qualified for the visual simulation experiment
of gas–water flow. Figure 6 shows the three types of fabricated visual micromodels, and the model
dimension is 6.0 × 6.0 cm. The diameter ranges of pores, cavities and fractures are 0.099–0.181 mm,
1.161–1.657 mm and 0.325–0.492 mm, respectively. The maximum allowable stress can up to 10 MPa
The contact angle of these micromodels is 36.4◦–36.7◦ (water-wet), which is similar to the water-wet
carbonate rocks in study area [37].
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2.2.3. Advantage of Microscopic Visual Models

Compared with the traditional visualization models, the improved micromodel based on the
combined technique of CT scan and microelectronic photolithography has the more advantages:

(1) Micromodel sealability is further enhanced by improving the bonding technique, guaranteeing
the micromodel can be used for the simulation of gas–water flow under a certain stress.

(2) Microstructure characteristics and multi-type media distribution are similar to those of actual
reservoirs, which can be used for intuitively studying the occurrence states of formation water
after gas-drive-water procedure.

(3) Highest allowable stress of the micromodel is increased to 10 MPa, which is more close to the
effective stress of actual reservoir.

(4) Three types of micromodels are fabricated according to the different type reservoirs of
fracture–cavity carbonate gas reservoir, which have never been created and introduced in
previous studies.

2.3. Experimental Apparatus and Fluids

A two-dimensional visual experimental investigation of gas-drive-water was conducted.
The experimental apparatus is composed of a displacement system, data acquisition system and
visualization system [38–41]. The schematic of experimental system is presented in Figure 7. The
displacement system is composed of a 260D syringe pump (Teledyne ISCO, Thousand Oaks, CA, USA)
that provides constant pressure, a natural gas tank, a formation water tank, a back-pressure pump,
a storage tank, a back valve, and several pressure sensors. The data acquisition system consists
a high-resolution microscopic camera (Infinity 3-6UR HLOT, Carlsbad, CA, USA) for capturing
local microscopic images precisely, thereby enabling further investigation on the gas–water flow
characteristics in multi-type media; a digital video (DV) for recording the overall flow process of
the micromodel, thereby enabling further quantitative characterization of the visualized image at
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different times; a backlight and a reflector for improving the quality of images and videos; temperature
sensors; pressure sensors; a data collector; and a computer. The visualization system includes a
micromodel holder, a constant temperature oven, and three types of micromodels. Except for the
visual micromodel, the customized micromodel holder is the most important apparatus. This holder
(see Figure 8) has two fluid injection ports and two fluid production ports that correspond to the
ports on the micromodel, and the micromodel can be fastened to the stainless frame. O-rings are used
around the four ports to improve the sealability of the micromodel holder. The experimental water was
prepared in laboratory according to the chemical composition of formation water in our study area.
The mineralization degree is 106,241 mg/L and the water type is CaCl2. The experimental gas was a
natural gas produced by an actual gas well in Southwest China, and its composition and properties
are presented in Table 2. In order to distinguish the experimental water from the colorless natural gas
in the images, the experimental water should be dyed blue by a methyl dye reagent.
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Table 2. Composition and properties of experimental natural gas.

Percentage of Natural Gas Components (%) Relative
Density

Pseudo-Critical
Pressure (MPa)

Pseudo-Critical
Temperature (K)CH4 C2H6 C3H8 N2 CO2 He H2S

93.13 0.07 0.01 0.73 5.01 0.03 1.02 0.6265 4.82 199.55

2.4. Experimental Procedure

The procedures of the gas-drive-water visual experiment are as follows:

(1) Both the micromodel and holder were cleaned by deionized water and then dried in an oven.
(2) The micromodel was placed on the holder, and then the experimental system was exactly

equipped according to Figure 7.
(3) The sealing of the experimental system was detected by injecting high-purity nitrogen gas into

the system. Then, the micromodel was evacuated for 50 min.
(4) Both the micromodel and experimental lines were heated and maintained at 80 ◦C, which is the

original reservoir temperature.
(5) The formation water was injected into the micromodel by using an ISCO pump at 0.02 mL/min

until the saturation pressure of the micromodel reached 8 MPa.
(6) Finally, the natural gas was injected into the micromodel at the displacement differential pressures

of 0.05–1.00 MPa until no water produced in the outlet.
(7) Steps 1–6 were repeated for the other two micromodels.

Local microscopic images were sequentially captured throughout the visual experiments from the
glass surface through the HLOT. The overall flow processes of the micromodels were also recorded by
the DV, and then the images were intercepted from the videos at desired times. These images can be
used for further quantitative characterization through the ImageJ gray analysis method.

2.5. ImageJ Gray Analysis Method

Different from the oil–water visual experiments investigated in previous papers, the duration
of the gas–water flow experiment is too short to be measured using the conventional measurement
apparatus and methods because of the high mobility of natural gas. In addition, accurate material
balance calculations are difficult to perform. For example, the pore volume of a micromodel is
approximately 0.07 mL, while the volume of each injection or production port is approximately 0.1 mL.
Consequently, the four ports occupy most of the micromodel volume, which can trap amount of fluid.
As a result, the application of any material balance calculation in gas-water visual experiments can
lead to certain errors. In order to overcome the measurement difficulties, images intercepted from the
videos throughout the visual experiments were quantitatively characterized using the ImageJ analysis
method to obtain the pore volume, gas–water saturation, flow pattern and occurrence states [42].
This is a popular technique in computer science and technology, and the procedure is as follows:

(1) The pretreatment of images was primarily conducted using the Photoshop software (Adobe
Photoshop CS6, Adobe Systems Software Ireland Ltd, San Jose, CA, USA) to adjust the brightness
and enhance the quality. Each image takes about 2 min for pretreatment.

(2) The colorless gas was converted to yellow to facilitate the distinction between gas and glass
particles, as presented in Figure 9a. Each image takes about 20 min for conversion.

(3) The ImageJ software was used to distinguish the gray value of the image. After setting the
threshold, the pixels of the glass particles were converted to white pixels, whereas the pixels of
the voids were converted to red pixels, as depicted in Figure 9b. Each image takes about 15 min
for conversion.

(4) The area occupied by voids was calculated by counting the number of red pixels, and then the
porosity of micromodel can be determined. Each image takes about 3 min for calculation.
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(5) Then, Photoshop and ImageJ software were used again to separate the gas from the fluid
and convert the gas to yellow pixels, as shown in Figure 9c. Each image takes about 10 min
for separation.

(6) The area occupied by gas was calculated again by counting the number of yellow pixels, and
then the gas saturation can also be obtained. Each image takes about 3 min for calculation.

As a result, the water-gas saturation and the residual water film thickness can be obtained at
any time. ImageJ gray analysis is a simple and efficient method does not require numerous
computational resources.
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3. Results and Discussion

3.1. Formation Mechanism of Residual Water in Different Types of Reservoirs

Gas-drive-water experiments were used to simulate the formation process of gas reservoirs and
the flow process of formation water. The property of gases determines that they can enter a very
small space for displacement. For the three types of micromodels, injection water preferentially enters
and occupies the wall surfaces of large channels and the small channels, due to the combined effect
of surface tension and capillary dimensions. Eventually, fractures, cavities, pores and throats are
filled completely with injection water, while only partially saturated at dead ends and blind corners
(Figures 10a, 11a, and 12a). However, the interspace of the original formation should be completely
saturated with formation water according to the hydrocarbon migration and accumulation theory [43].
Therefore, the unsaturated porosity should be considered as irreducible water saturation.
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For the fracture-type micromodel, fractures are the main flow channels in the fracture-type
micromodel and have a higher flow capacity than pores and cavities. Injection gas preferentially enters
the large channels in porous media at the beginning of gas-drive-water process [44]. Therefore, the
injection gas rapidly displaces the water in the middle part of fractures (Figure 10b), and then displaces
the water in the location of small pores, fracture wrinkles and channel intersections (Figure 10c). In the
later stage of gas-drive-water, the residual water adhering to the fracture walls is entrained by the
continuously injection gas flow. As a result, water film becomes thin and then converges into water
droplets at the intersection of fractures. Finally, these water droplets are driven out, only leaving the
thin water film on fracture walls (Figure 10d). This part of residual water film can be further thinned
by increasing the displacement pressure.
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A cavity-type micromodel is composed of small size pores and large size cavities, and its seepage
capability is mainly controlled by the size and distribution of throats. The injection gas preferentially
advances along the dominant flowing path, and then gradually occupies the channel space with the
persistent injection of gas. As a result, some of the water in the porous medium is driven out. When
the injection gas enters a cavity, a small gas-flow channel is formed around the water body of the cavity
at first (Figure 11b). As the gas is continuously injected, it gradually widens the gas-flow channel and
drives out the water around the water body. Eventually, a relatively rounded water mass formed in
the center of the cavity. When the water mass is displaced for a long time, its shape no longer changes,
demonstrating that gas under this displacement differential pressure cannot drive the water mass
out any more (Figure 11c). In the later stages of gas-drive-water, the water film on the pore walls
converges, and is then displaced by gas when its thickness reaches a critical state. Finally, residual
water forms at slender pore-channels, narrow throat-channels and bottom of cavities (Figure 11d).
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However, the residual water mass at the bottom of cavity can become small and be partially driven
out as the displacement pressure increases.

The combination structure of fractures and cavities is a unique structure of the fracture–cavity
carbonate reservoirs. The injection gas promptly displaces the water in the middle of fractures to
form a gas-flow channel (Figure 12b). When gas enters a cavity, it preferentially displaces the water
around the cavity to create a gas-flow channel and then surrounds the water body in the cavity center
(Figure 12c). Then, the central water body is continuously denuded and shrunk with the continuous
gas injection. Consequently, the mobile water eroded from the water body converges into water
droplets at the fracture in the cavity exit, and then it is driven out. When the water body in the cavity
shrink to a certain extent and no longer changes, the residual water mass formed at the bottom of the
cavity. For some cavities connected with many fractures, most of water is driven out, only forming
residual water film on the cavity walls (Figure 12d). This part of residual water film or water mass can
also be thinned or shrunk at high displacement pressure.
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3.2. Occurrence States of Residual Water and Its Effect on Gas Seepage Capability

The reservoir space is initially filled with water during the deposition of rocks, and then the
original water is displaced by oil or gas during the hydrocarbon migration and accumulation. As a
result, the coexistence state of oil-water or gas-water is formed [44]. This displaced and migrated water
is called primary movable water. When the oil or gas reservoir is discovered, the water in reservoir
space is called residual water at this moment, and the saturation of residual water is related to the
reservoir forming conditions. During the development of the oil and gas fields, some residual water
in the reservoir is converted into secondary movable water and then gradually produced under the
displacement pressure. This part of residual water is not driven out and stranded in the reservoir
space due to the migration force less than the migration resistance in the process of hydrocarbon
accumulation. However, the water in reservoir space cannot be fully displaced even if the migration
power is sufficient in the process of hydrocarbon migration. There is also a certain amount of residual
water that distributes or remains in the blind corners of particle contact, the narrow pore-throats or
adsorbed on the particle surfaces of rock skeleton. This part of residual water cannot be free to migrate
under normal developing conditions, and is hence called irreducible water [3]. The classification of
formation water is presented in Figure 13.
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Fractures are the main flow channels in the fracture- and fracture–cavity-type micromodels [42].
The water in the middle of fractures is preferentially displaced during the gas-drive-water process. Due
to the small capillary resistance, the effect of surface tension makes the residual water occurred on the
wall surfaces of poorly connected fractures with the form of “thin water film” (Figure 14a). Therefore,
the residual water saturation of these two micromodels is low, and the thin water film has little effect
on the seepage capability of gas-phase. For a cavity-type micromodel, the residual water occurs on
the particle surfaces in the form of “thick water film” under the effect of the high capillary force.
Accordingly, the residual water saturation is high, which narrows the flow channel of gas-phase and
increases seepage resistance. It is not easy to drive out a water film when the displacement pressure is
low. However, the gas-flow can drive part of water film flow when the displacement pressure increases
to a certain extent and displaces for a long time. This water then gradually become an important part
of secondary movable water.

The residual water mass at the bottom of cavity is one of the major forms of residual water in
the cavity- and fracture–cavity-type micromodels. When injection gas enters a cavity, it preferentially
breaks through along the periphery of the water body to form and then widen the seepage channel.
At the same time, the water body is denuded by the gas-flow and then converges into water droplets
at the exit of the cavity. These water droplets can be driven out by the subsequent gas-flow. When
the water body is displaced to a certain extent, the preferential seepage channel has been completely
formed. At this point, the shape of water body no longer changes and remains in the bottom of the
cavity to form the residual “water mass” (Figure 14b). The residual water mass has little effect on
the seepage capability of the gas phase because there is still a wide flow channel in the upper part of
cavity. The force balance of the water mass can be broken by increasing the displacement pressure.
Consequently, some external water of water mass can be transformed into secondary movable water.

Since the micromodel (core sample) is hydrophilic, the gas is non-wetting phase whereas the
water phase is wetting phase. Therefore, capillary force is resistance in the process of gas-drive-water.
Water in the narrow throats suffers strong capillary resistance, which lead to the cutoff phenomenon in
the process of gas-drive-water. Part of the water is trapped throughout the throat with the form of
“water column” and blocks the seepage channel (Figure 14c).
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Furthermore, the large pores controlled by narrow throats are also blocked. It is one of the
main reason for the sharp decrease of gas-phase permeability after water encroachment. Through
the observation of the videos obtained from the visual experiment, it was found that the residual
“water column” formed by cutoff phenomenon cannot flow, even under a high displacement pressure.
Therefore, this residual “water column” is interpreted as irreducible water. While for the case of
simultaneous existence of several pore channels, the capillary resistance in the long and narrow pore
channels is much larger than that in the short and wide pore channels. As a result, the water occurs
in the long and narrow pore channels needs to consume more energy to be driven out. Therefore,
residual water is easily formed in the long and narrow pore channels and reduces the number of
seepage channels. This part of residual water is interpreted as secondary movable water. Seepage
channels cannot be formed in the dead ends or blind corners of the pores or cavities. Therefore,
some of the water is trapped under gas pressure and occurs as the form of residual “water droplet”
(Figure 14d). Furthermore, some of the gas may also be trapped. However, it is difficult for this part of
the trapped water and gas to participate in the flow [44]. Therefore, they are interpreted as trapped
gas and irreducible water. Through the above visual experimental results, it can be summarized that
the residual water mainly occurs as the four forms of “water film”, “water mass”, “water column” and
“water droplet” in the fracture–cavity carbonate gas reservoir. The main types, influencing factor and
forming mechanism of different occurrence states are presented in Table 3.
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Table 3. Main types, influencing factor and forming mechanism of different type occurrence states.

Occurrence States Influencing Factor Forming Mechanism Water Type

Residual thin water film
on the fracture walls Surface tension

Residual thin water film forms in
the wide channels because of the
low capillary resistance

Secondary movable water

Residual thick water film
on the fracture walls Capillary force

Residual thick water film forms in
the narrow channel because of the
high capillary resistance

Secondary movable water

Residual water mass at
the bottom of cavity Displacement pressure

The cavity is large and the
capillary force can be neglected;
the greater the displacement
pressure, the smaller the residual
water mass

Secondary movable water

Residual water column
at the narrow throat
channel

Jamin effect

The Jamin effect is serious in the
narrow throat channel because of
the high capillary resistance,
leading the water column forms
by cutoff phenomenon

Irreducible water

Residual water column
at the long and narrow
pore channel

Capillary force

When displacement pressure is
low, the water column forms in
the long-narrow pore channel
because of the high capillary
resistance

Secondary movable water

Residual water droplet at
the dead end and blind
corner

Channel connectivity
The water can be trapped by gas
pressure when the channel
connectivity is poor

Irreducible water

3.3. Quantitative Results and Analysis of ImageJ

The experimental results obtained from the visual simulation can only be qualitatively described
and analyzed. In order to quantitatively characterize the visual images at desired times, the
distribution of gas–water saturation and the thickness proportion of residual water film under different
displacement differential pressure were studied by the ImageJ gray analysis method.

The curves of water saturation for three micromodels were obtained through the quantitative
characterization of residual water under different displacement differential pressure, and the
computational formula is as follows:

Srw =
Aw

Av
=

Nw

Nv
(1)

where Srw is the saturation of residual water; Aw is the area of water in the micromodel, µm2; Av is the
area of voids in the micromodel, µm2; Nw is the number of water pixels in the micromodel; Nv is the
number of void pixels in the micromodel.

The quantitative results of gas–water saturation are illustrated in Figure 15. It can be seen from
the figure that movable water and residual water are parameters related directly to reservoir physical
property, pore structure and displacement differential pressure. For the cavity-type reservoir with worst
properties, the injection gas cannot drive the water to form an effective flow when the displacement
differential pressure is low. Water starts to flow only when the differential displacement pressure
increases enough to overcome the capillary resistance caused by the water lock effect. This phenomenon
appears as the threshold pressure in the seepage curve. For the fracture- and fracture–cavity-type
micromodels, the water can flow rapidly under low displacement differential pressure due to the
existence of high-permeability fractures. Therefore, there is no threshold pressure in these micromodels,
and the descent rate of residual water saturation is greater than that of cavity-type micromodel. When
the water in the three micromodels starts to flow, the residual water saturation decreased rapidly
under the low displacement differential pressure. At this time, the displaced water comes from the
fractures, the large pores with low seepage resistance and the well-connected cavities, and it is mainly
composed of native movable water. The residual water saturation decreases more slowly as the
displacement differential pressure increases. At this stage, the residual water in the small pores with
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large seepage resistance, the residual water film on the walls of the fractures and large pores, and
the residual water mass in the bottom of cavities are displaced by gas-flow. These types of residual
water are mainly composed of secondary movable water. The value of water saturation keeps constant
when the displacement differential pressure increases to a certain extent, which is interpreted as
the irreducible water saturation. Finally, the irreducible water saturations of fracture-, cavity- and
fracture–cavity-type micromodels are 10.2%, 23.5% and 15.3%, respectively. It can be concluded that a
certain amount of irreducible water remains in cavities, and it mainly occurs at the bottom of large
cavities and the small fracture–cavity system around the large cavities. This type of occurrence state
is determined by the shape and collocation of the pore-cavity-fracture system [21]. In addition, the
residual water saturation of the fracture–cavity-type micromodel decreases slightly slower than that of
the fracture-type micromodel. This is because the resistance of water body in the cavity is high. When
the injection gas enters cavity, the displacement of water body needs a higher displacement differential
pressure and a longer displacement time. Therefore, the cavity can slow the overall displacement rate.
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Through the gas–drive–water visual experiment, we also found that the residual water film
thickness of fracture and pore walls is related not only to the channel size but also to the displacement
differential pressure. In order to study the relationship among these parameters, the pore and fracture
channels with different sizes in the three micromodels were selected for observation. Then the ImageJ
gray analysis was used to quantitatively characterize the proportion of residual water film thickness in
the flow channel, and the computational formula is as follows:

Pw =
Tw

Tc
=

Nw

Nc
(2)

where Pw is the proportion of residual water film thickness in the channel; Tw is the thickness of
residual water film, µm; Tc is the channel thickness of the pore and fracture, µm; Nw is the pixel
number of residual water film in the channel; Nc is the pixel number of the channel.

The quantitative results of residual water film proportion are illustrated in Figure 16. It can be
seen from the figure that the smaller the size of the flow channel, the larger the space occupied by
the water film under the same differential pressure. As a result, the seepage capability of gas phase
decreases as the effective seepage channel narrows. The proportion of residual water film increases
exponentially when the size of seepage channel narrows to a certain extent. As a result, the residual
water film can occupy the space of channel completely and form the “cutoff” type irreducible water at
the extremely narrow throats. The proportion of water film in any size channels decreases with the
increase of displacement differential pressure, and the narrower the channel, the greater the degree of
reduction. However, the proportions of residual water film in any size channels keep constant and
form the “thin film” type irreducible water when the displacement differential pressure increases to a
certain extent. The proportion of residual water film in the fracture no longer change with the channel
size after displacement for a long time under high displacement differential pressure. Therefore, the
poorer the physical properties of the reservoir, the smaller the pores and throats, and the greater the
capillary resistance. As a result, a higher saturation of “capillary” irreducible water is formed in these
reservoirs. In addition, the finer the rock particles, the larger the rock-water contact area, resulting in a
higher saturation of “thin film” irreducible water.

Through the analysis of the visual images and quantitative characterization results, several
suggestions for the development of different carbonate reservoirs are can be reached. For the pore-
and cavity-type reservoirs with worse physical properties in fracture–cavity carbonate gas reservoirs,
both the residual water saturation and irreducible water saturation are high, the effective seepage
channels are narrow, the threshold pressure gradient is high, and the gas supply capability is weak [2].
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Therefore, it is not recommended to perforate these types of reservoirs in the increasing production
stage, when the reperforation can be conducted to supply the high-permeability reservoirs in the
stable production stage. For the fracture- and fracture–cavity-type reservoirs with better physical
properties, both the residual water saturation and irreducible water saturation are low, the effective
seepage channels are wide, no threshold pressure gradient, and the gas supply capability is strong.
Consequently, they can be used as the main gas production reservoirs. However, it is necessary to pay
attention to the water encroachment that quickly causes water breakthrough in gas wells. It can form
the hydrates and liquid loading in the wellbore, which lead to liquid phase retention and capillary
imbibition in other reservoirs [42]. As a result, the gas-phase permeability is reduced and the gas
supply capability of commingled production is inhibited.
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4. Conclusions

The creation method of three types (fracture-, cavity-, and fracture–cavity-type) of visual
micromodels were first described based on the combined technique of CT scanning and microelectronic
photolithography. These visual micromodels could approximately simulate the microstructures of
multi-type reservoirs in the fracture–cavity carbonate gas reservoir. Then, the accuracy, sealability
and pressure-resistant capacity of the micromodel are improved, which can intuitively investigate
the process of gas–water flow, the formation mechanism of residual water, and the occurrence
characteristics of formation water.

The water in multi-type gas reservoirs consists of primary movable water and residual water, and
the residual water is composed of secondary movable water and irreducible water. The residual water
mainly occurs in the different locations of different reservoirs with the forms of “water film”, “water
mass”, “water column” and “water droplets”. The main influencing factors of all these occurrence
states are capillary force, surface tension, displacement pressure and channel connectivity.

The residual water saturation decreases rapidly under a low displacement differential pressure.
In this stage, the displaced water comes from the fractures and large pores both with low seepage
resistance, as well as the well-connected cavities. This water is interpreted as native movable water.
The residual water saturation decreases slowly as the displacement differential pressure increases.
At this time, the residual water in the small pores with large seepage resistance, the residual water film
on the walls of fractures and large pores, and the residual water mass in the bottom of cavities are all
displaced by gas-flow. These water is interpreted as secondary movable water. The value of water
saturation keeps constant when the displacement differential pressure increases to a certain extent,
and it is interpreted as the irreducible water saturation.
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The existence of water films can narrow the effective seepage channel and decrease the gas-phase
seepage capability. The smaller the size of seepage channel under the same displacement differential
pressure, the larger the space occupied by the water film. Furthermore, the proportion of residual
water film will increase exponentially when the size of seepage channel narrows to a certain extent.
Nevertheless, the proportion of water film decreases with the increase of displacement differential
pressure, and the narrower the channel size, the greater the water film reduction. When the
displacement differential pressure increases to a certain extent, the proportion of residual water
film keeps constant, and the “thin film” irreducible water is formed.
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