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Abstract: The accurate monitoring of state of charge (SOC) and state of health (SOH) is critical
for the reliable management of lithium-ion battery (LIB) systems. In this paper, online model
identification is scrutinized to realize high modeling accuracy and robustness, and a model-based joint
estimator is further proposed to estimate the SOC and SOH of an LIB concurrently. Specifically, an
adaptive forgetting recursive least squares (AF-RLS) method is exploited to optimize the estimation’s
alertness and numerical stability so as to achieve an accurate online adaption of model parameters.
Leveraging the online adapted battery model, a joint estimator is proposed by combining an
open-circuit voltage (OCV) observer with a low-order state observer to co-estimate the SOC and
capacity of an LIB. Simulation and experimental studies are performed to verify the feasibility
of the proposed data–model fusion method. The proposed method is shown to effectively track
the variation of model parameters by using the onboard measured current and voltage data.
The SOC and capacity can be further estimated in real time with fast convergence, high stability, and
high accuracy.

Keywords: state of charge; state of health; model identification; estimation; lithium-ion battery

1. Introduction

Lithium-ion batteries (LIBs) are one of the leading energy storage technologies and have been
applied widely in various fields, such as modern electric grids, portable electronics, and transportation
electrification [1–4]. To date, lots of efforts have been made for the improvement of cell chemistry,
materials, and components [5–8]. However, LIBs are typically complicated from an electrochemical
perspective and their performance is easily degraded in long-term operation [9]. To this end,
a high-fidelity battery management system (BMS) that accurately monitors the key battery states
is critical for the safety, efficiency, and life expectancy of LIB systems [10].

The state of charge (SOC) is an important variable that should be monitored in a BMS. The accurate
monitoring of SOC contributes to preventing unsuitable over-charge or over-discharge, which causes
irreversible damage to an LIB. The coulomb counting (CC) method is most widely applied in
commercial BMS products due to its low computing cost. However, the CC method is vulnerable
to current measurement error and depends on an accurate knowledge about the initial SOC, which
problematizes its application. The open-circuit voltage (OCV) measurement method is straightforward
but needs a long relaxation time to obtain an accurate OCV, which is unrealistic under continuous and
dynamic load conditions.

The model-based observers enjoy the merits of high accuracy and robustness; thus, they have been
widely studied for online SOC estimation [11,12]. An accurate battery serves as the prerequisite for this
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category of methods. In terms of an LIB, the existing models include the electrochemical model [13–15],
the black-box model [16], and the equivalent circuit model (ECM) [17–19]. Amongst others, the ECMs
have a better trade-off between accuracy and complexity and thus are favorable candidates for
application in micro-controller units. Generally, ECMs are used to simulate the dynamics of an LIB,
while the states of interest are estimated in real time with various observers, such as the Luenberger
observer [20], the extended Kalman filter (EKF) [21–23], the square root cubature Kalman filter [24],
the unscented Kalman filter (UKF) [25], the sliding mode observer (SMO) [26], the particle filter
(PF) [27], and the nonlinear observer [28]. For these methods, the ECMs are calibrated offline and
the model parameters are assumed to be fixed during operation. Nevertheless, the model parameters
of ECMs are typically affected by multiple factors, such as SOC, C-rate, temperature, and ageing
status [29]. The model’s robustness and estimation accuracy may decline largely by the absence
of an online model update as LIB systems are commonly operated under highly dynamic working
conditions in real applications. Integrated model identification and state estimation have therefore
been investigated to improve the overall robustness in recent years.

The existing co-estimation methods can be broadly categorized into three groups. The first group
is called joint estimation, which lumps the OCV and model parameters in one state vector for joint
estimation with advanced filters, such as recursive least squares (RLS) [30] and KF-based methods [31].
The SOC is then inferred from the pre-calibrated SOC-OCV look-up table. The joint estimation methods
manifest themselves with one filter to extract all the variables of interest, but stability is a major
challenge if model uncertainties are significant. The second group is called dual estimation, which uses
two parallel filters to observe the model parameters and battery states concurrently [32]. For example,
Xiong et al. [33] proposed a multi-scale dual extended Kalman filter (DEKF) to track the slow-varying
model parameters and the fast dynamics of the SOC accurately. Recently, a dual estimation method
with different filtering techniques, i.e., EKF-based model identification and PF-based state estimation,
was proposed for LIB management [34]. The third group is the data–model fusion method, which
online identifies the model parameters with data-driven methods such as RLS while simultaneously
estimating the SOC with advanced filters [22,35–37]. In recent years, some modified methods, such
as the vector-type RLS [38], have been proposed to improve the performance of model parameters
identification. This method is theoretically computationally efficient compared to the dual and joint
estimation methods due to the low computing cost of RLS. For all the three groups of methods,
the model robustness and estimation accuracy can be well-improved, but careful tuning is required
to guarantee algorithmic convergence and numerical stability. Also, the computing complexity may
potentially be a barrier to their application in low-cost micro-controllers, especially if using high-order
models or observing multiple battery states. To this end, necessary modification will be of value to
further improve the performance of estimation. Moreover, instantaneous capacity is generally included
in the state-space formula of the model-based observers; thus, the online update of it is critical to
ensure sufficient SOC accuracy over long-term operation [39].

The capacity is a direct indicator describing the state of health (SOH) of an LIB. In the literature,
the DEKF [40] and the dual nonlinear predictive filter (DNPF) [41] were used to co-estimate the SOC
and capacity. However, the model parameters are not fully adapted; thus, the robustness to dynamic
working conditions and ageing can be further improved. Alternatively, the capacity was lumped with
the parameter vector, and afterwards the model parameters and SOC were estimated simultaneously
with the DEKF [32,33] to guarantee high robustness. However, the dual and high-order EKF framework
may suffer from instability issues and a high computing cost, which should be carefully addressed in
real applications [42]. In Reference [42], the model parameters were updated by an offline fourth-order
EKF in the macro timescale, while the SOC was estimated by a second-order EKF in the micro timescale.
In Reference [43], multiple proportional-integral estimators are formulated based on an electrochemical
model to realize the concurrent estimation of impedance, SOC, and capacity.

Although lots of efforts have been made towards the online estimation of SOC and SOH, major
challenges still exist to improve the robustness and stability while lowering the computing cost.
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In this paper, a new data–model fusion method is proposed to observe the SOC and SOH of an LIB
simultaneously based on an online adaptive battery model. A first-order resistor–capacitor (RC)
model is adopted with the model parameters online identified with an adaptive forgetting recursive
least squares (AF-RLS) method to enhance the tracking ability and numerical stability. Leveraging
the online parameterized model, a joint estimator based on OCV pre-estimation and a low-order state
observer is proposed to co-estimate the SOC and capacity, with the expectation that it will guarantee
the stability and reduce the filtering dimension. Simulation and experiments are further performed to
verify the feasibility of the proposed method.

The rest of paper is organized as follows. Section 2 presents the battery modeling and
AF-RLS-based model identification. Section 3 describes the co-estimation method of SOC and capacity
with a simple OCV observer. Sections 4 and 5 present the simulation and experimental results to verify
the proposed method, while Section 6 draws the main conclusions.

2. Battery Modeling and Identification

2.1. Battery Modeling

An ECM with a higher order can better reproduce LIB dynamics with multiple time constants,
but the higher computing complexity is not favorable for online embedded systems. Hu et al. [17]
systematically studied the ECMs used for LIBs and found that the first-order RC model kept a good
trade-off between model precision and computing complexity. The first-order RC model as shown in
Figure 1 is thereby adopted in this paper to simulate the dynamics of the LIB in use. The voltage source
is used to simulate the OCV, which is SOC-dependent. Rs is the ohmic resistance. The polarization
resistance (Rp) and capacitance (Cp) construct an RC network to simulate the transient dynamics of
an LIB.
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Figure 1. Circuit diagram of the first-order RC model.

The following governing equations can be written to describe the electrical characteristics of
the used circuit model:

Cp
dVp

dt
+

Vp

Rp
= I (1)

Vt = Voc −Vp − IRs (2)

where I is the load current that is defined as positive for discharge process throughout this paper and
Vt and Vp are the terminal and polarization voltage, respectively.

The OCV is a nonlinear function with respect to SOC. An SOC-OCV test was performed on a
LiNiMnCoO2 (NMC) cell (ICR18650-26F, Samsung, Seoul, Korea), which has a nominal capacity of
2.2 Ah, to determine the correlation between SOC and OCV. The cell was first fully charged with
the constant-current-constant-voltage (CCCV) method until the upper cut-off voltage of 4.2 V was
reached, where the SOC was defined as 100%. Afterwards, the cell was discharged with a series of
current pulses until the lower cut-off voltage of 3 V was reached, where the SOC was defined as 0%.
The cell was left in an open-circuit condition for 5 h for depolarization at the end of each pulse current
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discharge, then the terminal voltages were measured and treated as discharge OCVs. At the same time,
the corresponding SOCs were calibrated with coulombic counting. The same procedures were executed
for the charging process to obtain charge OCVs. The real OCVs were averaged from the discharge
and charge OCVs. As a long depolarization time is applied, the hysteresis voltage is found to be very
small based on the calibration result. The hysteresis effect is therefore not considered in the modeling
for the purpose of simplification. In this paper, the SOC-OCV function is determined by polynomial
fitting to the offline tested SOC-OCV correction as:

Voc = f (z) =
np

∑
i=0

cizi (3)

where z is the battery SOC, np is the order of polynomial fitting (np = 5 here), and ci is the polynomial
coefficient obtained using least-squares-based curve fitting. The experimentally determined and
curve-fitted SOC-OCV relations are shown in Figure 2.
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2.2. Online Identification of Model Parameters

This paper identifies the model parameters by formulating a regression problem. A new variable
is defined as y = Vt − Voc. Then, the transfer function of Equation (1) can be expressed as:

y(s)
I(s)

= −
Rs + Rp + RsRpCps

1 + RpCps
. (4)

By adopting the bilinear transform s = 2 (q − 1)/ts/(q + 1), Equation (4) can be re-written as:

y(q−1)

I(q−1)
=

b0 + b1q−1

1 + a1q−1 (5)

where
a1 =

ts−2RpCp
ts+2RpCp

b0 = − Rsts+Rpts+2RsRpCp
ts+2RpCp

b1 = − Rsts+Rpts−2RsRpCp
ts+2RpCp

(6)

where ts is the onboard sampling interval. From Equation (5), the following discrete-time expression
can be written as:

yk = θ
T
kϕk (7)

where θk = [a1,k b0,k b1,k]T, ϕk = [−yk−1 Ik Ik−1]T. Then, the model identification problem boils down to
solving the regression model represented by Equation (7).
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2.3. Adaptive Forgetting Recursive Least Squares

A classical method to solve Equation (7) is the RLS method. The estimation law of RLS is given by:
Parameter vector update law:

θ̂k = θ̂k−1 + Lk

(
yk − θ̂

T
k−1ϕk

)
. (8)

Gain update law:

Lk = Pk−1ϕk

(
λ +ϕT

k Pk−1ϕk

)−1
. (9)

Covariance matrix update:

Pk =
1
λ

(
Pk−1 −

Pk−1ϕkϕ
T
k Pk−1

λ +ϕT
k Pk−1ϕk

)
. (10)

The basic RLS assumes that λ = 1, which makes the covariance matrix decay gradually. Thus,
the algorithm cannot retain the necessary alertness or adaptivity to track time-varying parameters.

One simple method to ensure estimation alertness is to use a forgetting factor of λ < 1, which
means heavier weights are given to the more recent data. However, the selection of a forgetting factor
is an interesting trade-off that should be addressed carefully. Specifically, a small λ leads to a large
P and L; thus, the estimates tend to be uncertain. In contrast, a large λ potentially causes a loss of
tracking capability for fast-varying parameters. This can be explained by analyzing Equation (10):
under sufficient excitation, the term on the right-hand side inside the square brackets decays faster
than it is inflated by the multiplier 1/λ, resulting in the gradual decay of the covariance matrix.

Moreover, exponential forgetting potentially leads to the covariance wind-up problem under alow
excitation condition. This is because the term Pk−1ϕk in this case is close to zero; thus, Equation (10)
becomes Pk = Pk/λ, indicating that the covariance matrix grows exponentially. When the excitation
recovers, the covariance matrix and gain have been very large and cause large fluctuations in
the estimation.

In seeking to overcome the aforementioned drawbacks of basic RLS and RLS with exponential
forgetting, the use of an adaptive forgetting factor is suggested by modifying Equations (9) and (10)
according to [44]:

Lk = Pk−1ϕk

(
1 +ϕT

k Pk−1ϕk

)−1
(11)

λk = 1−
ε2

k
σ
(
1 +ϕT

k Pk−1ϕk
) (12)

Wk =
(

I− Lkϕ
T
k

)
Pk−1 (13)

where I represents the unit matrix, and ε is the estimation residual calculated by:

εk = yk −ϕT
k θ̂k−1 (14)

To impose an upper bound on the covariance matrix, P is updated as [45]:

Pk =

{
Wk/λk, trace (Wk/λ) ≤ C
Wk, otherwise

(15)

The above update laws comprise the AF-RLS, which will be used in this paper for the online
identification of model parameters. It is clear that the forgetting factor is online adaptive, with λ

automatically set close to 1 when the estimation residual is small while it is set to a small value
when the estimation residual is large. It should be noted that two more tuning parameters have
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been introduced by the adaption of the forgetting factor, i.e., the gain (σ) controlling the sensitivity
of the forgetting factor to the output mismatch and the upper bound to the trace of the covariance
matrix (C).

3. Co-Estimation of SOC and SOH

Based on the online adaptive model, this section further seeks to propose a low-order estimator to
estimate the SOC and SOH jointly. The capacity is used as the indicator for SOH in this paper.

3.1. H-Infinity Filter (HIF)

Compared with the well-known Kalman filtering (KF)-based methods, the HIF can better
withstand modeling uncertainty and the estimation accuracy is not dependent on knowledge of
the noise statistics. It is thereby expected that the estimation will have a better robustness to
model uncertainty and noise statistics [46]. A general nonlinear discrete-time state-space equation is
expressed as:

xk+1 = F(xk, uk) + wk
yk = G(xk, uk) + vk
δk = hkxk
wk ∼ (0, Q), vk ∼ (0, R)

(16)

where xk, uk, and yk are the system state, input, and measurement, respectively; wk and vk are,
respectively, the process and measurement noises with covariance matrices Q and R; δk is a linear
combination of different system states, and hk is a user-defined matrix. The state-space model
represented by Equation (16) aims to obtain the optimized estimate of δk. It is needed to set hk = I if xk
is estimated directly.

The HIF aims to provide a uniformly small estimation error ek = δk − δ̂k for any x0, wk, and vk.
The measure of performance is then given by the following cost function:

= =
∑N−1

k=0 ‖δk − δ̂k‖
2
Sk

‖x0 − x̂0‖2
P−1

0
+ ∑N−1

k=0

(
‖wk‖2

Q−1
k

+ ‖vk‖2
R−1

k

) (17)

where ((x0− x̂0), wk, vk) 6= 0, x̂0 is an a priori estimate of x0, and Sk and P0 are user-defined symmetric
positive matrices. The following operation regarding an arbitrary matrix M and vector n is defined as
follows to clarify Equation (17):

‖nk‖2
Mk

= nT
k Mknk (18)

According to the worse-case performance measure, the optimal estimation of δk among all possible
estimates should satisfy:

sup = < 1/τ (19)

where “sup” denotes the supremum and τ is a pre-defined performance bound. The discrete HIF boils
down to a minimax problem where the estimate of δk plays against the exogenous inputs, i.e., x0, wk,
and vk. Then, the optimization criterion of HIF can be expressed as:

min
δ̂k

max
(x0,wk ,vk)

= = − 1
2τ
‖x0 − x̂0‖2

P−1
0

+
1
2

N−1

∑
k=0

[
‖δk − δ̂k‖

2
Sk
− 1

τ

(
‖wk‖2

Q−1
k

+ ‖vk‖2
R−1

k

)]
. (20)

Different from the typical minimum variance filters, such as KF, the HIF addresses
the deterministic disturbances and no prior knowledge on noise statistics is needed. As the system
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measurement is known, vk can be obtained by using Equation (16) if the optimal estimates of x0 and
wk are determined. Therefore, Equation (20) can be alternatively rewritten as:

min
δ̂k

max
(x0,wk ,yk)

= = − 1
2τ ‖x0 − x̂0‖2

P−1
0

+ 1
2 ∑N−1

k=0

[
‖xk − x̂k‖2

Sk
− 1

τ

(
‖wk‖2

Q−1
k

+ ‖yk − G(xk, uk)‖2
R−1

k

)]
(21)

where
Sk = hT

k Skhk (22)

Afterwards, the complete solution of HIF under the criterion of Equation (21) with respect to
the system characterized by Equation (16) can be summarized in Table 1. The relative theorem and
specific proof are not elaborated here but can be found in the existing literature [47].

Table 1. Algorithmic procedures of the H-Infinity Filter (HIF).

Definition:Âk = ∂F
∂x

∣∣∣
xk=x̂+k

, Ĉk = ∂G
∂x

∣∣∣
xk=x̂+k

Initialization:x̂+0 , P+
0 , Q, R, S0, τ

For k = 1, 2, . . .

Update of priori state: x̂−k = F
(

x̂+k−1, uk−1

)
Update of priori error covariance: P−k = Âk−1P+

k−1ÂT
k−1 + Q

Update of symmetric positive matrix: Mk = hT
k Skhk

Update of gain matrix: Kk = ÂkP−k
(

I− τMkP−k + ĈT
k R−1

k ĈkP−k
)−1

ĈT
k R−1

k
Update of posteriori state: x̂+k = x̂−k + Kk

[
yk − G

(
x̂−k , uk

)]
Update of posteriori error covariance: P+

k = P−k
(

I− τMkP−k + ĈT
k R−1

k ĈkP−k
)−1

3.2. OCV Observation

With the HIF discussed in Section 3.1, the real-time observation of SOC and capacity can be
realized by using the procedures summarized in Table 1.

The existing state observers typically lump multiple system states, including the polarization
voltages and the LIB states of interest, into one vector for observation. A potential problem is that
high-order filtering is prone to a high computing cost and low stability due to the high-dimension
matrix operation and the cross interferences among multiple system states. In light of this, order
reduction is always plausible for accurate state estimation. This paper thus also seeks to propose a
low-order state observer for SOC and SOH joint estimation. To realize this, a simple OCV observer is
first proposed. It is clear that Equation (7) can be rewritten in the following discrete-time form:

Vt,k −Voc,k = −a1(Vt,k−1 −Voc,k−1) + b0 Ik + b1 Ik−1 (23)

Adopting transposition to Equation (23) yields:

Voc,k = V̂oc,k + ∆k (24)

where V̂oc,k and ∆k are the OCV estimate and the estimation residual, respectively, which can be
expressed as:

V̂oc,k =
Vt,k+a1Vt,k−1−b0 Ik−b1 Ik−1

1+a1

∆k =
a1

1+a1
(Voc,k −Voc,k−1)

(25)

It is shown that the estimation residual is close to zero if the OCV changes slowly during two
adjacent sampling times. The V̂oc,k can thereby be viewed as the OCV estimate with small disturbances.
The deduction in this subsection is a general framework and, thus, can be easily extended to fit
higher-order RC models.
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3.3. Joint Estimaiton of SOC and Capacity

The capacity is used to infer the SOH of an LIB. A closed-loop observer is formulated here by
using the online adapted ECM to online estimate the SOC and capacity concurrently. The state-space
model in the form of Equation (16) should be formulated firstly to allow for the use of HIF in Table 1.

As a major difference from the existing joint estimators, in this paper, the V̂oc in Equation (24)
is viewed as a noisy system measurement. In this regard, the polarization voltage (Vp) can be ruled
out from the state vector as it has no correlation with the OCV. Therefore, the system input and
measurement are defined as I and V̂oc, respectively, while the state vector is defined as x = [z, 1/Q]T.
The following state-space formula can then be formulated:

xk+1 = F(xk, uk) + wk =

[
1 −ηts Ik
0 1

]
xk + wk

V̂oc = G(xk, uk) + vk

(26)

where G(xk, uk) is the function of OCV with regard to the system state and input, which can be
determined by the calibrated SOC-OCV function expressed by Equation (3); η is the coulombic
efficiency describing the ratio of the total charge extractable from the battery to the total charge that
can be injected into the battery over a full cycle. It is calibrated to be 99.2% in this paper.

Referring to the state-space formula expressed by Equation (26), the reference matrices (Âk and
Ĉk) in Table 1 can be expressed as:

Âk =
∂F
∂x

∣∣∣
xk=x̂+k

=

[
1 −ηts Ik
0 1

]
Ĉk =

∂G
∂x

∣∣∣
xk=x̂+k

=

[
dVoc
dz

∣∣∣
zk=ẑk

0
] (27)

The HIF can then be used to keep track of both the SOC and capacity while leveraging
the described definitions and algorithmic procedures. As the polarization voltage has been ruled out
from the state vector, the dimension of filtering is effectively reduced. It has to be pointed out that
the dimension compression will be more significant based on the proposed method if models with
higher orders are in use.

4. Simulation Study

This section aims to verify the proposed method on both online model identification and state joint
estimation with simulations. An ideal battery model is used to eliminate the modeling uncertainties so
that the method can be well-evaluated from a purely theoretical perspective.

4.1. Data Acquisition

The first-order ECM as shown in Figure 1 was built in the Matlab/Simulink Environment (R2015b,
MathWorks, Inc., Nattick, MA, USA). The OCV was defined with the calibrated SOC-OCV function
of the cell in use. The ohmic resistance and polarization resistance were defined to be time-variant,
while the polarization capacitance was assumed to be constant at a user-defined value. A user-defined
hybrid pulse test (HPT) and the Federal Urban Dynamic Schedule (FUDS) were used in this section to
evaluate the proposed method. The current was loaded to the ECM in Simulink and the corresponding
terminal voltage and SOC were obtained accordingly as shown in Figure 3.



Energies 2018, 11, 1810 9 of 16
Energies 2018, 11, x FOR PEER REVIEW  9 of 16 

 

 
Figure 3. Load current and terminal voltage of the simulation study: (a) hybrid pulse test (HPT); (b) 
Federal Urban Dynamic Schedule (FUDS). 

4.2. Simulation Results 

The simulated current and voltage data are used to verify the proposed method. As no prior 
knowledge can be obtained on the model parameters and system states, the algorithm is randomly 
initialized as follows throughout this paper if not otherwise defined: Rs = Rp = 10 mΩ, Cp = 1 kF, 
SOC0 = 60%, Q0 = 1.8 Ah. 

The results of the online model identification under the HPT condition are shown in Figure 4. 
It is shown that the change of parameters can be tracked effectively by the proposed method. The 
identification experiences a short transition time with a certain overshooting for the correction of 
the erroneous initialization at the initial stage, and afterwards the model parameters have been 
identified with reasonable accuracy. The online model adaption facilitates the maintenance of high 
modeling accuracy and good robustness for state estimation. 

 
Figure 4. Results of online model parameters identification under the HPT simulation study. 

The results of SOC and capacity joint estimation under the HPT are shown in Figure 5. As 
shown, the proposed method keeps track of the reference SOC accurately with rapid convergence 
from the large initialization error of 35%. The estimation error has been well-confined to the 1% 
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(b) Federal Urban Dynamic Schedule (FUDS).

4.2. Simulation Results

The simulated current and voltage data are used to verify the proposed method. As no prior
knowledge can be obtained on the model parameters and system states, the algorithm is randomly
initialized as follows throughout this paper if not otherwise defined: Rs = Rp = 10 mΩ, Cp = 1 kF,
SOC0 = 60%, Q0 = 1.8 Ah.

The results of the online model identification under the HPT condition are shown in Figure 4.
It is shown that the change of parameters can be tracked effectively by the proposed method.
The identification experiences a short transition time with a certain overshooting for the correction
of the erroneous initialization at the initial stage, and afterwards the model parameters have been
identified with reasonable accuracy. The online model adaption facilitates the maintenance of high
modeling accuracy and good robustness for state estimation.
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The results of SOC and capacity joint estimation under the HPT are shown in Figure 5. As shown,
the proposed method keeps track of the reference SOC accurately with rapid convergence from
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the large initialization error of 35%. The estimation error has been well-confined to the 1% error
bound for the entire simulation. The capacity estimation is also shown to converge to the expected
value. However, the convergence is much slower compared to the estimation of SOC. This is because
the capacity changes very slowly in real applications, so that a very small process noise covariance
component is assigned to the capacity-relevant state to stabilize the estimation. It can be observed that
the estimated capacity matches closely with the reference value once the algorithm converges.
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Results of online model identification and state joint estimation under the FUDS condition
are shown in Figures 6 and 7, respectively. Similar to the case under the HPT condition,
the proposed method shows easy convergence and high accuracy on model identification and SOC
and capacity estimation.
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To give a quantitative evaluation for the algorithmic performance, the mean absolute error
(MAE) and root mean square error (RMSE) of SOC estimation as important performance measures
are summarized in Table 2, while the mean relative error (MRE) and RMSE of capacity estimation are
summarized in Table 3. All the performance measures are calculated after the estimation converges to
the 10% error bound in seeking to rule out the uncertain impact of the convergence process. Results
suggest that the estimation is of high fidelity in terms of online estimation; thus, the theoretical
feasibility of the proposed method has been confirmed.

Table 2. Algorithmic performance on SOC estimation for the simulation study.

Measure HPT FUDS

MAE 0.26% 0.23%
RMSE 0.33% 0.27%

Table 3. Algorithmic performance on capacity estimation for the simulation study.

Measure HPT FUDS

MRE 1.70% 1.16%
RMSE 2.32% 1.95%

5. Experimental Study

The simulation study in Section 4 is based on an ideal ECM to evaluate the proposed method
from the theoretical prospective. It should be noted that the model uncertainties caused by unmodeled
battery dynamics and the SOC-OCV fitting error will decrease the accuracy of both model identification
and state estimation. Therefore, the proposed method is further evaluated with real experiments in
this section.

5.1. Experimental Setup

Experiments are performed on a Samsung 18,650 lithium-ion battery, which has a nominal capacity
of 2200 mAh. The hybrid pulse current as shown in Figure 3a is inputted to the LIB with a cell-level
battery testing system, while the terminal voltage is collected accordingly. The current and voltage
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sensors have measurement ranges of 10 A and 5 V, respectively, while the error limits of sensing are
both within 0.05%. The ambient temperature is controlled at 22 ◦C for all experiments. The data of
interest are sampled at 1 Hz by using a data acquisition system and stored in a host computer.

5.2. Reference Data Extraction

A reference SOC profile is required to verify the result of SOC estimation. The CC method can
obtain the reference SOC accurately provided that the cell can be preset to a known SOC. Therefore,
the cell in use is first fully charged under the CCCV criterion. Afterwards, a constant current is applied
to discharge the cell to a known initial SOC by CC. The reference SOC can then be obtained during
the real experiments.

The verification of the proposed method on model identification results requires the reference
values of model parameters. For this purpose, several time points are selected at a defined time interval
during the HPT. A set of current and voltage signals are sampled around each time point, and then
the reference model parameters can be extracted offline. In detail, Rs is calibrated by the instantaneous
voltage jump following a step change of current, i.e., Rs = ∆Vt/∆I. The time constant, Rp, and Cp can be
calibrated by observing both the percentile and absolute change of voltage in terms of time. However,
this method is performed offline based on a certain hybrid pulse characterization. The calibrated
parameters are optimal for the offline testing condition, but may deviate from real values in real
experiments, as the experimental condition, especially for the current pattern, can be substantially
different from the testing environment. Alternatively, in this paper, these values are determined from
the pure modeling perspective by minimizing the prediction error. As OCVs can be known from
reference SOCs, Rp and Cp are determined by fitting the voltage responses to real measurements.
In this way, the model parameters are obtained from real experiments instead of offline testing; thus,
the problem of load pattern mismatch can be avoided. The selection of the calibration method will be
made on a case-by-case basis depending on the real application.

5.3. Experimental Results

Figure 8 shows the experimental results of online model identification. From the offline calibration
results, it is shown that all the model parameters exhibit time-variant features, which further confirms
the necessity of online model adaption to maintain sufficient modeling accuracy. To this end,
the existing observing techniques with fixed battery models are theoretically less accurate due to
the lack of adaptability to the variation of working conditions. By using the proposed method, it is
observed that the identification converges from the initialization error and tracks the varying model
parameters with reasonable accuracy. The error-prone and time-consuming model calibration can
thereby be avoided with the mechanism of online model adaption.

Leveraging model update in real time, the SOC and capacity are estimated jointly and shown in
Figure 9. It is shown that the estimated SOC converges very fast from the large initialization offset;
afterwards, the trajectory of the reference SOC has been projected accurately with the error confined
to a 1% error boundary throughout the experiment. By comparison, the estimated capacity also
converges stably to the reference value, but the convergence is slower than the SOC estimation. Once
the estimation converges, the capacity estimation error is well-constrained within 5%. The performance
measures, including MAE and RMSE, are summarized in Table 4 to give a quantitative evaluation.
Compared to the simulation results in Tables 2 and 3, the accuracy is slightly lower but is still
quite favorable in terms of online estimation. Is spite of the existence of model uncertainties in real
experiments, the estimation proves to be highly accurate for both SOC and capacity.
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Table 4. Algorithmic performance on SOC and capacity estimation for the experimental study.

Measure SOC Capacity

MAE 0.45% 0.045 Ah (MRE = 2.10%)
RMSE 0.46% 0.073 Ah (MRE = 3.38%)

6. Conclusions

This paper proposes a new data–model fusion method for SOC and SOH co-estimation based
on an online adaptive battery model. The model parameters are online identified with the AF-RLS
method to maintain high modeling accuracy and robustness. Based on the online adaptive model,
a joint estimator based on OCV observation and a low-order state observer is proposed to achieve
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the co-estimation of SOC and capacity. Simulation and experimental results suggest that the proposed
method can keep track of the model parameters effectively. The SOC and capacity estimation have
also been verified to have fast convergence, high accuracy, and high stability. As a data-driven method,
the proposed method online requires the onboard measured current and voltage data; thus, it has
good prospects for real application in BMSs.
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