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Abstract: This paper presents an integrated optimization framework of sizing and energy
management for four-wheel-independently-actuated electric vehicles. The optimization framework
consists of an inner and an outer layer that are responsible for energy management, i.e., torque
allocation, and powertrain parameter optimizations. The optimal torque allocation in the inner layer
is achieved via the dynamic programming (DP) method while the desirable powertrain parameters
in the outer layer are pursued based on the exhaustive method. In order to verify the proposed
optimization framework, two driving cycles are constructed to represent the comprehensive and
realistic driving conditions. One cycle is built by combining six typical driving cycles, which cover
urban, high-way and rural driving styles to enhance representativeness. The other one is synthesized
using the Markov chain method based on a vast quantity of real-time operating data of electric
vehicles in Beijing. Simulation results demonstrate that the proposed strategy decreases the power
consumption by 15.1% and 13.3%, respectively, in the two driving cycles, compared to the non-optimal,
even-torque-allocation strategy.

Keywords: four-wheel-independently-actuated electric vehicles; energy management; dynamic
programming; Markov chain

1. Introduction

1.1. Motivation

The rapid development of electric vehicles (EVs) represents a paradigm transition towards green
and sustainable transportation [1–3]. The progression of EVs’ mass-adoption and renewable energy
penetration are also expected to drastically cut transportation-related emissions and substantially
reduce dependency on fossil fuels [4]. Recently, four-wheel-independently-actuated electric vehicles
(FWIA EVs) have gained tremendous attention thanks to their potential for lower electricity
consumption and better vehicle handling performance [5]. Four in-wheel motors are respectively
installed in each wheel hub and can be collaboratively controlled for vehicle propulsion [6,7].
This distributed powertrain structure significantly simplifies the drivetrain by eliminating the
transmission shaft, differential and final drive [8]. Through appropriate torque allocation, it is possible
to optimize the efficiency performance of working motors, thus contributing to an increased overall
efficiency of the vehicle powertrain. The extent to which the vehicle performance can be enhanced is
strongly dependent on the powertrain sizing, including the battery pack and in-wheel motors, as well

Energies 2018, 11, 1768; doi:10.3390/en11071768 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-1763-0397
http://www.mdpi.com/1996-1073/11/7/1768?type=check_update&version=1
http://dx.doi.org/10.3390/en11071768
http://www.mdpi.com/journal/energies


Energies 2018, 11, 1768 2 of 22

as energy management. Clearly, there would be a tradeoff between improved vehicle performance and
powertrain sizing that is directly associated with costs. Besides, energy management should also be
included in the process of powertrain sizing due to their inherent relationship. Thus, it is imperative to
developing a framework that simultaneously considers powertrain sizing and energy management
synthesis with the aim of improving the vehicle efficiency [9]. It is significant to increase the driving
range per charge and help reduce the “range anxiety” of consumers.

1.2. Literature Review

In FWIA EVs, the over-actuation property gives rise to the energy management problem. To be
specific, energy management can be boiled down to torque allocation in which the power demands for
each motor is assigned to realize the desired targets set by an upper controller. These targets can be
realized by the utility of only front-axle motors or by even torque contributions from four in-wheel
motors. A cost function that includes power losses of motors, tire slip or other criteria is always
included to realize secondary goals while fulfilling vehicle dynamics stability requirements [10,11].
For minimizing power losses of motors, Yuan et al. established a motor loss model to characterize the
relationship between the motor efficiency and torque at given speeds, and then proposed a torque
distribution scheme to improve the overall powertrain efficiency for a midsized EV equipped with
front- and rear-axle motors [12]. Considering tire slip loss, Nam et al. presented a robust wheel slip
control system to improve the powertrain efficiency for a personal EV by minimizing the energy loss
resulting from undesired wheel spin [13]. Furthermore, Zhang et al. proposed an online implementable
control scheme to reduce the power loss of motors in traction conditions and increase the braking
recuperation in braking conditions for in-wheel motor EVs [14]. However, these studies only intended
to optimize the powertrain efficiency for a given powertrain configuration and invariably ignored the
influence of powertrain sizing. In contrast, studies on simultaneous optimization of sizing and energy
management have been extensively explored for electrified vehicles including fuel-cell electric vehicles
(FCEVs), hybrid electric vehicles (HEVs) and plug-in electric vehicles (PHEVs) [15,16]. The use of
the Pontryagin maximum principle (PMP) [17], dynamic programming (DP) [18], stochastic dynamic
programming (SDP) [19] for energy management of HEVs and PHEVs, which can provide direct
reference for FWIA EV energy management, has been well-documented. Given a known driving cycle,
the DP algorithm can readily derive the global optimal control sequence [20]. Nevertheless, it requires
a complete knowledge of the driving profile that is unattainable in realistic driving conditions, which
prevents its feasibility in real-time embedded controllers. Despite the fact that the DP algorithm cannot
be used in online applications, it can be used as the benchmark energy management strategy to search
for the optimal component sizing based on certain driving cycles [21]. It is well acknowledged the
applied driving cycles impose significant influence on the de facto performance of energy management
strategies as indicated in [22]. Therefore, it is also of critical importance to synthesize a practical driving
cycle that reflects the real-world working conditions of the designed vehicles to the maximum content.

There are two approaches for typical vehicle driving condition representation. One is to use
a series of steady-state speeds and accelerations to develop a driving cycle [23]. The other is to
capture the characteristics of daily traffic using the Markov chain and state transition matrices based
on recorded data. Certification driving cycles such as the Federal Test Procedure (FTP-75) and the
New European Driving Cycle (NEDC) have been ubiquitously used to evaluate energy consumption
in the process of energy management development [24]. However, there exist a considerable number
of scenarios in practical driving conditions that cannot be fully captured by any of the developed
certification driving cycles, which would curtain the efficacy of the developed energy management [25].
For instance, Wang et al. found that the current performance indicators for EVs such as electricity
consumption rate based on the NEDC cycle underestimate their fuel reduction benefits in Beijing due
to the mismatch between the real-world driving conditions and the certification driving cycle [26].
It is worth noting that automotive makers are more likely to develop their energy management
strategies based on the certification driving cycles in order to maximize the vehicle performance
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in certification tests; but this may result in an outcome where the best potential of the vehicle
cannot be unleashed. In this study, massive operating data of EVs in Beijing was obtained from
the Service and Management Center for EVs (SMC-EV) in Beijing, which includes the real-time vehicle
position and speed with an update frequency of 1 Hz. This provides the foundation for driving cycle
synthesis with more representativeness, and consequently facilitates to developing more efficient
energy management models.

1.3. Contributions of This Study

In order to maximize the vehicle performance, a framework of integrated sizing and energy
management for FWIA EVs is proposed, which comprises of an inner and an outer layer. The inner
layer employs the DP algorithm based on the comprehensive driving cycle to obtain the optimal
torque allocation with the objective of optimizing the overall vehicle efficiency. A realistic driving
cycle is built using the Markov chain based on a vast quantity of recorded data, which provides
high-fidelity driving condition representation. The outer layer is designed to search for the optimal
sizing of main powertrain components including the rated capacity of the battery pack and the rated
power of in-wheel motors. The main contributions of this study include two aspects. Firstly, a realistic
driving cycle is built based on the real-time operating data of EVs, including around-the-clock speed
and acceleration information of the monitored electric vehicles. Secondly, the DP algorithm is used
to derive the optimal torque allocation while the component sizing is exhaustibly searched with the
objective of energy consumption minimization. Simulation results have verified the superiority of the
proposed strategy in comparison to the baseline evenly-torque-allocation strategy, which accomplishes
the power consumption reduction by 15.1% and 13.3%, respectively, in two driving cycles.

1.4. Orgnization of This Paper

The remainder of this paper is organized as follows: Section 2 presents the powertrain architecture
and system modeling for the studied FWIA EV. Section 3 elaborates the building process of the driving
cycle based on the real-time data of the monitored electric vehicles. Section 4 provides the detailed
problem formulation of combined component sizing and energy management. Section 5 presents
simulation results and discussion, followed by the key conclusions summarized in Section 6.

2. Powertrain Architecture and System Modeling

2.1. Powertrain Architecture

A four-wheel-independently-actuated electric vehicle with in-wheel motors is studied. Its main
configuration is illustrated in Figure 1.
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Figure 1. The architecture of the powertrain structure of a typical Four-wheel-independently-actuated
Electric Vehicle (FWIA EV). MCU: Motor Control Unit; VCU: Vehicle Control Unit; BMS:
Battery Management System.
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The main components of the studied FWIA EV include four in-wheel motors with their respective
control units (MCUs), a vehicle control unit (VCU), a battery pack and associated management system
(BMS). The in-wheel motors are installed inside wheel hubs and can be controlled by their MCUs for
direct propulsion. For simplicity, the following assumptions are made:

• The employed in-wheel motors are identical and with the same characteristics;
• There are no time delays during motor control implementation.

2.2. System Modeling

2.2.1. Vehicle Model

According to the longitudinal vehicle dynamics, the equation of motion can be derived as:

m
dV
dt

= Ftotal − 0.5CdρA f V2 − Crmg cos(θ)− mg sin(θ) (1)

where m is the vehicle mass, V is the vehicle velocity, Ftotal is the total driving force, Cd is the
aerodynamic drag coefficient, Af is the frontal area of the vehicle, ρ is the air density, Cr is the
rolling resistance coefficient, g is the gravitational acceleration, and θ is the road grade.

Assuming that the rotational inertial of each wheel is ignored, the driving torque at each wheel
can be expressed as:

Ti = Fir =

{
r
2 λFtotal , i = 1, 2
r
2 (1 − λ)Ftotal , i = 3, 4

(2)

where λ denotes the torque distribution coefficient, which is used to realize torque allocation between
the front- and rear-axles. It is worth noting that λ = 1 means the vehicle is propelled only by the
front-axle motors while λ = 0 means the rear-axle drive only. Fi represents the driving force of the
i-th wheel.

Since this study only deals with the longitudinal dynamics, the torque and power distribution
can be expressed as:

Ttotal = T1 + T2 + T3 + T4 (3)

Ptotal = T1ω1 + T2ω2 + T3ω3 + T4ω4 (4)

where T1, T2, T3 and T4 mean the torques generated by the front-left, front-right, rear-left and
rear-right baseline motor, respectively; ω1, ω2, ω3 and ω4 represent the angular velocity of the
front-left, front-right, rear-left and rear-right baseline motor, respectively.

2.2.2. Motor Model

In-wheel motors are responsible for providing the driving forces for vehicle propulsion.
In quasi-static vehicle simulations, energy consumption can be computed from the static efficiency
map of the motor. The motor efficiency can be approximately calculated by [27]:

ηmotor = f (Tmotor, ωmotor, φmotor) (5)

where ηmotor and φmotor represent the efficiency and rating power of the motor, respectively.
Conventionally, the efficiency map of the motor is obtained through dynamometer tests. In order

to establish a generic motor model that can accommodate different motor sizes, the efficiency map is
made scalable and dependent on motor sizes.
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To be specific, the efficiency map of the baseline motor is taken as a benchmark, and different
motor parameters and their efficiency maps can be obtained by scaling the axis of torque relative to
the baseline motor, as shown in Figure 2. The formula can be expressed as:

Tnew = Tbase × α (6)

where α is the scaling factor.
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Figure 2. The efficiency maps of the (b) baseline and (a,c) two scaled motors.

Figure 2b shows the efficiency map of the known baseline motor. Based on the principle of
proportional scaling, the efficiency maps of scaled motors are shown in Figure 2a,c.

For FWIA EVs, efficient torque split can optimize the working efficiencies of the motors based on
their external characteristic curves and efficiency maps. A deterministic algorithm can be adopted to
derive the optimal torque allocation. By combining Equations (3), (4), and (6), the total driving power
can be derived by:

Pout,total = Tbase × ω1 × α1 + Tbase × ω2 × α1 + Tbase × ω3 × α2 + Tbase × ω4 × α2 (7)

where Pout,total is the total driving power, Tbase is the torque of the baseline motor, α1 and α2 mean the
scaling factor for the front- and rear-axle motors, respectively.

As the angular velocity and driving torque of each motor on the same axle are the same,
Equation (7) can be simplified as:

Pout,total = 2Tbase × ω × (α1 + α2) (8)

where α1 and α2 can be the same or not.
The vehicle control unit computes an optimal torque allocation between the front- and rear-axles,

and the required power from the battery system can be obtained by:

Pin,total =
Ttotal × ω × λ

2η1

(
Ttotal

2 , ω, α1

) +
Ttotal × ω × (1 − λ)

2η2

(
Ttotal

2 , ω, α2

) (9)

where η1 and η2 represent the efficiencies of the front- and rear-axle motors, respectively.

2.2.3. Battery Model

The upper and lower limits of the battery State-Of-the-Charge (SOC) are needed in order
to maintain the battery SOC within a certain range. Despite that various battery models have
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been developed in the literature, the following model is adopted in this study due to its ease of
implementation and acceptable accuracy. That is:

•
SOC = −(Ibatt/Qmax) (10)

Pbatt = Voc Ibatt − I2
battRbatt (11)

where Ibatt, Pbatt, Voc and Rbatt are the discharging current, output power, terminal voltage and internal
resistance of the battery system, respectively.

3. Driving Cycle Construction Based on the Markov Chain

Generally, the driving conditions of a vehicle can be described with a speed vs. time curve.
The curve is influenced by multiple factors such as the terrain and road conditions as well as the
drivers’ habits. Therefore, the concept of the stochastic process can be introduced to studying the
driving cycle construction. The characteristic of the Markov process is that the subsequent state
depends only on the current state and independent of the previous states. This property is known
as “no aftereffect”. A driving cycle is constructed in this study based on the Markov chain method,
and the main process is delineated in Figure 3.
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3.1. Raw Data Collection

With the development of data-analysis tools, such as the extensible markup language, database
management systems and Hadoop-added analytics modules, large quantity of data can be processed
and analyzed more efficiently. With the maturity of big data techniques, the massive data of EVs such
as real-time speed and position of the vehicle and other operating state information becomes more
storable and usable. Thus, governments and enterprises have increased interest in making use of these
data for helping the technological development and mass-adoption of EVs. All the data used in this
study was collected from the SMC-EV in Beijing, which has the capacity of data collection, storage
and processing for a wide range of EV models. The main functionalities of the SMC-EV in Beijing is
sketched in Figure 4. It can be seen that the big data analytics architecture consists of the data layer,
data aggregation layer, analytics layer and information exploration layer.
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Different data storage clusters at the data aggregation layer can obtain a huge amount of operating
data by means of their own acquisition methods, such as vehicle information terminal and Global
Positioning System (GPS). In Figure 5, the vehicle terminal is utilized to collect the required operating
information of EVs and communicate with the Electronic Control Unit (ECU) through an internal
protocol. The collected vehicle information is transferred in real-time to the SMC-EV in Beijing through
the General Packet Radio Service (GPRS) network. As the platform interfaces with the analytics
layer, the received data can be written to the services’ Hbase database. The analytics layer is used for
statistical analysis of the collected data. At the same time, it is able to dig out the latent information of
the vehicle, including working condition statistics, maximum speed statistics, velocity and acceleration
distribution, which provides data support for constructing the driving cycle in the following part.
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3.2. Data Processing and Calculation

It is difficult to avoid data leakage and distortion in the data collection and transmission
process. Thus, the raw data is cleaned and processed, and the obtained data samples are shown in
Figure 6. Seven velocity states clusters are classified through vehicle speed segmentation. The detailed
classification is shown in Table 1.
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Figure 6. Velocity-acceleration diagrams of the speed datasets. (The red-scale shows the density
function of velocity and acceleration).

Table 1. Velocity state cluster classification rule.

Velocity State Cluster 1 2 . . . 6 7

Velocity interval (km/h) [0, 15) [15, 30) . . . [75, 90) [90, +∞)

As the speed and acceleration of the vehicles are modeled as the Markov chain, the state transition
matrix can be calculated from the statistical frequency information of the data samples as:

Tij =
nij

ni
(12)

where nij is the number of times that the velocity state cluster transitioning from vi to vj appears, ni is
the total number of appearance times of vi.
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According to the velocity segment database and Equation (12), the corresponding number of
transition velocity segments are classified. The state transition matrix for the seven velocity states
clusters are shown in Equation (13):

Tij =



0.6139 0.2487 0.0890 0.038 0.0065 0.0026 0.0013
0.3245 0.3641 0.2257 0.0708 0.0115 0.0033 0
0.1140 0.1868 0.3289 0.2529 0.0843 0.0281 0.0050
0.0388 0.1041 0.2152 0.3263 0.2363 0.0617 0.0176
0.0088 0.0328 0.1269 0.2451 0.3085 0.2079 0.0700
0.0057 0.0171 0.0486 0.0971 0.2400 0.3457 0.2457

0 0.0111 0.0111 0.0306 0.0972 0.2167 0.6333


(13)

The Monte Carlo method is used here to generate the random numbers with the value between
(0, 1). If the generated number r satisfies Equation (14), the velocity segment is selected randomly from
the relevant velocity segments, which are obtained from the n-th velocity state clusters. The velocity
difference between the first value of velocity in this segment and the last value of velocity in the
previous segment should be less than 1 km/h. Meanwhile, the used velocity segments are deleted
with the aim to maintain the difference of alternative velocity segments:

n−1

∑
j=1

Tij < r <
n

∑
j=1

Tij (1 ≤ i ≤ 7, 1 ≤ j ≤ 7, n ≤ 7) (14)

The driving construction is divided into three parts, i.e., the beginning, middle and end part.
The complete driving cycle is shown in Figure 7.
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Figure 7. Constructing the driving cycle using the Markov process based on large quantity of
recorded data.

4. Integrated Sizing/Control Optimization of the Four-Wheel-Independently-Actuated Electric
Vehicles (FWIA EVs)

4.1. Control Optimization of the FWIA EV

Based on the Bellman’s principle of optimality, the Dynamic Programming (DP) algorithm
provides an optimal energy management through an exhaustive search of the complete control and
state grids. This gives rise to the “curse of dimension” problem, which may incur unacceptable
computational burden when there are a considerable number of states. Besides, a complete knowledge
of driving profile is needed when applying the DP algorithm. However, the exact future power
demand is usually unknown and the computational burden is prohibitive in case of multiple system
states. Therefore, applying the DP to realize optimal power allocation for FWIA EVs usually serves
a benchmark for other energy management strategies.
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4.1.1. Problem Formulation

The state variable is the battery SOC and the control variable is λ. The discrete state-space
representation of the vehicle model can be expressed as:

x(k + 1) = f (x(k), u(k)) (15)

where x(k) is the system state and u(k) is the control input at the time instance k, and the sampling time
interval is set to be 1 s.

The aim of DP derivation is to find the optimal control input u(k) that can minimize the electricity
consumption for a specific driving cycle, and thus the objective function can be formulated as:

J =
N−1

∑
k=0

L(x(k), u(k)) (16)

where N is the time length of the driving cycle and L is the instantaneous cost at the time instance k.
The newly-constructed driving cycle is constructed based on the real-time operating data of EVs

in Beijing, a typical megacity. In order to increase the representativeness and comprehensiveness of
the used driving cycle for the optimal control law derivation, the target driving cycle is formed by
concatenate the newly-constructed driving cycle with other six typical driving cycles.

4.1.2. The Dynamic Programming Implementation

The main advantage of DP is that it can easily deal with constrained nonlinear problems. The major
formulations of the DP method can be described by Equations (17) and (18):

Step N − 1:
J∗N−1(x(N − 1)) = min

u(N−1)
[L(x(N − 1), u(N − 1))] (17)

Step k, for 0 ≤ k < N − 1:

J ∗k (x(k)) = min
u(N−1)

[L(x(k), u(k)) + J ∗k+1 (x(k + 1))] (18)

where J*k(x(k)) is the optimal cost-to-go function at state x(k) starting from time instant k. It represents
the optimal cost that the system originates from state x(k) to the final stage under the optimal
law, x(k + 1) is the state at the time instance k + 1 when the control variable u(k) is applied to state x(k)
at the time instance k.

The above recursive equations are solved backwards to find the optimal control policy while
satisfying the inequality constraints and the equality constraints.

4.1.3. Rule Extraction

Knowing the complete driving profile, the DP algorithm is able to obtain the optimal power
allocation. Based on this merit, a speed-based torque allocation rule can be extracted by running the
DP under driving cycles that cover a wide range of speed. Thereby, the optimal torque allocation ratios
under different speeds and power demands can be finally derived. This serves as an implementable
look-up table torque allocation strategy based on DP for real-time energy management. The resulting
look-up table is illustrated in Figure 8.
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4.2. Combined Sizing/Control Optimization of the FWIA EV

For a specific driving cycle, the optimal torque/power allocation is extracted in Section 4.1.3.
As shown in Figure 9, a combined sizing/control optimization process is formulated. The sizes of the
front- and rear-axle motors are adjusted by α1 and α2, and then the specified motors are used in energy
management development.

The formula of the combined sizing/control optimization can be described as:

J1 = minPin,total =
N−1

∑
k=0

Ttotal × ω × λ

2η1

(
Ttotal

2 , ω, α1

) +
Ttotal × ω × (1 − λ)

2η2

(
Ttotal

2 , ω, α2

) (19)

The constraints of state and control variables are given by:

SOC(k + 1) = SOC(k)− Ibatt
Qmax

(k)
SOCmin < SOC(k) < SOCmax

Ti_min ≤ Ti(k) ≤ Ti_max
ωmin < ω(k) < ωmax

Ibatt_min < Ibatt(k) < Ibatt_max
Pbatt_min < Pbatt(k) < Pbatt_max
0 < λ < 1
0.1 ≤ α1 ≤ 0.5
0.5 ≤ α2 ≤ 0.9

(20)
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5. Simulation Results and Discussions

In order to examine the effectiveness of the proposed combined sizing and control optimization
approach, four disparate cases are presented here for comparison:

• Baseline motor sizing + baseline control (BSBC). Four in-wheel motors with the same rated power
of 30 kW are used, and a basic control strategy in which a constant proportion of power allocation
for the front- and rear-axle motors is adopted as:

λ =
T1 + T2

T1 + T2 + T3 + T4
(21)

• Baseline sizing + optimal control (BSOC). Four in-wheel motors with the same rated power of
30 kW are also selected. However, the DP algorithm described in the study is adopted for optimal
power allocation;

• Optimal sizing + baseline control (OSBC). The baseline control strategy described by Equation (21)
is used, and the sizes of both the front- and rear-axle motors are left for optimization;

• Optimal sizing + optimal control (OSOC). This presents the combined sizing/control optimization
described in the previous section.
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The energy consumption of a vehicle is strongly related to the driving cycles. In this study, six typical
driving cycles have been selected and directly concatenated to construct a hybrid driving cycle to
enhance the comprehensiveness and representativeness of the applied driving cycle. The six selected
driving cycles include the New York City Cycle (NYCC), Urban Dynamometer Driving Schedule
(UDDS), West Virginia Suburban Cycle (CYC_WVUSUB), Highway Fuel Economy Cycle (HWFET),
CHINACITY and NEDC. Therein, the NYCC represents the congestion conditions commonly
encountered in city downtowns; the UDDS represents the typical urban driving conditions with higher
speed and more frequent stop-and-go maneuvers; the CYC_WVUSUB represents a medium-speed
driving cycle; the HWFET represents the high-speed road conditions with high speed and smooth
driving; the CHINACITY represents China’s urban driving conditions; the NEDC is the light-duty
vehicle emission fuel consumption test condition commonly used in the design of automobiles.
The peak power demand for the studied vehicle is 120 kW. The front-axle motor power ratio is
selected from 0.1 to 0.5 with an interval of 0.1. That is, the peak power of the front-axle motors is
selected as 6 kW while the peak power of the rear-axle motors is 54 kW, when the motor power ratio is
selected as 0.1. Once the sizes of the front- and rear-axle motors are determined, the corresponding
optimal control strategy can be extracted based on the DP algorithm. The optimization result is shown
in Table 2.

Table 2. The total consumed-energy for the vehicle with the power ratio of the front-axle motors varies
from 0.1 to 0.5.

Power Ratio Energy Consumption (J)

0.1 3.6905 × 107

0.2 3.6784 × 107

0.3 3.5878 × 107

0.4 3.6773 × 107

0.5 3.6892 × 107

The profile of the hybrid driving cycle is illustrated in Figure 10a. Correspondingly, the required
torque and power can be derived based on Equation (1), and the optimal torque allocation strategy
extracted from the DP algorithm can be used. The torque allocation under four described cases are
depicted in Figure 10b–d. It can be seen that the torque distribution ratio fluctuates between 0 and 1 in
the case of OSOC, which is more conducive to making full use of the high-efficiency regions of the
motor to achieve better overall electricity consumption reduction.
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Figure 10. Demand speed and torque distribution of the front and rear wheel motors under the hybrid
driving cycle. (a) Driving cycle; (b) the torque distribution of the front-axle motors; (c) the torque
distribution of the rear-axle motors; (d) the distribution ratio of the front-axle motors.

As shown in Figure 11, the operating points of the front- and rear-axle motors are shown the same
under the case of BSBC, many of which are located in the low-efficiency regime.
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strategy extracting from the DP algorithm was implemented. The torque allocation under four 
described cases are depicted in Figure 13b–d. It can be seen that the torque distribution ratio 
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Figure 12 shows the results under the case of OSOC. It can be seen that the front-axle motors
work in the high-efficiency region while the rear-axle motors operate in the low-efficiency area in the
majority of the time. However, the overall efficiency of the drivetrain system is higher than that under
the case of BSBC.
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Table 3 lists the energy consumption of the vehicle under the constructed driving cycle. It is worth
noting the power requirements of the driving cycle is different from the hybrid driving cycle, and the
DP-based energy management is also used.

Table 3. The total consumed-energy for the front motor power ratio which was from 0.1 to 0.5.

Power Ratio Energy Consumption (J)

0.1 2.3761 × 107

0.2 2.3653 × 107

0.3 2.2746 × 107

0.4 2.3647 × 107

0.5 2.3746 × 107

The profile of the constructed driving cycle is illustrated in Figure 13a. Correspondingly,
the required torque and power can be derived based on Equation (1), and the optimal power allocation
strategy extracting from the DP algorithm was implemented. The torque allocation under four
described cases are depicted in Figure 13b–d. It can be seen that the torque distribution ratio fluctuates
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between 0 and 1 in the case of OSOC, which results in a better utilization of the high-efficiency region
of the motor to achieve better overall electricity consumption reduction.Energies 2016, 9, x FOR PEER REVIEW 16 of 21 
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Figure 13. Demand speed and torque distribution of the front and rear wheel motors under the
constructed driving cycle. (a) Driving cycle; (b) the torque distribution of the front-axle motors; (c) the
torque distribution of the rear-axle motors; (d) the distribution ratio of the front-axle motors.

Figure 14 shows that the actual working points of the front- and rear-axle motors are identical
under the case of BSBC and the constructed driving cycle. Figure 15 shows the rear-axle motors have
more points in the high-efficiency regions than the front-axle motors under the case of OSOC and the
constructed driving cycle. This can be ascribed to the optimal torque allocation which tries to optimize
the working points of the motors from the perspective of overall drivetrain efficiency improvement.
As illustrated in Figure 15, despite of some efficiency sacrifice for the rear-axle motors, the working
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efficiency of the front-axle motors is significantly enhanced, thus leading to the overall efficiency
optimization for the whole drivetrain.Energies 2016, 9, x FOR PEER REVIEW 18 of 21 
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OSOC and constructed driving cycle.

Table 4 summarizes the energy consumption of the studied vehicle under the hybrid driving
cycle in the four cases, and their specific energy consumption are 186.7565, 184.2159, 159.9320,
and 158.5735 Wh/km, respectively. In comparison with the case of BSBC, the energy consumption
improvements achieved in the cases of BSOC, OSBC and OSOC are 1.3603%, 14.3633%, and 15.0908%,
respectively. It can be concluded that: (a) without optimal sizing, the energy consumption reduction
through optimal control as the case of BSOC is not evident; (b) the optimal sizing represented by the
case of OSBC would significantly improve the energy consumption; and (c) the optimal sizing/control
as the case of OSOC can substantially improve the energy consumption. Under the constructed
driving cycle, the specific energy consumption in the four cases are 143.6563, 141.0674, 126.1764,
and 124.4990 Wh/km, respectively. Compared with the case of BSBC, the energy consumption
reduction in the cases of BSOC, OSBC and OSOC are 1.8021%, 12.1679%, and 13.3355%, respectively.
The improvement trend is consistent with that observed under the hybrid driving cycle.
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Table 4. Energy consumption in four cases.

Driving Cycle Specific Energy Consumption in Four Cases (Wh/km)

Energy Improvement (%)
(2) to (1)
(3) to (1)
(4) to (1)

Hybrid

(1) 186.7565
(2) 184.2159
(3) 159.9320
(4) 158.5735

1.3603%
14.3633%
15.0908%

Construction

(1) 143.6563
(2) 141.0674
(3) 126.1764
(4) 124.4990

1.8021%
12.1679%
13.3355%

Table 5 summarizes the simulation results obtained from the case of OSOC. In order to examine
the results under the situations of different peak power requirements, the baseline power is increased
by 10%, 20% and 30%, respectively. The same procedures are used to examine the energy consumption
under the two driving cycles, with the results listed in Table 5. It can be seen that the optimal sizing
ratios under the two driving cycles and different baseline peak powers are almost the same, i.e., α1 = 0.3.
However, the total energy consumptions under both driving cycles see a slight increase along with the
increasing baseline peak power. These results validate the effectiveness of the proposed combined
sizing/control optimization method.

Table 5. Energy consumption in four cases.

Total Power (kW)

Optimal Sizing Results
Energy Consumption (Wh/km)

α1 α2

Hybrid Construction Hybrid Construction Hybrid Construction

1 0.3 0.3 0.7 0.7 158.57 124.4990
1.1 0.3 0.3 0.7 0.7 160.02 126.4101
1.2 0.3 0.3 0.7 0.7 161.58 128.3831
1.3 0.3 0.3 0.7 0.7 163.09 130.3923

6. Conclusions

This paper proposes a combined sizing and control optimization for a four-wheel-
independently-actuated electric vehicle (FWIA EV). A new driving cycle is constructed using the
Markov chain based on the real-world data collected from SMC-EV in Beijing for electric vehicles.
With the objective of minimizing the energy consumption, DP is used to extract the optimal power
allocation once the motor sizes of the front- and rear-axle motors are determined. Four cases are
studied to verify the superiority of the proposed scheme under the constructed driving cycle and
a hybrid driving cycle that merged six typical driving cycles. Simulation results verified the superiority
of our presented scheme:

• Simulation results indicate that the improvement in energy consumption in three cases, i.e., BSOC,
OSBC and OSOC, compared with that in the BSBC case is 1.3603%, 14.3633%, and 15.0908%
in the hybrid driving cycle and 1.8021%, 12.1679%, and 13.3355% in the constructed driving
cycle, respectively.

• The optimal total motor power is searched to be 1.3 times of the motor baseline power in our
example via the proposed method.

Although the effectiveness of our proposed scheme has been verified through simulation study,
our future work will focus on its experimental validation and imbedded control system development.
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Nomenclature

m Vehicle mass V Vehicle velocity
Cd Aerodynamic drag coefficient Ftotal Total driving force
ρ Air density Af Frontal area of the vehicle
g Gravitational acceleration Cr Rolling resistance coefficient
λ Axle distribution coefficient θ Road grade
T1 Front-left baseline motor Fi Driving force of the i-th wheel
T3 Rear-left baseline motor T2 Front-right baseline motor
ω1 Angular velocity of the front-left baseline motor T4 Rear-right baseline motor
ω3 Angular velocity of the rear-left baseline motor ω2 Angular velocity of the front-right baseline motor
ηmotor Efficiency of the motor ω4 Angular velocity of the rear-right baseline motor
α Scaling factor φmotor Rating power of the motor
Tbase Torque of the baseline motor Pout,total Total driving power
α2 Scaling factor for rear-axle motors α1 Scaling factor for the front-axle motors
η2 Efficiencies of the rear-axle motors η1 Efficiencies of the front -axle motors
Pbatt Output power Ibatt Discharging current
Rbatt Internal resistance Voc Terminal voltage
L Instantaneous cost N Time length of the driving cycle
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