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Abstract: This study proposes a mixed-integer linear programming (MILP) model to figure out
the transmission-constrained direct current (DC)-based unit commitment (UC) problem using
the generalized generation distribution factors (GGDF) for modeling the transmission network
constraints. The UC problem has been reformulated using these linear distribution factors without
sacrificing optimality. Several test power systems (PJM 5-bus, IEEE-24, and 118-bus) have been used
to validate the introduced formulation. Results demonstrate that the proposed approach is more
compact and less computationally burdensome than the classical DC-based formulation, which is
commonly employed in the technical literature to carry out the transmission network constraints.
Therefore, there is a potential applicability of the accomplished methodology to carry out the UC
problem applied to medium and large-scale electrical power systems.

Keywords: DC optimal power flow; power transfer distribution factors; generalized generation
distribution factors; unit commitment

1. Introduction

The unit commitment (UC) optimization problem is the conventional formulation used by
regulated companies and power pools to schedule the power generation units for supplying the load
demand over a multi-hour to multi-day timeframe [1]. The UC problem consists of deciding which
thermoelectric power units need to operate at each time period (1 h) in order to minimize the generation
costs (fuel cost, startup, and shutdown costs), and to satisfy the operational technical constraints for the
entire power system (spinning reserve and load), as well as for each power generation unit (minimum
up/down times, minimum and maximum power, and load ramps) [2].

1.1. Literature Review

It is critical that transmission power flow constraints will be incorporated in the UC formulation,
because most power grids are operating close to their security electrical margins [3]. Different linear
transmission network formulations have been apply to model the transmission capacity limits in
the UC optimization problem. However, most researchers use the classical DC-based power flow
formulation [4–13], where the active power unit generation and the voltage phase angles are the
decision variables used to carry out the operational problem. This problem consists of two analyses:
(1) the nodal power balance equality constraints; and (2) the maximum transmission power flow
inequality constraints. Based on the classical DC-based formulation and incorporating the transmission
power flow constraints in the optimization problem, it is significantly increased the problem size
becoming computationally more complex when it is applied to large-scale electrical power systems.

Energies 2018, 11, 2232; doi:10.3390/en11092232 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-7586-0572
http://dx.doi.org/10.3390/en11092232
http://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/11/9/2232?type=check_update&version=2


Energies 2018, 11, 2232 2 of 17

Determining the transmission power flow relationships, constraints and variables that have no
influence in the mathematical formulation could be eliminated from the optimization problem [6].
Alternatively, linear sensitivity factors (LSF) have also been used in the technical literature [14–21]
to determine the active power network constraints in the UC problem. The LSF formulation has the
advantage of requiring fewer decision variables, as well as equality constraints, by excluding the phase
voltage angles without sacrificing optimality. Nevertheless, the power flow sensitivity matrix is not
sparse, and it could be precomputed offline and updated when the network topology changes due to
an outage, maintenance, or a switching event [17].

The LSF are also known as partial transmission distribution factors (PTDF), and these linear
factors are used to carry out the transmission-constrained UC problem by several researchers in the
technical literature. In addition, this approach does not sacrifice the optimality in the mathematical
formulation; i.e., the equivalence for both models has been demonstrated in several studies [12,20].

An algorithm for solving the UC problem by means of the Lagrangian relaxation approach is
reported in [13], where the transmission power flow constraints are formulated as linear inequality
constraints based on the LSF and the net power injected in each electrical bus. A similar approach
is implemented in a three-phase algorithmic scheme to determine the UC problem reported in [16].
Benders decomposition is proposed in [15] for solving the UC problem. The transmission-constrained
UC problem is decomposed into two problems: a master problem and a subproblem. The master
problem solves the UC without transmission network limits using the augmented Lagrangian
relaxation, and the subproblem must accomplish the transmission inequality constraints. In this
study, the transmission power flow constraints are also formulated as linear constraints using the
PTDF. On the other hand, a method for treating transmission network bottlenecks in a stochastic
market model, where generators and loads are allocated into regional sub-systems or price areas,
is reported in [18]. The market model is designed for long-term and medium-term scheduling of
hydrothermal power system operation. When any of the interconnections are overloaded, power flow
constraints are added to the area optimization problem using the PTDF. An effective approach
for obtaining robust solutions to the security-constrained (SC) UC problem with load and wind
uncertainty correlation is proposed in [19]. The SCUC model is solved by Benders decomposition.
Transmission network constraints are modeled using the PTDF. A power-based network constrained
UC model to deal with wind generation uncertainty is reported in [20]. The model schedules
power-trajectories instead of the traditional energy-blocks, and it takes into account the inherent
startup and shutdown power trajectories of thermal units. The PTDF are used to model the active
power flow constraints. Additionally, an N–1 security-constrained UC approach is reported in [21].
The transmission constraints are formulated as linear constraints based on the classical DC power flow
approach. The transmission-constrained UC problem is determined using the injection shift factors for
modeling the pre-contingency constraints and the line outage distribution factors (LODF) for modeling
the post-contingency power flow constraints (N–1 criterion).

1.2. Contributions

This study proposes to apply the GGDF, which are another LSF used to formulate the network
transmission inequality constraints in the unit commitment problem. The GGDF relates the active
power flow in the transmission lines or transformers with the generation power unit for a given
electrical system [22]. In comparison with the PTDF-based formulation, the main advantage of the
GGDF-based formulation is that the definition of the active power flow inequality constraints is
enhanced. Notice that these linear distribution factors represent the portion of generation supplied by
each power unit that flows on a specific transmission line. Another advantage is that, unlike PTDF,
which uses a slack bus to calculate these values, the obtained GGDF is the same matrix using any
slack bus to compute these factors. It is worth highlighting that, in the GGDF-based formulation:
(1) the nodal power balance equality constraints are transformed using only one equality constraint,
which is also used in the economic dispatch problem to supply the load of the customers; and (2) the
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transmission power flow inequality constraints are carried out using the GGDF and the active power
generation of each unit. It should be also pointed out that the active power generation is the only
decision variable in the operational optimization problem.

In the technical literature review, there is no evidence about the performance of the GGDF-based
formulation applied to the transmission-constrained UC problem. In this study, the accuracy and
performance of UC GGDF-based formulation are gauged and compared to both the classical DC-
and PTDF-based formulations. It has accomplished several analyses by means of the proposed
methodology and a commercial solver in order to evaluate the performance of the formulation
applied to PJM 5-bus, IEEE-24, and 118-bus power systems. The results demonstrate that a superior
performance is achieved for modeling medium-scale power systems and, mainly, it has improved the
mathematical complexity of the optimization problem given in [12], as well as bringing great practical
advantages for modeling the stochastic scheduling problems without sacrificing the UC optimality.

This paper is structured as follows: Section 2 presents the UC optimization problem, and Section 3
describes the simulation results. Finally, Section 4 concludes and suggests directions for future work.

2. Transmission-Constrained Unit Commitment (TCUC) Model

2.1. Linearized Generator Cost Modeling

The total generation cost is typically expressed as a quadratic cost curves (QCCs). To facilitate the
UC optimization process with efficient mixed-integer linear programing (MILP) solvers, QCCs are
piecewise linearized.

Unit i’s production cost function is given by the following equation:

C(pi) = αi + βi pi + γi p2
i (1)

where C(pi) is the total generation cost, pi is the output power of the generator i, and αi, βi, and γi
are the production cost factors. The generator total cost curve can be represented by a series of linear
sections [23]. The linearized generator cost model could be mathematically formulated as follows:

pi =
Lg

∑
l=1

∆pi,l (2)

0 ≤ ∆pi,l ≤
PMax

i
Lg

(3)

C(pi) = αi +
Lg

∑
l=1

ki,l∆pi,l (4)

ki,l = βi + (2l − 1)γi

(
PMax

i
Lg

)
(5)

where ∆pi,l represent segments of the i-th output power unit, PMax
i is the maximum power generation

of unit i, ki,l is a linear section in the total cost curve, and Lg is the number of segments.

2.2. Transmission Network Modeling

Most popular UC implementations have adopted the classical DC-based formulation to carry out:
(1) the nodal power balance constraints; and (2) the transmission network constraints.

(1) In the classical DC-based formulation, the power balance equality constraints are formulated
using the following matrix equation:

Bθ = P− Pd (6)
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where B is the bus admittance matrix, θ is the vector of node phase angles, P is a power generation
vector, and Pd is a power demand vector.

However, when the voltage phase angles are replaced in Equation (6) using the inverse of the
admittance matrix B, only one equation is obtained to supply the load of the customers for both the
PTDF- and GGDF-based formulations.

(2) Using the classical DC approach, the power flow, Pmq, through the transmission line between bus
m and q, is defined using Equation (7):

Pmq =
θm − θq

Xmq
= Bmq

(
θm − θq

)
(7)

where θm is the complex voltage angle at bus m, Bmq is the line susceptance between buses m–q,
and Xmq is the line reactance between buses m–q.

Based on the technical literature review, the transmission power flows can also be expressed using
the PTDF matrix as [12,24,25]:

Pmq = PTDF
(

At
gP− Pd

)
(8)

where Ag is the generator-bus incidence matrix.
The PTDF matrix is a function of the transmission lines impedances. In addition, the PTDF matrix

depends on a slack bus, which means that for any choice of slack bus, there will be a PTDF matrix that
completely describes how the injections at each bus in the network affect the power flows throughout
the transmission system. Note that every power injection is compensated by the slack bus.

It is worth mentioning that the PTDF factors must be precomputed and stored prior to the
mathematical formulation and simulation.

On the other hand, the power flow through the transmission line between bus m and n, could be
expressed using the GGDF [26]:

Pmq = GGDFmq,i pi (9)

where the GGDF represents the portion of generation supplied by each generator that flows on a
specific transmission line.

For any mathematical formulation, the maximum transmission power flows must be constrained
considering the transmission thermal limits:

− PMax
mq ≤ Pmq ≤ PMax

mq ∀m, q ∈ N (10)

where N is the total number of buses, and PMax
mq is the maximum power flow through the transmission

line m–q.
Using the PTDF matrix, the transmission limit constraint is expressed as follows:

− PMax
mq ≤ PTDFmq

(
At

gP− Pd
)
≤ PMax

mq ∀m, q ∈ N (11)

Since the load of the customers is constant values for each time period; i.e., they are not affected
by the UC problem so that they can be accordingly moved from Equation (11) to the left-hand (lhs) and
right-hand (rhs) limits.

Using the GGDF matrix, the transmission limit constraints are expressed using the
following equation:

− PMax
mq ≤ GGDFmq,i pi ≤ PMax

mq ∀m, q ∈ N (12)

Notice that previous task is avoided using the GGDF formulation, because the transmission power
flows are only a function of GGDF and decision variables (active power generation of each unit).

See the Appendix A for a detailed derivation of the GGDF matrix.
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In order to compare the three formulations, we show how to model, for a given period t,
the nodal power balance equality constraints and the transmission power flow inequality constraints.
Every formulation has been applied to the PJM 5-bus system, which is included in Matpower [27].
For the transmission network modeling, bus 1 has been used as the reference (slack) bus and a base
power value of 100 MVA.

(1) Classical DC-based formulation using p.u. values:

Bbus


θ1

θ2

θ3

θ4

θ5

 =


P1 − Pd1

P2 − Pd2

P3 − Pd3

P4 − Pd4

P5 − Pd5


−4 ≤ θ1−θ2

0.0281 ≤ 4
−10 ≤ θ1−θ4

0.0304 ≤ 10
−10 ≤ θ1−θ5

0.0064 ≤ 10
−10 ≤ θ2−θ3

0.0108 ≤ 10
−10 ≤ θ3−θ4

0.0297 ≤ 10
−2.4 ≤ θ4−θ5

0.0297 ≤ 2.4

(2) The PTDF-based formulation using MW values:

P1 + P2 + P3 + P4 + P5 = PD

−



400
1000
1000
1000
1000
240


≤ PTDF


P1 − Pd1

P2 − Pd2

P3 − Pd3

P4 − Pd4

P5 − Pd5

 ≤


400
1000
1000
1000
1000
240


(3) The GGDF-based formulation using MW values:

P1 + P2 + P3 + P4 + P5 = PD

−



400
1000
1000
1000
1000
240


≤ GGDF


P1

P2

P3

P4

P5

 ≤


400
1000
1000
1000
1000
240


where:

Bbus =


224.7319 −35.5872 0 −32.8947 −156.2500
−35.5872 128.1798 −92.5926 0 0

0 −92.5926 126.2626 −33.6700 0
−32.8947
−156.2500

0
0

−33.6700
0

100.2348
−33.6700

−33.6700
189.9200
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PTDF =



0 −0.6698 −0.5429 −0.1939 −0.0344
0 −0.1792 −0.2481 −0.4376 −0.0776
0 −0.1509 −0.2090 −0.3685 −0.8880
0 0.3302 −0.5429 −0.1939 −0.0344
0 0.3302 0.4571 −0.1939 −0.0344
0 0.1509 0.2090 0.3685 −0.1120



GGDF =



0.4414 −0.2284 −0.1015 0.2475 0.4070
0.3032 0.1240 0.0551 −0.1343 0.2257
0.2554 0.1044 0.0464 −0.1131 −0.6327
0.1414 0.4716 −0.4015 −0.0525 0.1070
−0.1586 0.1716 0.2985 −0.3525 −0.1930
−0.2554 −0.1044 −0.0464 0.1131 −0.3673


It should be pointed out that the equality and inequality constraints are equivalent for each

formulation without sacrificing the UC optimality.

2.3. TCUC Mathematical Formulation

This paper uses the MILP formulation introduced in [28] as the reference formulation for the UC
problem. The proposed TCUC model using the GGDF is mathematically formulated as follows:

Min
T

∑
t=1

Ng

∑
i=1

[
αi Ii,t +

Lg

∑
j=1

kij∆pij,t + cU
i,t + cD

i,t

]
+

T

∑
t=1

N

∑
j=1

cENS
j,t (13)

subject to:
Ng

∑
i=1

pi,t +
N

∑
j=1

ENSi,t =
N

∑
i=1

Pdi,t ∀t ∈ T (14)

Ng

∑
i=1

pi,t ≥
N

∑
i=1

Pdi t + Rt ∀t ∈ T (15)

pi,t =
Lg

∑
ij=1

∆pij,t ∀i ∈ Ng (16)

0 ≤ ∆pij ≤
PMax

i
Lg

∀j ∈ Lg (17)

pi,t ≤ PMax
i

[
Ii,t − zi,(t+1)

]
+ zi,(t+1)SDi ∀t ∈ T (18)

pi,t ≤ pi,(t−1) + RUi Ii,(t−1) + SUiyi,t ∀t ∈ T (19)

pi,t ≥ 0 ∀t ∈ T (20)

pi,t ≤ pi,t ∀t ∈ T (21)

PMin
i Ii,t ≤ pi,t ∀t ∈ T (22)

pi,(t−1) − pi,t ≤ RDi Ii,t + SDizi,t ∀t ∈ T (23)

Fi

∑
t=1

Ii,t = 0 where Fi = Min{[T, (DTi − si,0)][1− Ii,0]} (24)

t+DTi−1

∑
n=t

[1− Ii,t] ≥ DTizi,t ∀t = Fi+1 . . . T − DTt+1 (25)
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T

∑
n=t

[1− Ii,n − zi,t] ≥0 ∀t = T − DTi+2 . . . T (26)

Li

∑
t=1

[1− Ii,t] = 0 where Li = Min[T, (UTi −Ui,0)Ii,0] (27)

t+UTi−1

∑
n=t

Ii,n ≥ UTiyi,t ∀t = Li+1 . . . T −UTt+1 (28)

T

∑
n=t

[Ii,n − yi,n] ≥0 ∀t = T −UTi+2 . . . T (29)

− PMax
mq,t ≤ GGDFpi,t ≤ PMax

mq,t ∀t ∈ T (30)

yi,t − zi,t = Ii,t − Ii,t−1 ∀t ∈ T (31)

yi,t + zi,t ≤ 1 ∀t ∈ T (32)

where Ng is the total number of generators, T is the total number of periods; cU
i,t, cD

i,t are the startup
and shutdown costs of unit i at period t ($), respectively; cENS

j,t is the non-served energy cost of bus j
at period t ($/MWh); Pdi t is the load demand of node i at period t (MW); Rt is the system spinning
reserve at period t (MW); PMin

i is the minimum output power of unit i (MW); SUi and SDi are the
startup and shutdown ramp limits of unit i (MW/h), respectively; RUi and RDi are the ramp-up and
ramp-down rate limits of unit i (MW/h), respectively; UTi and DTi are the minimum up and down
time of unit i (h), respectively; Ii,t is a binary variable equal to 1 for period t whether unit i is on and 0
otherwise (off); yi,t is a binary variable equal to 1 whether unit i is started up at the beginning of period
t and 0 otherwise; and zi,t is a binary variable equal to 1 whether unit i is shutdown at the beginning of
period t and 0 otherwise.

The objective function in Equation (13) minimizes the variable production costs, the startup
and shutdown costs and the non-served energy cost. The UC problem is subject to the following
equality and inequality constraints: load balance equality constraint (Equation (14)), system spinning
reserve (Equation (15)), linearized production cost (Equations (16) and (17)), limits on power output
(Equations (21) and (22)), generators’ ramp rate (Equations (18)–(20) and (23)), generators’ minimum
downtime (Equations (24)–(26)), generators’ minimum uptime (Equations (27)–(29)), transmission
network (Equation (30)), and commitment, as well as startup and shutdown logic, of generating units
(Equations (31)–(32)).

3. Results

In this section, the introduced mathematical formulation is applied to three electrical test systems:
the PJM 5-bus system, the IEEE 24-bus reliability test system, as well as the IEEE 118-bus system.
The proposed transmission-constrained UC approach is compared in terms of unit commitment costs
and computational aspects using results obtained by other methodologies [12].

All simulations are performed on a personal computer (PC) running Windows® 10 with an
Intel® Core i7, 2.7-GHz, 12 GB RAM, and 64-bit, using CPLEX® (12.7.1) under MATLAB® Code
(Version 2014b, ITM, Mexico). Computing the simulation time is based on a set of 100 simulations.

3.1. PJM 5-Bus System

The PJM 5-bus system has five buses, six transmission lines, and five generators. Operational
costs and system data are taken from [29]. Figure 1 depicts the one-line diagram for this system. In this

test system, the spinning capacity requirements are set to Rt = 0.03
N
∑

i=1
Pdi t for all time periods (t).
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Table 1 lists the minimum up and down times and initial conditions for each power unit.

Table 1. Minimum up (UT) and down (DT) times.

Unit # UTi (hours) DTi (hours) Initial Condition (hours)

Alta 5 3 0
Park City 5 3 0
Solitude 4 2 8
Sundace 3 2 8
Brighton 5 4 0

The hourly load percentage levels are taken from [30] (Table 4—RTS 96 system). The system’s
peak demand occurs at hour 21, and the minimum demand occurs at hour 4.

To fully illustrate the TCUC problem applied to this power system, the following
mathematical equations have been presented in order to explain the optimization problem given
in Equations (13)–(32):

Min
24

∑
t=1



αBrighton Ii,t +
Lg
∑

j=1
kBrighton j∆pBrighton j,t + cU

Brighton,t + cD
Brighton,t

αSundance ISundance,t +
Lg
∑

j=1
kSundance j∆pSundance j,t + cU

Sundance,t + cD
Sundance,t

αAlta IAlta,t +
Lg
∑

j=1
kAlta j∆pAlta j,t + cU

Alta,t + cD
Alta,t

αPark City IPark City,t +
Lg
∑

j=1
kPark City j∆pPark City j,t + cU

Park City,t + cD
Park City,t

αSolitude ISolitude,t +
Lg
∑

j=1
kSolitude j∆pSolitude j,t + cU

Solitude,t + cD
Solitude,t



pBrighton,t + pSundance,t + pAlta,t + pPark City,t + pSolitude,t =
N

∑
i=1

Pdi,t ∀t = 1, . . . , 24

pBrighton,t + pSundance,t + pAlta,t + pPark City,t + pSolitude,t ≥
N

∑
i=1

Pdi t + Rt ∀t = 1, . . . , 24

pBrighton,t =
Lg

∑
j=1

∆pBrighton j,t ∀t = 1, . . . , 24
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pSundance,t =
Lg

∑
j=1

∆pSundance j,t ∀t = 1, . . . , 24

pAlta,t =
Lg

∑
j=1

∆pAlta j,t ∀t = 1, . . . , 24

pPark City,t =
Lg

∑
j=1

∆pPark City j,t ∀t = 1, . . . , 24

pSolitude,t =
Lg

∑
j=1

∆pSolitude j,t ∀t = 1, . . . , 24

0 ≤ ∆pBrighton j,t ≤
PMax

Brighton

Lg
∀j = 1, . . . , Lg

0 ≤ ∆pSundance j,t ≤
PMax

Sundance
Lg

∀j = 1, . . . , Lg

0 ≤ ∆pAlta j,t ≤
PMax

Alta
Lg

∀j = 1, . . . , Lg

0 ≤ ∆pPark City j,t ≤
PMax

Park City

Lg
∀j = 1, . . . , Lg

0 ≤ ∆pSolitude j,t ≤
PMax

Solitude
Lg

∀j = 1, . . . , Lg

pBrighton,t ≤ PMax
Brighton

[
IBrighton,t − zBrighton,(t+1)

]
+ zBrighton,(t+1)SDBrighton ∀t = 1, . . . , 24

pSundance,t ≤ PMax
Sundance

[
ISundance,t − zSundance,(t+1)

]
+ zSundance,(t+1)SDSundance ∀t = 1, . . . , 24

pAlta,t ≤ PMax
Alta

[
IAlta,t − zAlta,(t+1)

]
+ zAlta,(t+1)SDAlta ∀t = 1, . . . , 24

pPark City,t ≤ PMax
Park City

[
IPark City,t − zPark City,(t+1)

]
+ zPark City,(t+1)SDPark City ∀t = 1, . . . , 24

pSolitude,t ≤ PMax
Solitude

[
ISolitude,t − zSolitude,(t+1)

]
+ zSolitude,(t+1)SDSolitude ∀t = 1, . . . , 24

pBrighton,t ≤ pBrighton,(t−1) + RUBrighton IBrighton,(t−1) + SUBrightonyBrighton,t ∀t = 1, . . . , 24

pSundance,t ≤ pSundance,(t−1) + RUSundance ISundance,(t−1) + SUSundanceySundance,t ∀t = 1, . . . , 24

pAlta,t ≤ pAlta,(t−1) + RUAlta IAlta,(t−1) + SUAltayAlta,t ∀t = 1, . . . , 24

pPark City,t ≤ pPark City,(t−1) + RUPark City IPark City,(t−1) + SUPark CityyPark City,t ∀t = 1, . . . , 24

pSolitude,t ≤ pSolitude,(t−1) + RUSolitude ISolitude,(t−1) + SUSolitudeySolitude,t ∀t = 1, . . . , 24

pBrighton,t ≥ 0 ∀t = 1, . . . , 24

pSundance,t ≥ 0 ∀t = 1, . . . , 24

pAlta,t ≥ 0 ∀t = 1, . . . , 24

pPark City,t ≥ 0 ∀t = 1, . . . , 24

pSolitude,t ≥ 0 ∀t = 1, . . . , 24

pBrighton,t ≤ pBrighton,t ∀t = 1, . . . , 24
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pSundance,t ≤ pSundance,t ∀t = 1, . . . , 24

pAlta,t ≤ pAlta,t ∀t = 1, . . . , 24

pPark City,t ≤ pPark City,t ∀t = 1, . . . , 24

pSolitude,t ≤ pSolitude,t ∀t = 1, . . . , 24

PMin
Brighton IBrighton,t ≤ pBrighton,t ∀t = 1, . . . , 24

PMin
Sundance ISundance,t ≤ pSundance,t ∀t = 1, . . . , 24

PMin
Alta IAlta,t ≤ pAlta,t ∀t = 1, . . . , 24

PMin
Park City IPark City,t ≤ pPark City,t ∀t = 1, . . . , 24

PMin
Solitude ISolitude,t ≤ pSolitude,t ∀t = 1, . . . , 24

k+DTBrighton−1

∑
j=k

[
1− IBrighton,j

]
≥ DTBrightonzBrighton,k ∀k = Fi+1 . . . 24− DTj+1

k+DTSundance−1

∑
j=k

[
1− ISundance,j

]
≥ DTSundancezSundance,k ∀k = Fi+1 . . . 24− DTj+1

k+DTAlta−1

∑
j=k

[
1− IAlta,j

]
≥ DTAltazAlta,k ∀k = Fi+1 . . . 24− DTj+1

k+DTPark City−1

∑
j=k

[
1− IPark City,j

]
≥ DTPark CityzPark City,k ∀k = Fi+1 . . . 24− DTj+1

k+DTSolitude−1

∑
j=k

[
1− ISolitude,j

]
≥ DTSolitudezSolitude,k ∀k = Fi+1 . . . 24− DTj+1

T

∑
j=k

[
1− IBrighton,j − zBrighton,k

]
≥0 ∀k = 24− DTi+2 . . . 24

T

∑
j=k

[
1− ISundance,j − zSundance,k

]
≥0 ∀k = 24− DTi+2 . . . 24

T

∑
j=k

[
1− IAlta,j − zAlta,k

]
≥0 ∀k = 24− DTi+2 . . . 24

T

∑
j=k

[
1− IPark City,j − zPark City,k

]
≥0 ∀k = 24− DTi+2 . . . 24

T

∑
j=k

[
1− ISolitude,j − zSolitude,k

]
≥0 ∀k = 24− DTi+2 . . . 24

k+UTBrighton−1

∑
j=k

IBrighton,j ≥ UTBrightonyBrighton,k ∀k = Li+1 . . . 24−UTi+1

k+UTSundance−1
∑

j=k
ISundance,j ≥ UTSundanceySundance,k ∀k = Li+1 . . . 24−UTi+1
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k+UTAlta−1
∑

j=k
IAlta,j ≥ UTAltayAlta,k ∀k = Li+1 . . . 24−UTi+1

k+UTPark City−1

∑
j=k

IPark City,j ≥ UTPark CityyPark City,k ∀k = Li+1 . . . 24−UTi+1

k+UTSolitude−1
∑

j=k
ISolitude,j ≥ UTSolitudeySolitude,k ∀k = Li+1 . . . 24−UTi+1

T

∑
j=k

[
IBrighton,j − yBrighton,k

]
≥0 ∀k = 24−UTi+2 . . . 24

T

∑
j=k

[
ISundance,j − ySundance,k

]
≥0 ∀k = 24−UTi+2 . . . 24

T

∑
j=k

[
IAlta,j − yAlta,k

]
≥0 ∀k = 24−UTi+2 . . . 24

T

∑
j=k

[
IPark City,j − yPark City,k

]
≥0 ∀k = 24−UTi+2 . . . 24

T

∑
j=k

[
ISolitude,j − ySolitude,k

]
≥0 ∀k = 24−UTi+2 . . . 24

−



400
1000
1000
1000
1000
240


≤ GGDF


pBrighton,t
pSundance,t

pAlta,t
pPark City,t
pSolitude,t

 ≤


400
1000
1000
1000
1000
240


∀t = 1, . . . , 24

yBrighton,t − zBrighton,t = IBrighton,t − IBrighton,t−1 ∀t = 1, . . . , 24

ySundance,t − zSundance,t = ISundance,t − ISundance,t−1 ∀t = 1, . . . , 24

yAlta,t − zAlta,t = IAlta,t − IAlta,t−1 ∀t = 1, . . . , 24

yPark City,t − zPark City,t = IPark City,t − IPark City,t−1 ∀t = 1, . . . , 24

ySolitude,t − zSolitude,t = ISolitude,t − ISolitude,t−1 ∀t = 1, . . . , 24

yBrighton,t + zBrighton,t ≤ 1 ∀t = 1, . . . , 24

ySundance,t + zSundance,t ≤ 1 ∀t = 1, . . . , 24

yAlta,t + zAlta,t ≤ 1 ∀t = 1, . . . , 24

yPark City,t + zPark City,t ≤ 1 ∀t = 1, . . . , 24

ySolitude,t + zSolitude,t ≤ 1 ∀t = 1, . . . , 24

where, the GGDF matrix was introduced in Section 2.2.
Figure 2 is a graphic representation of the optimal solution. Unit commitment without

transmission network constraints is solved, and the optimal cost is $229,700. This schedule makes
extensive use of the Units 1, 2, and 5 (U1, U2, and U5), but it does not use Unit 4 (U4) at all. U1 reaches
its upper limit of generation during all its online periods because it is the cheapest unit; i.e., it is
dispatched to generate as much power as often as possible.
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Figure 3 displays the UC scheduling and hourly output power generation. For this optimization
problem, there is congestion in transmission line between bus D and E during almost all of the 24-hour
period, except from hour 2 to hour 6. These power flows reach their limits since U5 produces as much
power as possible, while it is constrained by transmission limits.
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Compared the total cost considering both cases, the increased cost due to the transmission network
($267,904.7 − $229,700.0 = $38,204.7) is about 17% of the total cost.

Table 2 shows the computational aspects for the three UC models: (1) DC-, (2) PTDF-, and (3)
GGDF-based formulations. The DC-based classical formulation requires a larger number of decision
variables. With respect to equality constraints, the PTDF- and GGDF-based formulations require
(144) constraints, which is much lower than the classical formulation (240). The inequality constraints
are the same for all formulations (2112). Comparing the optimal solution with the classical DC-
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and PTDF-based formulations, it is shown that all solutions are the same, which corroborates the
optimality and equivalence of the GGDF-based formulation. It also includes the maximum, minimum,
and average simulation time considering 100 trials.

Table 2. Computational aspects of the PJM 5-bus system.

Formulation DC PTDF GGDF

Equality constraints 240 144 144
Inequality constraints 2112 2112 2112

Total constraints 2352 2256 2256
Binary variables 360 360 365

Continuous variables 1296 1200 1200
Total variables 1656 1560 1560

Maximum CPU time (seg) 0.218145 0.218145 0.213139
Minimum CPU time (seg) 0.158108 0.147099 0.145098
Average CPU time (seg) 0.167328 0.156782 0.155799

3.2. IEEE 24-Bus Reliability Test System

The IEEE Reliability Test System (RTS) has 33 generating units, 38 transmission lines, and 17 load
centers. Bus 1 is selected as the slack bus. The units’ minimum on/off times constraints are taken
from [31].

The optimal cost without transmission network constraints is $849,359 for the 24-hour period.
The operational constraints such as generation limits, minimum up/down time, and initial status of
units are verified. Additionally, there is no unserved energy.

For the next simulation, transmission line 14–16 and transmission line 16–17 are limited to 440 MW.
The optimal operational cost is $849,365. For this case, the transmission line 14–16 reaches its limit at
only one hour (t = 24), and there is no loss-of-load for any time period.

To compare the performance of the proposed formulation with both the classical DC- and
PTDF-based formulations, the line flow limits on lines 14–16 and 16–17 are set to several maximum
values. The second and third columns of Table 3 reports how the operational cost increases caused by
the re-dispatch of online units and the commitment of more units in the TCUC problem.

Table 3. Impact of congestion on the operational costs.

PMax
mq (MW) Operating Costs ($) Cost Increment ($)

- 849,359 -
440 849,365 6
420 849,613 254
400 851,880 2521
380 860,470 11,111
360 884,916 35,557
340 919,852 34,936

It should be mentioned that the three mathematical formulations obtained the same optimal
solution. Therefore, the accuracy and optimality of the GGDF-based formulation is also confirmed.
It is worth emphasizing that for all simulations there are not unserved energy and all constraints
are verified.

When the transmission limits on lines 14–16 and 16–17 are set to 440 MW, only line 14–16 reaches
its limit. However, when the limit is set to 420 MW, line 16–17 also reaches its limit. Line 14–16 operates
at its maximum limit for 5 h, and line 16–17 operates at its maximum limit from hour 2 to hour 6.
As the transmission limit is reduced, lines 14–16 and 16–17 reach their transmission limits for most of
the time. When the limit is set to 360 MW, line 14–16 reaches its limit for the 24 h and line 16–17 from
hour 1 to hour 8 and at hour 24.
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Figure 4 shows that all formulations require more simulation time to determine the optimization
problem as the limit of the transmission network is constrained. In other words, the simulation
time increases more than five times for the classical DC-based formulation compared with the PTDF-
and GGDF-based formulations, when, for example, the transmission power flow constraint is set to
360 MW.
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3.3. IEEE 118-Bus System

The IEEE 118-bus test system has 91 buses with loads, 186 existing branches, and 54 generators.
Bus 69 is selected as the slack bus. The system and production cost data are taken from [31].

Table 4 shows that the number of inequality constraints in the classical DC formulation is 4128,
whereas the number of equality constraints is 1320 for the PTDF- and GGDF-based formulations.
The number of decision variables for the classical formulation is 19,656, whereas the number of
decision variables is 16,848 for both (PTDF and GGDF) formulations.

Table 4. Computational aspects for the IEEE 118-bus system.

Formulation DC PTDF GGDF

Equality constraints 4128 1320 1320
Inequality constraints 28,392 28,392 28,392

Total constraints 32,520 29,712 29,712
Binary variables 3888 3888 3888

Continuous variables 15,768 12,960 12,960
Total variables 19,656 16,848 16,848

Considering the lower simulation time obtained by the GGDF-based formulation, we will use
this methodology to evaluate the transmission-constrained UC problem using different transmission
network conditions.

The optimal cost without the transmission network constraints is $2,246,477 for the 24-hour period.
Table 5 reports the impact of congestion in the operational costs for different maximum power flow
limits assuming that all transmission lines are limited to the set value. As expected, operational costs
increase for each reduction in the maximum power flow limit.
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Table 5. Impact of congestion on operating costs.

PMax
mq (MW) Operational Costs ($) Cost Increment ($)

- 2,246,477 -
420 2,246,510 33
380 2,246,675 165
340 2,247,515 840
300 2,249,704 2189
260 2,253,259 3555
240 2,259,500 11,985
180 2,273,226 13,726
140 2,300,779 27,553

To investigate the GGDF’s computational performance, we increase the time period horizon from
one day to one week using the same daily system load for every day. In this case, the optimal cost is
$15,725,340, and the CPU execution time for solving the proposed UC formulation is 9.6250 sec.

4. Conclusions

This paper presented an alternative formulation to take into account the transmission network
constraints in the UC problem. The GGDF-based formulation, similar to the PTDF-based formulation,
required fewer variables because it excluded the voltage phase angles as decision variables.
The accuracy and performance in the transmission-constrained UC problem using the GGDF-based
formulation were compared with the classical DC- and PTDF-based formulations using several test
electrical power systems (PJM 5-bus system, IEEE 24-bus RTS system, and IEEE 118-bus system).
Simulations accomplished in this study using a commercial solver support the accuracy and superior
computational performance of the proposed formulation, with results showing that it can lead to a
more suitable methodology applied especially to medium and large-scale electrical power systems
without sacrificing optimality.

Future work will incorporate uncertainty in the proposed transmission-constrained UC problem
described in this paper. Modeling renewable uncertainty and decomposition techniques (Benders) will
also be studied soon.
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Appendix A

GGDF is defined as:
GGDF = PTDF + GGDFm,slack (A1)

In the technical literature, the GGDF of the slack bus can be expressed using the
following equation:

GGDFm,slack =
Pm − PTDFl,g pi

Ng
∑

i=1
pi

∀g 6= slack (A2)
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Substituting Equation (8) in Equation (A2) yields:

GGDFm,slack =
PTDFl(pi − Pdi)− PTDFl,g pi

N
∑

k=1
Pdk

(A3)

Simplifying Equation (A3) yields:

GGDFm,slack = −
PTDFl(Pdi)

N
∑

k=1
Pdk

(A4)

Rearranging Equation (A4), the following equation is accomplished:

GGDF = PTDF− PTDFl(Pdi)
N
∑

k=1
Pdk

= PTDF
(

I − Pdi
D

)
(A5)

where D is the total load of the power system, and I is the identity matrix whose dimension depends
on the number of buses.

It is very important to highlight that the same GGDF matrix is obtained when any slack bus is
selected to compute the PTDF.
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