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Abstract: The increase of distributed energy resources in the smart grid calls for new ways to
profitably exploit these resources, which can participate in day-ahead ancillary energy markets by
providing flexibility. Higher profits are available for resource owners that are able to anticipate
price peaks and hours of low prices or zero prices, as well as to control the resource in such a way
that exploits the price fluctuations. Thus, this study presents a solution in which artificial neural
networks are exploited to predict the day-ahead ancillary energy market prices. The study employs
the frequency containment reserve for the normal operations market as a case study and presents the
methodology utilized for the prediction of the case study ancillary market prices. The relevant data
sources for predicting the market prices are identified, then the frequency containment reserve market
prices are analyzed and compared with the spot market prices. In addition, the methodology describes
the choices behind the definition of the model validation method and the performance evaluation
coefficient utilized in the study. Moreover, the empirical processes for designing an artificial neural
network model are presented. The performance of the artificial neural network model is evaluated in
detail by means of several experiments, showing robustness and adaptiveness to the fast-changing
price behaviors. Finally, the developed artificial neural network model is shown to have better
performance than two state of the art models, support vector regression and ARIMA, respectively.

Keywords: smart grid; energy markets; ancillary markets; demand response; frequency containment
reserve; price prediction; machine learning; neural network

1. Introduction

The emergence of the smart grid has resulted in the development of numerous smart Distributed
Energy Resources (DER) such as battery storage, adjustable loads and electric vehicles with two-way
charging capability. There are several possible ways to exploit these resources profitably. Some of
these involve the use of the resources to reduce electricity bills, and comparing the profitability of
these approaches can be straightforward, especially if experiments are performed in the same region
and a fixed electricity price is used. However, the flexible capacity of the resources can also be traded
on various markets, in which case the owner of the resource is required to enter into some business
relationship with a party that is willing to pay for the possibility of using the resource. One possibility
is that the owner participates in markets such as ancillary services. Alternatively, the owner can make
an agreement with an aggregator [1] that will participate in the market on his/her behalf.

Several works published in leading journals have addressed this problem, but on a limited
scale, so it is unclear how the research could be exploited for financial gain on existing or emerging
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electricity markets. For example, in [2], the authors did not choose any existing market, but proposed a
negotiation scheme between the DER owner and the grid operator, effectively designing a new market,
so the contribution of the research was to optimize the profits of the DER owner on that market. In [3],
it was assumed that the electricity price was a linear function of the instant load. While [4] discussed
an EV charging station for peak load shifting, no market mechanism for getting compensation from
the grid operator was identified; nor did the intelligent control consider the possibilities of exploiting
the differences in hourly electricity prices.

Several solutions have been proposed for using DERs to reduce electricity bills, in which case
the DER owner does not need to participate in any market. Costs related to peak consumption can
be effectively reduced with Vehicle-to-Home (V2H) [5] and Vehicle-to-Building (V2B) [6] technologies.
V2H and V2B can also be used to exploit excess local energy production such as photovoltaic or wind
power generation without selling it to the grid [7,8]. Various smart loads such as heat pumps [9] and
electric vehicles [10,11] can be rescheduled to exploit low hourly electricity prices. In some cases,
the use of DERs for Demand Response (DR) involves scheduling the energy consumption to exploit
hourly differences in utility electricity prices [7], as well as the minimization of the costs for the power
system [12]. In addition, various forms of DR involving DER are possible [13], such as the participation
in ancillary services markets such as frequency control reserves [14].

Several works have addressed the problem of controlling DERs to meet the technical requirements
to participate in ancillary services [15–18] and frequency control reserves in particular [19,20], but they
did not attempt to quantify the financial benefit. In [21], an advanced bidding strategy on ancillary
markets was presented that nevertheless did not exploit the predictions of ancillary market prices.
Obviously, further work inspired by these articles would involve cost-benefit assessments of the
proposed approaches and strategies to optimize the financial benefit as in [22], where the anticipated
knowledge of market prices was identified as a key element to evaluate the benefits, as well as the costs
of the demand side participating in frequency control. However, the day-ahead prices for frequency
control are not published before the bidding to participate in the market has been closed [23]; this is
different from day-ahead hourly electricity prices, which are known in advance and thus permit cost
savings through intelligent day-ahead scheduling of DERs [24]. Further, the statistical properties of
ancillary service prices are very different from electricity prices and pose additional challenges to the
modeling or prediction of these prices [25]. The challenges notwithstanding, if accurate predictions
of ancillary prices could be obtained, they could be used to bid on the ancillary markets profitably.
The importance of ancillary service price predictions to exploit electric vehicles effectively on ancillary
services markets and frequency reserves, in particular, has been recognized by several authors [26–30].
They assumed that accurate predictions of these prices were available without referencing any
works on such predictions. Works on exploiting electric vehicles or any DERs on ancillary service
markets that actually include the ancillary price predictions obtained using the available data are rare;
however, ref. [31] used the conventional Autoregressive Integrated Moving Average (ARIMA) method
for this purpose. However, our expectation is that by exploiting machine learning, ARIMA methods
can be significantly outperformed, as will be demonstrated in Section 5.3.

Accurate price predictions for ancillary services can not only be used to optimize profits on a
single market, but to choose, on an hourly basis, the market on which to bid for the highest expected
profit. Using Finland as an example, one may make hourly bids on the following frequency control
reserves markets, for which the transmission system operator Fingrid provides relevant open data:
Frequency Containment Reserve for Normal operation (FCR-N), Frequency Containment Reserve for
Disturbances (FCR-D) and automatic Frequency Restoration Reserve (aFRR). If one has a smart DER
with control schemes that have been validated for each of these markets, high profits can be obtained
by choosing the market on an hourly basis according to accurate predictions of the day-ahead prices.

Therefore, the main research objective of this article consists of predicting the day-ahead prices of
ancillary service markets, using FCR-N in Finland as a case study. Thus, this work aims at predicting
ancillary market prices addressing the following challenges:
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1. identify what sources of data are relevant and openly available for the predictions of the FCR-N
ancillary service market.

2. identify and present a methodology that can be utilized for the prediction of ancillary market
prices and the key design decisions to be made, highlighting the differences between ancillary
market (such as FCR-N) and spot market prices’ prediction, as well as employing the Artificial
Neural Network (ANN) model in which numerous hyper-parameters are to be tuned for the
ANN, with no prior work existing for ancillary service price prediction with ANN.

3. evaluate the prediction performance of the FCR-N price. The experimental results show that
the proposed ANN model was capable of adapting to the fast-changing price patterns of the
FCR-N market. Moreover, the ANN outperforms the two state of the art models, Support Vector
Regression (SVR) and the ARIMA model, in the prediction of the FCR-N prices.

This paper is structured as follows. Section 2 presents the related work, while Section 3 describes
the problem analysis. Then, Section 4 proposes the methodology utilized for the prediction of the
ancillary market prices. Section 5 presents and discusses the experimental results. Finally, Section 6
draws the conclusions of the paper.

2. Related Work

Relying solely on electricity markets is not sufficient to deliver a reliable power grid.
Therefore, besides electricity markets, ancillary service markets are used as supporting mechanisms
to ensure the continuous power balance in the grid [32,33]. The increase of distributed and variable
renewable energy resources combined with new smart grid technologies has contributed to the
expansion of ancillary markets [34]. However, ancillary service markets have been developed in
various ways among different countries [35], i.e., with different regulations, as well as technical
requirements. This study focuses on predicting the prices of a DR ancillary market called FCR-N [36].
The FCR-N market consists of operating reserves that constantly maintain the power balance in the
power system based on the frequency deviations from the nominal frequency [37]. Hence, the FCR-N
provides primary service frequency control by supplying power reserves to the power grid when
frequency deviations occur. For the participation in the FCR-N market, the participants need to be
able to meet the technical requirements specified by the transmission system operator [36]. The main
requirements for the FCR-N provision are specified in Table 1.

The price prediction of ancillary markets can enable the market participation of smart grid
stakeholders, such as aggregators [1] and electricity retailers [38]. The prediction of ancillary market
prices can improve the decision-making strategies of the stakeholders, while reducing the risks
involved in the market participation [39]. So far, few studies have investigated the prediction of
ancillary markets prices [25], even though ancillary markets typically present significant differences in
terms of characteristics and patterns compared with the commonly-studied day-ahead markets [40].

Table 1. FCR-N market technical requirements as specified in [36].

Market Minimum Bid Activation Time Activation Frequency How Often It Is Activated

FCR-N 0.1 MW 3 min
Fully after a frequency step
change of ± 0.1 Hz, max
deadband ±0.05 Hz

Several times a day

The FCR-N market is chosen among other ancillary services for the following reasons:
firstly, because the FCR-N ancillary service can be delivered by DR programs [41], through the
engagement of the demand side. In addition, the FCR-N does not have hard real-time constraints for the
participation. In fact, the required activation time is within three minutes [36]. Moreover, the minimum
power bid for participating is small (i.e., 0.1 MW) compared to other markets. Consequently,
all these aspects of the FCR-N market are raising the interest of new stakeholders (e.g., aggregators,
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electricity retailers), making it a promising market for their DR participation. Therefore, this work
attempts to predict the FCR-N prices, contributing to enhancing the decision-making strategies of such
stakeholders [38], thus encouraging their market participation.

In recent years, as a result of the deregulation process and the introduction of competitive
energy markets [42], the prediction of energy market prices has seen a fast-growing interest.
Several modeling approaches have been developed for the analysis and prediction of energy
prices [43,44]. According to [43], modeling approaches can be classified into five categories:
game theoretic models, fundamental methods, reduced-form methods, statistical approaches and
computational intelligence. Among the different approaches, some of the most common and traditional
methods are the statistical models for time series prediction, named Autoregressive Integrated Moving
Average (ARIMA) models [45]. Furthermore, ARIMA models are commonly employed as benchmark
models to compare the predictions’ performance [46,47].

More recent attention in the prediction of energy prices has focused on computational intelligence
methods [43], where SVR and ANNs have played a major role. SVR has been introduced for regression
analysis in [48]. Since then, SVR has been used in several domains to predict time series, including
the prediction of day-ahead electricity prices [49,50]. In [51], SVR prediction performance has been
compared with ANN performance for the prediction of energy prices. Moreover, SVR has been used
in [52] as the first attempt to predict day-ahead ancillary market prices by means of regression analysis
methods.

ANN are the most commonly-used computational intelligence methods for energy price
prediction. One of the possible ANN classifications is based on their architecture [43], in which
two major ANN categories can be identified, namely feed-forward neural networks and Recurrent
Neural Networks (RNN). Feed-forward networks have been demonstrated to perform well for the
day-ahead prediction of spot market prices, such as in [46,53,54]. On the other hand, RNN have been
shown to predict the spikes of the energy prices better [55]. However, no studies were found where
ANN were employed to predict ancillary market prices in order to analyze the day-ahead prediction
performance and the possible advantages or disadvantages of such an approach.

3. Problem Analysis

This section aims at analyzing the problem of predicting ancillary service market prices for the
case of the FCR-N market in Finland. The first step of the analysis consisted of collecting and selecting
the data sources that would be used for predicting the prices (Section 3.1). A second step consisted
of analyzing the FCR-N prices to be predicted in order to understand the main statistical properties,
as well as the differences between the ancillary and the spot market prices (Section 3.2). Furthermore,
the autocorrelation of the analyzed prices is investigated in Section 3.3.

3.1. Data Collection

A crucial aspect of the prediction of time series is the selection of meaningful variables to be used
as the input for the forecasting model [56]. Since, in recent years, energy markets have faced major
changes in the fast-evolving power grid [57], in this work, two years of data were collected. In fact,
adding earlier years to the collected data would add noise to the prediction models, worsening the
prediction performance. Thus, two years of data, respectively 2015 and 2016, were collected for the
selected variables from several data sources, such as Fingrid [58], Energia.fi [59], Nord Pool [60] and
the Finnish Meteorological Institute [61].

Table 2 provides an overview of the categories of the data collected with the respective variables
and data sources. The first category consists of variables associated with the FCR market, among which
there are the FCR-N prices to be predicted. The second category is related to the import and export
of electricity in Finland from and to the neighboring countries. Then, variables were collected for
the electricity generation in Finland. Some examples of electricity generation variables are the total
generation, nuclear generation and wind generation. The total electricity load was also considered
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as a variable, as well as the Elspot prices for the Nord Pool day-ahead market and the oil prices.
Another set of variables consisted of weather variables that can affect the production and consumption
of electricity. Temperature, wind speed, solar radiations and humidity data were collected from
several locations in Finland. Moreover, calendar variables have been used to take into account seasons,
holidays, weekdays and weekends.

Table 2. Collected data.

Category Name # Data Source

FCR market data 5 Fingrid [58]
Electricity Import/Export 12 Fingrid [58]
Electricity Load 2 Fingrid [58]
Electricity Generation 12 Fingrid [58] and Energia.fi [59]
Day-ahead Elspot Prices 1 Nord Pool [60]
Oil Prices 1
Weather 26 Finnish Meteorological Institute [61]
Calendar 5

Total 64

3.2. FCR-N Price Analysis

The FCR-N prices have been analyzed for the two years of data that were collected. Figure 1
shows the 17,544 observations of the FCR-N prices; the maximum price on the vertical axis was limited
to 160 €/MW for clarity reasons, due to the small number of occurrences above this threshold. Figure 2
presents the violin plot [62] of the FCR-N prices for each month of 2016, which is the year targeted for
the predictions in our empirical work. The figure shows the median and the distribution of the FCR-N
price data. Moreover, Figure 3 displays the mean and the variance of the FCR-N prices for each month
of 2016. Both Figures 2 and 3 demonstrate that the FCR-N price data have a non-stationary distribution,
where the data distribution, the monthly mean and variance changed considerably between consecutive
months.
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Figure 1. Two years if data collected for the FCR-N market prices, limited to a maximum value of
160 €/MW.
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Figure 2. FCR-N price distribution by month for the year 2016, with representation of the median value.
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Figure 3. Average and variance for the FCR-N prices during the months of 2016.

The statistics of the FCR-N prices are presented in Table 3. The skewness value of the data was
large, demonstrating how the time series had a non-symmetric distribution. Furthermore, the kurtosis
value shows that the data distribution was a leptokurtic distribution [54], characterized by heavy tails
and sharp peaks around the mean. The large value of the Jarque–Bera test was a further indication that
the FCR-N price data were far from being normally distributed. Moreover, comparing the distribution
of the FCR-N prices (Figure 2) with the distribution of the Elspot market prices presented in Figure 4,
it can be observed how the FCR-N prices behaved differently, with the data less distributed around the
median and more towards the minimum and maximum value. A further difference with spot market
prices was that the FCR-N prices were zero for around 30% of the time (Figure 2). Thus, any insights
gained from predicting spot market prices could not be assumed to apply to this market.

Table 3. Statistics of the FCR-N price data for 2015 and 2016.

Mean 19.560 Skewness 89.335
Median 17.725 Kurtosis 37.686
Min 0.0 Jarque–Bera 1,065,031.561
Max 500.0 % 0-value 29.10%



Energies 2018, 11, 1906 7 of 22

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Months of 2016

0

20

40

60

80

100

El
sp

ot
 D

ay
-a

he
ad

 p
ri

ce
s 

(€
/M

W
h)

Figure 4. Elspot market price distribution by month for the year 2016, with representation of the
median value.

Furthermore, several studies on spot market price prediction employ seasonal adjustment
methods to remove the spot market seasonal component [54,63,64]. In fact, spot market prices present
a strong seasonal behavior [43,63]. On the other hand, the FCR-N market presented a significantly
weaker seasonality, with price patterns that can change considerably in a short period of time, as also
shown by Figures 2 and 3. Therefore, in contrast to the spot market prices, seasonal adjustment
methods could not be employed in the methodology for the prediction of the FCR-N market prices.

3.3. Autocorrelation and Variable Lag

The autocorrelation of the FCR-N prices has been investigated for the data of 2016. Figure 5
shows the average autocorrelation of the FCR-N prices. It can be observed that the FCR-N prices
presented a daily correlation (24-h lag), as well as a subordinate weekly correlation (168-h lag). Due to
the daily correlation, a lag of 24 h was added to the variables for which no predictions were accessible
for future times. Thus, the lag was added to all the variables except those belonging to the weather
and calendar categories.

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384
Lag (hours)

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rr

el
at

io
n

Figure 5. Average autocorrelation of the FCR-N prices observed.
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4. Methodology

The methodology that aimed at predicting the FCR-N prices was decomposed into five steps.
In Section 4.1, a formulation of the prediction model is made, including the formulation for the
employed ANN. A normalization preprocessing step of the input data is described in Section 4.2.
Then, the employed validation method for the ANN prediction model is presented in Section 4.3,
followed by the introduction of the performance measures utilized to evaluate the prediction
performance of the ANN model (Section 4.4). In addition, the ANN model is empirically configured
through the tuning of its hyper-parameters in Section 4.5.

4.1. Prediction Model Formulation

The primary objective of the study is to provide a solution for the prediction of the 24 distinct
prices for each hour of the day-ahead FCR-N market prices. This means that the prediction horizon
for our solution consisted of 24 distinct prices to be predicted. Thus, from the various machine
learning strategies for time series forecasting [65], the Multi-Input Multi-Output (MIMO) strategy
was selected [66]. The reason for using the MIMO strategy was that MIMO would return a vectorial
forecast of the 24 h by modeling the time series in a multiple-input multiple-output regression model
Therefore, through the MIMO strategy, it was possible to define a prediction model, which given as
input n features, denoted by the matrix X, learned a function f (X) that generated as the output the
prediction of the following ts = 24 time steps, denoted by the vector Ŷ.

Usually, in machine learning, the input matrix X has the variables in rows and the training
samples in columns. Similarly, each element of the vector Ŷ is the prediction for one training sample.
However, with the MIMO strategy with ts outputs, each training sample is a matrix X, and the
prediction for each training sample is a vector Ŷ with ts elements. Thus, the training sample X must
have ts values for each variable. For one training sample at time t, the input matrix X and the output
prediction vector Ŷ are defined as:

X =


xt−ts+1

1 . . . . . . xt
1

xt−ts+1
2

. . . . . . xt
2

. . .
. . . . . . . . .

xt−ts+1
n . . . . . . xt

n

 ; Ŷ =


ŷt+1

ŷt+2

. . .
ŷt+ts

 (1)

where t represents the time in hours, while xt
1 represents the variable 1 at time t and m = n ∗ ts refers

to the total number of elements in the matrix X.
The model employed for the prediction of the FCR-N consisted of an ANN. The ANN technique

is a computing system that mimics the function of the human brain and nerves, organized in such a
way that the structure simulates a network. As shown in Figure 6, ANN can be composed by a certain
amount of layers, which can be divided into three main categories: the input layer, the hidden layers
and the output layer. The input layer consists of input nodes where the X matrix will be represented.
The hidden layers consist of any layer in between the input and the output layer, while the output layer
consists of the output variable to be predicted, i.e., Ŷ. The key elements of an ANN are the neurons,
which are depicted in Figure 7. Each neuron receives as input the output values yi (i = 1, 2, ..., p) from each
neuron of the previous layer with their respective weights wij and calculates a linear function as follows:

Wi =

(
p

∑
j=1

wijxj

)
+ bi (2)

where p is the number of neurons of the previous layer and bi consists of a bias term. Then, in order
to introduce nonlinearity into the ANN, thus allowing the ANN to better learn f (X), each neuron
applies a non-linear function to Wi, also called the activation function ϕ(), as follows:
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Zi = ϕ (Wi) (3)
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xm

x1

x2

x3

yt+2

yt+ts

Hidden 
Layers

Input 
Layer

Output 
Layer

ts = 24

X Y^
^

^

^

Figure 6. Structure of an ANN model.

wi1

wi2

wi3

wip
xp

x1

x2

x3

Figure 7. Structure of an ANN neuron.

4.2. Data Preprocessing

Each variable in the input matrix X needs to be normalized, in order to be standardized to the
same range of values. In this study, a normalization method was chosen in order to rescale the features
as a standard normal distribution [67]. The normalization method utilized was the unit variance [67].
Thus, the employed unit variance method distributed the variables in the range [−1,1], and it is specified
as follows:

x̃ =
x − µ

3σ
(4)

where µ is the mean of the distribution and σ the standard deviation.

4.3. Model Validation

A forward validation method was employed to validate and select the best-performing ANN
models [68]. Figure 8 shows the employed walk forward validation method, where an in-sample
training dataset was utilized to train the prediction model, while an out-sample testing dataset was
reserved for evaluating the prediction performance. The size of the sliding in-sample training dataset
was determined by means of an experiment in Section 5.1.
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DATA

time

TRAIN TEST

TRAIN TEST

TRAIN TEST

1 year data 24 hours

Figure 8. Employed walk forward validation method.

Moreover, since the aim of this study is to predict the day-ahead price, the size of the testing
dataset was set to 24 h of out-sample data. Finally, in the following Section 4.5, several datasets
are formed and utilized to evaluate and select the best-performing prediction model. In time series
prediction, contiguous subsets of data (in time) are segmented into two fractions (Figure 8) [69].
The first fraction is used for training the model and precedes the second fraction in the order of time,
while the second fraction is used for testing. Thus, the performance is then evaluated by averaging the
testing error over the several datasets generated with the walk forward validation method.

4.4. Prediction Performance Evaluation

Since the design of a neural network consists of an empirical process, where several models
are tested and handcrafted, we need to define performance measures to evaluate which is the
best-performing ANN model. In this study, of the several measures of prediction accuracy presented
in the literature [43,70], in order to evaluate the prediction performance, we utilized the Mean Squared
Error (MSE). The MSE is defined as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

where yi is the price data obtained from Fingrid, while ŷi is the predicted price. The decision to
employ the MSE is mainly related to one key feature of the FCR-N prices, which present several
instances of zero-values (Table 3). In fact, due to the large amount of zero-values in the FCR-N price
data, several state of the art performance measures would produce a division by zero or an undefined
division of zero by zero [70].

4.5. Empirical Configuration of an Artificial Neural Network

One of the first design decisions is the selection of the best-performing ANN architecture,
which includes the identification of the activation functions, the number of hidden layers and the
number of neurons for each layer. Currently, the selection of ANN architectures is executed by
means of an empirical process [71], in which various architectures are tested, handcrafted and
adjusted. General guidelines for designing an ANN architecture are well known among practitioners,
as described in [72]. Following those guidelines, several architectures have been tested for the
prediction of the FCR prices. Among those, in this study, we show the results of the two best-performing
architectures, with the final aim of selecting the one that provides the best prediction performance.
The two architectures compared in this study are presented in Figures 9 and 10. The difference between
the two architectures is that the architecture in Figure 9 is composed of 2 hidden layers, respectively
containing n = 64 and 24 neurons each. The architecture in Figure 10 has 3 hidden layers, respectively
with n = 64, n/2 = 32 and 24 neurons each. In the following, the architecture of Figure 9 will be
referred as the 3-layer architecture, due the fact that the depth of the architecture is depth = 3, while the
architecture in Figure 10 will be called the 4-layer architecture, since depth = 4.
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Figure 9. Architecture of the 3-layer ANN model.
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Figure 10. Architecture of the 4-layer ANN model.

In order to compare the performance of the two ANN architectures, namely the 3-layer and the
4-layer, a set of gradient descent optimization algorithms has been employed. The set included the
Stochastic Gradient Descent (SGD) [73], RMSProp [74], Adam [75] and Nadam [76]. The performance
of the two architectures for the different gradient descent optimization algorithms are presented in
Figure 11 for the 3-layer architecture and Figure 12 for the 4-layer. The two figures show how the
3-layer architecture had better performance than the 4-layer, while the difference in performance
for the four gradient descent algorithms was less significant. The best performance was obtained
by training the 3-layer architecture with 750 epochs. Thus, in the following, the 3-layer architecture
was chosen for the FCR-N price predictions, where the Adam algorithm was utilized to optimize the
gradient with 750 epochs, due to the fact that Adam provided the best MSE performance among the
examined gradient descent algorithms.



Energies 2018, 11, 1906 12 of 22

100 250 500 750 1000
epochs

100

200

300

400

500

600

700

M
SE

Adam
Nadam
RMSProp
SGD

Figure 11. MSE performance of the 3-layer ANN model with different gradient descent algorithms and
epochs. SGD, Stochastic Gradient Descent.
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Figure 12. MSE performance of 4-layer ANN model with different gradient descent algorithms and epochs.

One of the primary tasks when designing an ANN architecture is the identification of the
best-performing activation functions. This identification is executed through an empirical process.
Figure 13 compares the performance of the 3-layer architecture using different activation functions (ϕ)
for the hidden layers [77], namely tanh, softmax, ReLU and sigmoid. For this experiment, the ReLU
function was used for the output layer, due the fact that the ReLU is defined as ReLU(x) = max(0, x)
and the FCR-N prices are non-negative numbers. The box plot in Figure 13 shows the MSE prediction
performance for a sample of thirty days uniformly distributed in the year 2016. This result shows
that the best activation function for the hidden layers in terms of MSE performance is the sigmoid
function. Thus, in the following, ϕ = sigmoid will be used as the activation function for the hidden
layers, while for the output layer, ϕ = ReLU will be used as the activation function.

In order to prevent the ANN model from overfitting, the dropout regularization was utilized for
the FCR-N price predictions [78]. The dropout is a regularization technique that temporarily drops
neurons from the ANN model during the training phase in a random order based on a probability p.
For the selected 3-layer ANN model, a validation set of sixty days uniformly distributed in the year
2016 was utilized to identify the best dropout probability value p (expressed as a percentage %) for the
FCR-N price predictions. The results of the experiment are presented in Figure 14, which shows the
average MSE performance for each of the tested dropout probability values p. The results indicated
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that the best p-values were in the range of [40, 60] %, with p = 40% being the best-performing value.
Thus, a dropout probability value of p = 40% was chosen for the 3-layer ANN model.

tanh softmax relu sigmoid
Activation function

0
50

100
150
200
250
300
350
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SE

Figure 13. MSE performance distribution of the 3-layer ANN model with different activation functions
(i.e., tanh, softmax, ReLU, sigmoid).
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Figure 14. MSE performance of the 3-layer ANN model with different dropout probability values p.

5. Empirical Results and Discussion

The selected ANN model for the experiments consisted of a three-layer model, as in Figure 9,
where the gradient optimizer utilized was Adam with 750 epochs. Moreover, for the hidden layers,
the selected activation function was the sigmoid, while for the output layer, the ReLU function was
selected. Finally, a dropout value of 40% was utilized in order to prevent the ANN model from
overfitting. In the following section, at first, the size of the training window for the ANN model is
identified through an experiment (Section 5.1), then the prediction performance of the ANN model is
extensively analyzed in Section 5.2. Section 5.3 completes the empirical experiments by comparing the
prediction performance of the ANN model to two state of the art models.
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5.1. Determining the Training Window Size

Since the FCR-N market is subject to rapid changes [57], it is necessary to establish a suitable
window size to train the model. Therefore, an experiment was executed in order to define the size
of the training window for the ANN model. Figure 15 shows the MSE for the 3-layer model for a
sample of thirty days uniformly distributed, where it can be noted that the size of the training window
tended to start stabilizing the prediction performance after 180 days on. Thus, since no fundamental
improvements or degradations of the performance were registered with training window sizes larger
than 360 day, the training window size chosen for the following experiments was 360 days, which is a
good trade-off from being too small, thus starting to degrade the prediction performance, and from
being too large, thus slowing the training of the ANN model. Moreover, further enlarging the training
dataset could add noise to the prediction model, thus worsening the prediction performance. Hence,
to summarize, in the following, the training window size is 360 days of data, while the testing window
size corresponds to the 24 h ahead unless otherwise stated.

30 90 180 270 360 450
Training Window Size (days)
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Figure 15. MSE performance of the three-layer ANN model with different training window sizes of
{30, 90, 180, 270, 360, 450} days.

5.2. Prediction Performance Analysis

The prediction performance of the FCR-N prices was analyzed for the entirety of 2016 using
the ANN model. For each day of 2016, one ANN model was trained for predicting the day-ahead
FCR-N prices. Therefore, the first experiment aimed at analyzing the prediction performance for each
month of the year 2016. As shown in Figures 2 and 3, the FCR-N market prices have a fast-changing
behavior even between consecutive months.Thus, this fast-changing behavior was also expected to
affect the prediction performance. The prediction performance for each month of 2016 is presented
in Figure 16 in the form of a box plot, where the median value is noted with a line within the boxes.
As can be observed, the worse performance in the predictions was during the months of May and July.
This performance result reflects the analysis presented in Section 3.2. In addition, the months of May
and July presented a distribution of the price data, which differed considerably from their respective
previous months (Figure 2), thus preventing the ANN model from learning the fast changes of the
market efficiently.



Energies 2018, 11, 1906 15 of 22

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month of 2016

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700

M
SE

Figure 16. MSE performance of the three-layer ANN model for the entire year of 2016 aggregated by month.

However, it can be noted that the median values in Figure 16 stand on the lower part of the
respective boxes, demonstrating how the prediction performance was affected by a small number of
outlier days. In fact, this can be observed by looking at the prediction performance more in detail.
As examples, we analyzed the performance for the months of July and August, respectively the month
with the higher variance and the next in the order of time. Thus, the prediction performance for each day
of July and August is presented in Figures 17 and 18, respectively, where the monthly mean and median
of the MSE of each day are also represented. The figures show how the difference between the mean
and the median of the performance was due to a small set of outlier days. The main four outlier days of
July and August are presented in Figure 19. All the outlier days present very unusual price patterns,
which were not registered in the past observations, making them exceptionally difficult to predict.

On the other hand, Figure 20 shows the prediction of the FCR-N prices for four days in the
time span of two weeks between July and August 2016. As can be noted, the pattern of the FCR-N
prices could vary quite rapidly in a short time period, making the FCR-N price prediction more
challenging than the spot prices, which presented an evident seasonality between contiguous days.
Moreover, the first row in Figure 21 presents two days with an outlier behavior (i.e., price patterns
specific to the analyzed period of time and not commonly observed in other periods), which were
adequately predicted by the ANN model. In the second row of Figure 21 is shown two price patterns
with their respective predictions, which recurred regularly along the entire period of time analyzed
(i.e., 2015–2106), where the ANN model succeeded to provide accurate predictions.
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Figure 17. MSE performance of the three-layer ANN model for the month of July 2016.
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Figure 18. MSE performance of the three-layer ANN model for the month of August 2016.
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Figure 19. Examples of four outlier days in terms of FCR-N price behaviors in the period July–August 2016.

Part of the methodology involves the decision on how often the computationally-intensive
retraining of the ANN needs to be performed. Thus, the second experiment aimed at analyzing how
the performance of the ANN model degraded when the ANN model was utilized for predicting several
days in the future without a retraining of the model. Figure 21 presents the prediction performance
(in terms of MSE) of the ANN model up to seven days in the future for the year 2016, where the median
of the daily performance is represented with a line, while the daily mean performance is represented
as a triangle. The prediction performance degraded linearly with respect to the number of days in the
future to be predicted, going from an MSE of 115.8 for the first day to 139.6 for the seventh day after
training the ANN model. At the same time, the distance between the median and the mean, as well as
the variance of the prediction performance increased, indicating that a short retraining period of the
ANN model was desirable to reduce the prediction errors on outlier price patterns.
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Figure 20. Examples of four days in the period July–August 2016, which have been accurately predicted
by the ANN model, where in the first row, there are two outlier price patterns, while in the second row,
two of the most recurring price patterns for the FCR-N market.
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Figure 21. MSE performance of the three-layer ANN model in the entire year of 2016 for the prediction
of several days in the future.

5.3. Comparison with the State of the Art

The last experiment aimed at comparing the prediction performance of the ANN model with two
state of the art methods. The two selected methods were SVR and ARIMA, respectively, which were
employed as benchmarks of the state of the art for predicting the FCR-N prices. Therefore, an SVR
model was trained with the same training data as for the ANN model, i.e., with the X matrix as the
input. While for the ARIMA model, one-year FCR-N price data prior to the day to be predicted were
used as the training data, where the ARIMA parameters (p, d, q) (i.e., respectively autoregressive,
differencing and moving average parameters) are ARIMA(p = 1, d = 1, q = 1). Similarly to the
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ANN model, the test window size was for the 24 h of the day-ahead for both selected methods
(i.e., SVR and ARIMA).

Figure 22 compares the FCR-N price prediction performance of the ANN model with the two
selected benchmark models: SVR and ARIMA(1, 1, 1). The results revealed how the ANN model
outperformed the SVR, as well as the ARIMA. The results showed how during the first four months of
the year, when the prices were distributed around the median and had a low variance, the three models
had similar performance, even if the ANN model always outperformed the other two models. However,
once the prices experienced an increase in the variance and a dispersion from the median value
(i.e., between May and August), the ARIMA failed to adapt to the fast changes of the FCR-N prices,
while the ANN model provided predictions with a superior accuracy even compared to the SVR model.
Further, the ARIMA predictions for the last few months of 2016 (i.e., September–December), where the
FCR-N prices have a similar behavior, were largely affected by the previous period (i.e., May–August),
showing how the ARIMA failed to adapt to the new changes of the prices. On the contrary, the ANN
model was capable of adapting also in the third period of the experimented year and significantly
outperformed the ARIMA benchmark, without being affected by the noise of the prices from the
preceding period (i.e., May–August). In addition, for the same period, the ANN model performed
better than the SVR model, which resulted in being more robust to the noise introduced by the previous
prices than ARIMA. Thus, ANN was shown to outperform the ARIMA benchmark model largely,
being more capable of adapting to new price patterns, while maintaining memory of the patterns
occurring regularly and being more robust to the fast changes occurring in the FCR-N market prices.
Moreover, the ANN also outperformed the prediction performance of the SVR model.
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Figure 22. Performance comparison between the ANN model, SVR model and the ARIMA(1,1,1) model
for the entire year of 2016 aggregated by month.

6. Conclusions

The objective of this study was to predict the day-ahead prices for ancillary markets, with the
FCR-N market as a case study. The study outlined the problem analysis and methodology used to
predict the FCR-N market prices. The problem analysis consisted of identifying the relevant data
sources available for the predictions and then continued by analyzing the FCR-N market prices
and their substantial differences from the spot market prices. Moreover, the methodology outlined
the selected MIMO strategy for time series forecasting. Then, the methodology defined the data
preprocessing and utilized the model validation method and the performance evaluation coefficient.
Finally, the methodology introduced the main design decisions that were made for the configuration
of the ANN model, which consisted of tuning several hyper-parameters through an empirical process.

In Section 5, the performance of the developed ANN model for the prediction of FCR-N market
prices was analyzed. At first, the size of the training window size was determined through an
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experiment. Then, the predictions for the entire year 2016 were analyzed in detail, demonstrating
that the performances were affected by a small set of outlier days. Moreover, a third experiment
proved how a frequent retraining of the ANN model can mitigate the effect of the outlier days on
the prediction performance. Finally, the last experiment aimed at showing how the developed ANN
model outperformed two benchmark state of the art models, namely the SVR and ARIMA models,
in the prediction of the FCR-N market prices.
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Abbreviations

The following abbreviations are used in this manuscript:

aFRR Automatic Frequency Restoration Reserve
ANN Artificial Neural Network
ARIMA AutoRegressive Integrated Moving Average
DER Distributed Energy Resources
DR Demand Response
EV Electric Vehicle
FCR Frequency Containment Reserve
FCR-D Frequency Containment Reserve for Disturbance
FCR-N Frequency Containment Reserve for Normal operation
MIMO Multi-Input Multi-Output
MSE Mean Squared Error
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
SVR Support Vector Regression
V2B Vehicle-to-Building
V2H Vehicle-to-Home
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