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Abstract: Time-series smart meter data can record precisely electricity consumption behaviors of
every consumer in the smart grid system. A better understanding of consumption behaviors and
an effective consumer categorization based on the similarity of these behaviors can be helpful for
flexible demand management and effective energy control. In this paper, we propose a hybrid
machine learning model including both unsupervised clustering and supervised classification for
categorizing consumers based on the similarity of their typical electricity consumption behaviors.
Unsupervised clustering algorithm is used to extract the typical electricity consumption behaviors and
perform fuzzy consumer categorization, followed by a proposed novel algorithm to identify distinct
consumer categories and their consumption characteristics. Supervised classification algorithm is
used to classify new consumers and evaluate the validity of the identified categories. The proposed
model is applied to a real dataset of U.S. non-residential consumers collected by smart meters
over one year. The results indicate that large or special institutions usually have their distinct
consumption characteristics while others such as some medium and small institutions or similar
building types may have the same characteristics. Moreover, the comparison results with other
methods show the improved performance of the proposed model in terms of category identification
and classifying accuracy.

Keywords: smart meter data; electricity consumption behaviors; consumer categorization; clustering;
classification

1. Introduction

Smart grid system, which is developed for the electric power energy management, aims to
enhance the efficiency, reliability and safety of energy consumption by automated control and modern
communications technologies [1,2]. The large amount of smart meter data collected in smart grid
system contain plenty of knowledge about electricity consumption behaviors so that information
processing or machine learning algorithms are required for data analysis [3]. There are many studies
of data analyses on smart meter data, such as load profiling, consumer categorization, load forecasting
and anomaly detection [4–7]. Such smart meter data analyses are essential for achieving better
understanding of electricity consumption behaviors, flexible demand management and effective
energy control. For instance, electricity end consumers, especially smart buildings with multiple smart
homes, optimize daily energy cost according to an understanding of their electricity consumption
patterns so that they can achieve energy consumption and cost savings [8,9].

Consumer categorization based on load profiling is the focus of this paper. In the studies of load
profiling [2,10,11], the typical electricity consumption behaviors, also called load patterns, of each
consumer can be extracted by daily load curve clustering using smart meter data. For electricity
consumers in various types, such as residential, commercial and industrial, it is supposed that they
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may have diverse load patterns, even for their same types [12,13]. For example, it is highly possible
that restaurants and hotels, which are two types of commercial electricity consumers, have two
distinct groups of load patterns. It is also possible that the load patterns of large hotels and small
hotels are different from each other. Therefore, electricity consumers should be categorized based on
their load pattern similarity rather than their types to further analyze their electricity consumption
behaviors. Moreover, consumer categorization on the basis of load pattern similarity can also help
electricity suppliers in terms of designing specific tariff options, efficient power supply plan, and even
accurate load prediction for consumers in various categories, all of which can make effort towards the
improvement of energy efficiency and sustainable transition [14].

This paper aims at categorizing electricity consumers on the basis of load pattern similarity
and identifying the electricity consumption characteristic for each category. This is an unsupervised
clustering problem on how to categorize the load patterns of all consumers. Some previous studies
on this problem only select one or partial representative load patterns from each consumer when
they conduct load pattern clustering [15–18]. Although these methods simplify the categorization
problem, they may lead to information loss and accuracy decrease. On the other hand, selecting overall
load patterns for the clustering can cause indistinct consumer categorization, in which one consumer
may belong to several categories. Therefore, we not only adopt unsupervised clustering algorithm
to extract the typical electricity consumption behaviors and perform fuzzy consumer categorization,
but also propose a novel algorithm to identify distinct consumer categories and their consumption
characteristics. In our method, all load patterns of each consumer are selected as inputs for load pattern
clustering, and a parameter is set to select appropriate load patterns as consumer characteristics from
shared clustering centers among different clusters. Moreover, to evaluate and utilize the obtained
consumer categories, supervised classification algorithm is considered to perform new consumer
classifications by regarding those identified characteristics as training samples.

The whole hybrid machine learning model for electricity consumer categorization is implemented
on smart meter data which are 24-value daily load data over one year of totally 1168 non-residential
electricity consumers. In the experiments, 80%, 60% and 40% of daily load data from each consumer are
randomly and separately selected as training data for using in unsupervised clustering. The remaining
data are used as testing data in new consumer classification. The main contributions of this work are
summarized as follows:

• Extended problem. Electricity consumer categorization problem is extended from simplex clustering
to characteristic identification and new consumer classification. The attention is moved to the further
analysis and practical application of those load pattern clustering results.

• Novel methodology. A hybrid machine learning model is proposed to perform consumer
categorization without information loss and with distinct characteristics, which can simplify
unsupervised clustering problem by being used as labels for future supervised classification.

• Improved experimental results and significant findings. Extensive experiments on many real data
prove that the proposed method outperforms other comparison methods in terms of the validity
of identified characteristics and the accuracy of new consumer classification. The results also find
that large or special institutions usually have their distinct characteristics while others such as
some medium and small institutions or similar consumer types may have the same characteristics.

The rest of this paper is structured as follows. Section 2 discusses related work. Section 3 proposes
the hybrid machine learning model and its algorithms for each phase. Then, we introduce data and
experimental setups in Section 4, and present the results with further discussion in Section 5. Finally,
we conclude our work in Section 6.

2. Related Work

Machine learning algorithms are widely applied to electricity data analysis. Capizzi et al. [19]
adopted neural networks to predict both energy production and consumption. Anand and Suganthi [20]



Energies 2018, 11, 2235 3 of 19

optimized artificial neural network (ANN) with a hybrid algorithm of genetic algorithm and particle
swarm optimization to improve electricity demand forecasting. ANN and support vector machine
(SVM) are also used for electricity price forecasting [21,22]. Rodrigues and Trindade [23] proposed
a load forecasting methodology through ensemble learning and functional clustering which is used to
group daily load curves based on similar phase and amplitude. Differing from electricity forecasting,
most existing studies of load profiling and consumer categorization are based on unsupervised
clustering algorithms.

Electricity consumer categorization is to divide various load patterns of different electricity
consumers into categories on the basis of load pattern similarity. It plays an important role in load
data mining as it is useful for both electricity suppliers and consumers [12]. Most existing works study
algorithms for load pattern grouping such as ANN [24,25], self-organizing maps (SOM) [26], fuzzy
model [27] and other clustering algorithms [28–30]. Meanwhile, some researchers focus on multi-stage
categorization frameworks [15–18].

Panapakidis et al. [15] employed a two-stage approach to achieve consumer characterization that
refers to the characteristics of consumer categories. The first stage is clustering daily load curves to
obtain load patterns for each individual consumer. The second one is conducting a second clustering
to form consumer categories. In this two-stage approach, three alternative load patterns are selected
as representative for each consumer to perform the second clustering. The three load patterns are
load pattern with the largest cluster, the maximum daily energy and the peak load. However, it does
not guarantee that the representative load patterns can indicate consumer characteristics sufficiently
due to the complexity of electricity consumption behaviors. Similarly, Mets et al. [18] proposed
another two-stage load pattern clustering with fast wavelet transformation and g-means algorithm.
They noticed the limitation of selecting one representative load pattern from each consumer as input
for the second stage so that they employed all load patterns instead of a single one to keep as much
information as possible. Generally, the similar stages mentioned in these works are the common
procedure for electricity consumer categorization. However, these works mainly focus on clustering
and evaluate the results only with certain clustering assessment index calculations. Some further
analysis of those clustering results are not taken into account in these works.

On the other hand, Nasiakou et al. [31] introduced a three-stage scheme with hierarchical clustering
algorithm to partition consumers. The first hierarchical clustering is performed on a three minute
basis data in h hours to result in 20× h sets of k clusters, and the second one is performed on the
average values of these clusters. After two clustering, consumers are assigned to the clusters with the
minimum Euclidean distance between the load value of each consumer and the average value of each
cluster. This scheme does not follow the common procedure of consumer categorization and adopts
one-dimensional data points as the inputs of clustering, which cannot be appropriate to reveal the
consumer characteristics that we require.

Extra factors are also taken into account in consumer categorization. Beckel et al. [32] adopted the
sensitivity of a household to outdoor temperature and the times of sunset or sunrise to improve the
performance of household classification. Viegas et al. [33] used a combination of load data and survey
data, including information on age, employment and appliances, with model-based feature selection
to perform new electricity consumer classification. Although the extra factors improve the accuracy of
consumer classification, these works refer to supervised learning rather than unsupervised learning
that load pattern clustering belongs to. Gouveia and Seixas [34] also combined load data from smart
meters with door-to-door surveys to categorize electricity power consumption profiles into clusters.
The consumption patterns that they focused on are coarse-grained yearly load patterns, while we pay
more attention to fine-grained daily load patterns.

In recent years, some works consider classifying new consumers after consumer grouping.
Khumchoo and Kongprawechnon [35] proposed a method combining two approaches: clustering and
SVM classification. Clustering is applied in the first stage for customer categorization based on pattern
similarity. SVM classification is applied in the second stage to assign separate consumers into those
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consumer categories. Although the authors aimed to categorize customers, the basis of clustering and
classification is voltage correlation rather than load pattern. Buitrago et al. [25] achieved new consumer
classification by using a hybrid system that consists of a parameter estimation model, a clustering
model and an ANN model. The authors employed three parameters to identify the shape variability
in the weekly demand profile of a consumer. In that case, the input of clustering and classification is
the data combining the three parameters calculated for each consumer. However, the data used for
clustering and classification in our work are daily load patterns rather than parameters that stand for
weekly demand profile.

According to the literature review on related works and the analysis on electricity load data,
we suppose that the electricity consumption characteristic of each consumer category can be described
by several typical load patterns. The consumer characteristics can be identified after consumer
categorization based on load pattern grouping. It is also able to achieve new consumer classification
according to the identified consumer characteristics. Moreover, to provide consumer characteristics
with as much information as possible, we should employ all load patterns rather than one or several
selected representative for each consumer as the input in load pattern grouping.

3. Hybrid Model

In this section, we introduce a hybrid machine learning model comprising three major phases,
as illustrated in Figure 1, to achieve our purpose. The three phases are described briefly as follows:

• Load Pattern Extraction. First, given the daily load curves of N electricity consumers, we extract
the load patterns by conducting daily load curve clustering individually for every consumer.
Then, we obtain N groups of load patterns.

• Consumer Grouping. Second, overall load patterns of N consumers are clustered into diverse
categories based on their similarity through two steps, which are load pattern clustering
and characteristic identification. Each consumer category has its own identified electricity
consumption characteristic.

• New Consumer Classification. Third, after the load patterns of unlabeled new consumers are
extracted, these new consumers can be classified directly according to the identified characteristics
of consumer categories.

Additionally, the main variables used in the three phases of the proposed model and their brief
descriptions are summarized in Table 1.

Table 1. Main variables used in the model.

Variables Description

X0 n-dimensional daily load data of one electricity consumer
C the set of clustering result

Ccenter the set of clustering centers of C, referring to load patterns
N the total number of electricity consumers
g the number of groups that overall load patterns are divided into
λ the parameter used for characteristic identification
I the identified characteristics of consumer categories

Xnew the set of load patterns of a new consumer
Sxi ,It the similarity between xi and It, xi ∈ Xnew, It ∈ I

Sim(Xnew, It) the similarity between Xnew and It, It ∈ I
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Figure 1. The model framework for electricity consumer categorization based on load pattern similarity.

3.1. Phase 1: Load Pattern Extraction

In Phase 1, we aim to extract the typical electricity load patterns of every consumer from her/his
daily load curves in a certain period. It is generally an unsupervised classification problem because
the daily load curves do not contain any prior knowledge of load patterns. As a result, we adopt
a clustering algorithm designed specially for load curve clustering in our previous work [2], the details
of which are described in Algorithm 1.

In the load pattern extraction of each consumer, n-dimensional daily load curves of this consumer
are first reduced dimensionality by α-level 1D Discrete Wavelet Transform (DWT) to generate two types
of signals, approximation and detail. Then, we obtain two groups of clusters by applying K-means
algorithm separately to the normalized approximation signals and the original detail signals. Finally,
two groups of clusters are fused together to form the final clusters, the centers of which are the required
load patterns. After applying Algorithm 1 individually to N electricity consumers, we obtain N groups
of load patterns for the next phase.

3.2. Phase 2: Consumer Grouping

Phase 2 comprises two main steps: (1) clustering of overall load patterns generated by Phase 1;
and (2) identification of consumer categories and their typical electricity consumption characteristics.
A novel clustering procedure is proposed in Step 1 and another novel algorithm of characteristic
identification is proposed in Step 2.
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3.2.1. Load Pattern Clustering

This step also aims to solve a clustering problem which is to divide the overall load patterns
into groups. The input for this step is the combination of the overall clustering outputs in Phase 1.
Thus, we adopt the same clustering algorithm as the one used for load pattern extraction, shown in
Algorithm 1.

Algorithm 1: The algorithm of daily load curve clustering.
Input: n-dimensional daily load curves, X0;
Output: load pattern, Ccenter.

1 Initialize Creserved = ∅, Ctemp = ∅;
2 Reduce the dimensionality of X0 by α-level 1D DWT, generate XαL and XαH ;
3 Normalize XαL by z-score normalization to gain X′αL;
4 for k = 2, k ≤ 10, k ++ do
5 Ak = K-means(X′αL, k), Dk = K-means(XαH , k);
6 Calculate the Simplified Silhouette Width Criterion of Ak and Dk, gain SAk and SDk ;

7 KA = arg max
k
{SAk}, A = K-means(X′αL, KA) ;

8 KD = arg max
k
{SDk}, D = K-means(X′αH , KD) ;

9 for Ai ∈ A(1 ≤ i ≤ p, p = len(A)) do
10 for Dj ∈ D(1 ≤ j ≤ q, q = len(D)) do
11 ADij = Ai ∩ Dj;
12 if Ai = Dj then
13 Creserved = Creserved ∪ {ADij};
14 else
15 if Ai 6= Dj and Ai ∩ Dj 6= ∅ then
16 Ctemp = Ctemp ∪ {ADij};

17 l1 = len(Creserved), l2 = len(Ctemp);
18 if l2 = 0 then
19 C = Creserved;

20 else
21 if l2 > max{p, q} − l1 then
22 Ktemp = max{p, q} − l2, C′temp = K-means(Ctemp, Ktemp);

23 else
24 C′temp = Ctemp;

25 C = Creserved ∪ C′temp;

26 calculate the centers of C, Ccenter;
27 return Ccenter.

However, the clustering algorithm is not used directly due to the large number of overall load
patterns. A novel procedure, shown in Figure 2, is proposed for load pattern clustering. Since clustering
excessive objects may lead to few clusters, we should avoid clustering massive load patterns directly.
An example that exists in the experiment can be used to explain this problem specifically. Although
the best clustering result of thousands of load patterns may be only three clusters based on some
assessment index calculations, there actually should be many more clusters. Thus, we randomly divide
all load patterns into g groups before conducting load pattern clustering. Each group of load patterns
is clustered individually, and then the clustering centers of these g groups are gathered and clustered.
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Figure 2. The procedure of load pattern clustering. The overall load patterns are randomly divided into
g groups. Each group is clustered individually. The clustering centers of these g groups are gathered
and clustered to form the final clusters.

Finally, we obtain K clusters and gain fuzzy consumer categories by mapping these clusters to
the input consumers in Phase 1. Here, fuzzy means that a consumer may belong to several categories.
Since every consumer has two or more load patterns, it is highly possible that her/his load patterns
belong to different clusters.

3.2.2. Characteristic Identification

In this step, we propose an algorithm to identify consumer categories and their characteristics.
The principle of this algorithm, shown in Algorithm 2, is selecting the consumers who are in the same
several fuzzy categories simultaneously and assigning them to the same consumer category. In fact,
this process is similar to finding all frequent itemsets by using minimum support in association rule
mining [36,37]. After finding the shared fuzzy categories of the same consumers, the corresponding
clustering centers of these shared fuzzy categories can be regarded as the characteristic of one consumer
category, and then these consumers belong to this category. As the fuzzy categories refer to the outputs
of load pattern clustering, the clustering centers mentioned here actually are curves that are similar to
load patterns.

To gain the appropriate clustering centers that present typical characteristics of consumer
categories, we propose a parameter λ to determine whether the clustering centers should be selected.
The parameter λ denotes a percentage of consumers. For example, set the number of consumers
N = 1500 and λ = 0.03 so that N × λ = 45. In that case, the clustering centers of several fuzzy
categories are selected if the number of consumers who are in the same categories simultaneously is
greater than or equal to 45. Then these selected clustering centers can be identified as the consumer
characteristic of one category.

3.3. Phase 3: New Consumer Classification

Regarding the identified consumer characteristics as labeled training samples, we can adopt
supervised classification algorithm to classify new consumers into the identified categories. There are
many algorithms for classification such as decision trees, random forests, support vector machines
and neutral network. In this work, we adopt k nearest neighbors (kNN) because it is simple, easy to
understand and has relatively high performance [38,39]. Another reason for adopting it is that this
phase also aims to verify the accuracy of the identified consumer characteristics apart from classifying
new consumers.

We employ the identified characteristics instead of all load patterns as training samples and set
k = 1 by considering computational efficiency. Figure 3 illustrates the diagram of new consumer
classification. Every single spot in the diagram stands for one daily load curve or load pattern. At the
right of the diagram, when a new consumer comes, we extract the load patterns of the consumer based
on Algorithm 1. Then, we calculate the similarity between the load patterns of the consumer and the
identified characteristic of each consumer category. Finally, we can determine that the new consumer
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belongs to the consumer category with the smallest similarity value. In Figure 3, the consumer belongs
to Category 1. Additionally, Figure 3 also illustrates the whole procedure of the proposed model.

Algorithm 2: The algorithm of characteristic identification.
Input: the set of fuzzy consumer categories, C; the set of corresponding clustering centers,

Ccenter; the number of consumers, N; parameter λ;
Output: identified characteristics, I.

1 Initialize Numi = ∅(1 ≤ i ≤ 10) and E = ∅;
2 Count the number of consumers in each fuzzy category, gain the set of consumer number

Num1;
3 for t = 2, t ≤ 10, t ++ do
4 Select the consumers who are in the same t categories into St, then St = {st1, st2, · · · , stlt};
5 nti = len(sti), si ∈ St;
6 Numt = Numt ∪ {nti};
7 mti ∈ Mt(1 ≤ i ≤ lt) records the labels of t categories for sti ∈ St;

8 R = N × λ;
9 for h = 10, h ≥ 1, h−− do

10 for each si ∈ Sh do
11 if nhi ≥ R then
12 judge=0;
13 for each ej ∈ E do
14 if mhi ⊆ ej then
15 judge=1;

16 if judge=0 then
17 E = E ∪ {mti};

18 Map E to Ccenter, gain the identified characteristics I;
19 return I.

Figure 3. The diagram of new consumer classification. Every spot stands for one daily load curve or
load pattern. When a new consumer comes (at right), we calculate the similarity between the load
patterns of the consumer and each identified characteristic based on Equations (1)–(3). The consumer
belongs to the consumer category with the smallest similarity value. Here, the new consumer belongs
to Category 1.

For electricity consumers with n-dimensional daily load curves, let Xnew = {x1, x2, · · · , xm} be
the set of load patterns of a new consumer, and It = {c1, c2, · · · , cr} be the identified characteristic
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of the tth consumer category. Then, for one load pattern xi ∈ Xnew to the identified characteristic It,
we calculate the similarity between them as follows:

Sxi ,It = min
cj∈It
{dist(xi, cj)}, (1)

where dist(xi, cj) is the Euclidean distance between xi and cj, and it is calculated as follows:

dist(xi, cj) =

√
n

∑
k=1

(xik − cjk)2, (2)

where xi = 〈xi1, xi2, · · · , xin〉 and ci = 〈cj1, cj2, · · · , cjn〉. The Euclidean distance is adopted because it
is also used in the former clustering algorithm. We calculate the similarity between all load patterns
Xnew and the identified characteristic It as the average of Sxi ,It over i = 1, 2, · · · , m:

Sim(Xnew, It) =
1
m

m

∑
i=1

Sxi ,It . (3)

Since the similarity is based on the distance calculation, we suppose that, the smaller the
Sim(Xnew, It) value is, the more similar they are. After the calculations of similarity between the
load patterns of the consumer and each identified characteristic, we assign this consumer to the most
similar category with the smallest Sim(Xnew, It) value.

4. Data and Experiment

Before presenting the experimental results, we introduce the experimental setups including
dataset, comparison methods and evaluation criterion in this section. We conducted ten times
experiments in each of three situations and adopted both example and the average result for further
evaluation and comparison.

4.1. Dataset

The dataset we used in the experiment contains 24-value daily load data of 1168 non-residential
electricity consumers in a one-year period. Available at: https://openei.org/datasets/files/961/pub/.
The whole dataset contains 14,976 non-residential consumers in 936 locations. Only data in one state
were selected and used in the experiments. These consumers locate in 73 locations of the same district
and are labeled with their consumer types, including sixteen different types which are restaurant,
school, office, supermarket, etc. However, these consumer types refer to their building types and are
not equal to the consumer categories that we require [40]. They cannot be used as labels for assessing
the accuracy of clustering and classification. Therefore, we regarded all data as unlabeled data in the
experiments and only used the consumer types for further discussion.

Additionally, 80%, 60% and 40% of daily load data were randomly selected from each consumer
as training data in clustering phase, respectively. The remaining 20%, 40% and 60% of data were used
for testing in classification phase.

4.2. Comparison Methods

We compared the following methods on new electricity consumer classification with load pattern
grouping. The clustering algorithm used in the former three methods is K-means, and data were
normalized before clustering. We applied the same classification algorithm kNN for all methods in
classification stage to compare the validity of consumer categories and their characteristics.

• LP-Largest Cluster: The load pattern with the largest cluster was selected from load patterns
of each consumer as input for Phase 2 [15,17]. The clustering algorithm used in this method is
K-means and data were normalized before clustering.

https://openei.org/datasets/files/961/pub/
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• LP-Max Energy: The load pattern with the maximum daily energy was selected as representative
for each consumer as input for Phase 2 [15]. Normalization and clustering algorithm were the
same as LP-Large Cluster.

• LP-Peak Load: The load pattern with the peak load was selected as representative for each
consumer as input for Phase 2 [15]. Normalization and clustering algorithm were the same as
LP-Large Cluster and LP-Max Energy.

• The proposed method: The method introduced in Section 3. All load patterns were selected
for each consumer as input for Phase 2. Algorithms 1 and 2 were adopted in Phase 1 and 2.
The identified characteristics of consumer categories in Phase 2 were used as the training samples
in Phase 3.

4.3. Evaluation Criterion

A criterion is required to evaluate the performance of the identified consumer characteristics
and new consumer classification. We adopted Accuracy for our multi-classification problem rather
than Precision and Recall which are usually used for dualistic classification [5,41]. However, it is also
necessary to take into account information loss because our comparison methods employ different
representative load patterns for consumer categorization, some of which lead to the loss of load
pattern information. Thus, we defined a new Accuracy with weight of information loss (WIL), called
Accuracy-WIL, to evaluate our comparison methods. As the original simple Accuracy measures
the percentage of correct classified data compared to pre-defined class labels, we added a weight of
information loss for each new consumer. For Ntest new consumers, ŷi is the classified category of the
ith consumer, yi is pre-defined category of this consumer, and ωi is the weight of information loss
calculated for this consumer. Then, the calculation of Accuracy-WIL follows the equation below:

Accuracy-WIL =
1

Ntest

Ntest

∑
i=1

ωi1(ŷi = yi), (4)

where 1(x) is indicator function and 1(ŷi = yi) is defined as follows:

1(ŷi = yi) =

{
1 if ŷi = yi,

0 if ŷi 6= yi.
(5)

The weight of information loss for each consumer measures the percentage of daily load curves
that are included in the selected representative load patterns for classification. As a result, the weight
of information loss for the ith consumer ωi is calculated as follows:

ωi =
Ri
Pi

, (6)

where Pi denotes the total number of daily load curves that a consumer has for load pattern extraction,
and Ri denotes the number of daily load curves included in the cluster that the selected representative
load pattern refers to. Since the proposed method selects all load patterns as input for load pattern
clustering, its weight of information loss ωi always equals 1.

In the experiment, we randomly selected 20%, 40%, or 60% of daily load data from each consumer
as data of new consumers, respectively. In that case, the classification of a consumer is accurate if
both clustering result and classifying result of this consumer refer to the same category. This is a strict
rule to measure the accuracy and is highly possible to cause lower accuracy. However, it is more
appropriate for massive unlabeled data than other common rules.

5. Results and Discussion

In this section, we present and discuss the experimental results of all three phase in our
model, which are load pattern extraction, consumer grouping, and new consumer classification.
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As we conducted extensive experiments, only some examples or the optimal results are provided to
understand the electricity consumption behaviors and identified consumer categories. Case examples,
which are presented in Sections 5.1 and 5.2, are from the same experiment with the optimal new
consumer classification result. Moreover, comparison of the methods on consumer categories and
new consumer classification evaluated the validity of the proposed method. We also estimated the
parameter, as shown at the end of this section.

5.1. Load Pattern Extraction

The daily load curves of 1168 electricity consumers in training dataset were clustered individually
for every consumer to extract the load patterns. According to Algorithm 1, each consumer has load
patterns with the number in the range of 2–10, and each load pattern indicates one typical electricity
consumption behavior of a consumer. We selected sixteen electricity consumers in a district to provide
one example of load patterns for every consumer type in the dataset, as shown in Figure 4. The load
patterns were obtained from one of ten experiments with 60% training data and also used as the inputs
in the following load pattern clustering shown in Figure 5.
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Figure 4. Sixteen examples of load patterns. Each subfigure denotes the load patterns of one electricity
consumer referring to one consumer type (building type) in the dataset. The load patterns are obtained
from one of ten experiments with 60% training data.
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Each subfigure in Figure 4 denotes the load patterns of one electricity consumer who refers to one
consumer type, also called building type, in the dataset. Load patterns of the similar consumer types
are displayed next to each other. Therefore, it can be noticed that similar consumer types may have
similar load pattern curves without considering their power degrees, and different consumer types
may also have similar load pattern curves. In that case, the consumers who have similar load pattern
curves can be clustered into the same groups in the following consumer grouping.

5.2. Consumer Grouping

Consumer grouping consists of load pattern clustering and characteristic identification. The former
one generates fuzzy consumer categories and the latter one is able to distinguish clear consumer
categories from those fuzzy ones. We mainly present and discuss the experimental results of Phase 2 in
the proposed method, comparing with the grouping results of other three comparison methods.

5.2.1. Load Pattern Clustering

In load pattern clustering, we first gather all load patterns of 1168 consumers into one group
and randomly divide them into g equal subgroups. Here, we set g = 10 optionally. Then, the load
patterns in each subgroup are clustered individually and the clustering centers of these g subgroups
are gathered together to form the final clustering.

Figure 5 shows the load pattern clustering result, which is one example of ten experiments with
60% training data. There are 100 clustering centers in Figure 5, each of which refers to one fuzzy
consumer category. It should be noticed that the number of fuzzy consumer category is relatively large
and the category characteristics are indistinct. Only a few of category characteristics can be identified
by visual observation. Therefore, it is essential to perform the following characteristic identification
and gain distinct consumer categories.
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Figure 5. An example of load pattern clustering result in ten experiments with 60% training data,
which is the same as Figure 4. This result includes 100 clustering centers that refer to 100 fuzzy
consumer categories.

5.2.2. Characteristic Identification

According to Algorithm 2, thirteen electricity consumer characteristics, shown in Figure 6,
are identified from the load pattern clustering result shown in Figure 5 when λ = 0.032. Here,
λ = 0.032 is selected because it leads to the maximum accuracy of new consumer classification. We can
regard each subfigure shown in Figure 6 as the characteristic of an electricity consumer category.
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(m) Category 13

Figure 6. Thirteen electricity consumer characteristics identified from the load pattern clustering
result shown in Figure 5 when λ = 0.032 . The characteristic shown in each subfigure stands for
a consumer category.
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We analyze the final results of consumer grouping and find out some details on consume types,
consumer categories and their characteristics. Some categories only contain one consumer type.
Category 2, Category 3, Category 6, Category 12 and Category 13 refer to large hotel, outpatient,
hospital, supermarket and large office, respectively. This means that such characteristics are unique
for these consumers. Both Category 7 and Category 11 refer to primary school but show distinct
characteristics. They contain day off with nearly the same low electricity consumption curve, but the
other curves show different shape variations. In addition, Category 3 and Category 6 are two types
of medical institution. The comparison between them indicates that outpatient has a more flexible
working situation while hospital is relatively stable.

On the other hand, some categories contain several consumer types because these consumers
have similar electricity consumption behaviors. For instance, both Category 8 and Category 9 refer
to primary school and supermarket. Comparing them with Category 7, Category 11 and Category
12, we can find that some of them may share one similar curve but their characteristics are obviously
distinguishable from each other. Furthermore, Category 1, Category 4, Category 5 and Category
10 all refer to medium office, strip mall and stand-alone retail. However, Category 4 also contains
midrise apartment and warehouse, and Category 1 contains secondary school, warehouse, full service
restaurant and small hotel.

It can be concluded that the electricity consumption situation of non-residential consumers are
complicated based on the former analysis. Large or special institutions usually have their distinct
characteristics (e.g., large hotel, large office, hospital, outpatient and supermarket). Others such as
some medium and small institutions or similar consumer types may have the same characteristics
(e.g., medium office and small office, strip mall and stand-alone retail).

Furthermore, power degrees may have slight influences on consumer grouping based on the
comparison between Figure 6 and Figure 4, although the clustering algorithm adopted in the proposed
method focuses on the different shape variation of load pattern curves rather than power degree
difference. In that case, large or special institutions with high and distinct power degrees tend to be
distinguished from other smaller institutions which are at close range of power degrees. This leads to
the results that coincides with the above conclusion.

5.2.3. Comparison

The consumer categories obtained by the three comparison methods are also shown in Figure 7
for further evaluation. Differing from the proposed method, three comparison methods only adopt one
representative load pattern from the load patterns of every consumer. As a result, their load pattern
clusterings can directly present the results that consumer grouping requires. Figure 7a–c show the
group of electricity consumer characteristics obtained by one method, respectively. Each curve in
every subfigure representatives one consumer category. Figure 7a–c (Left) show the characteristics of
total consumer categories of methods, and Figure 7a–c (Right) magnify the characteristics of partial
consumer categories which are dense under certain power degrees.

Specifically, Figure 7a presents twenty-two load pattern curves which denote the characteristics of
twenty-two consumer categories obtained by LP-Largest-Cluster. The characteristics under 1000 power
degree are magnified in order to be displayed explicitly. Figure 7b,c present the characteristics
of seventeen and eighteen consumer categories obtained by LP-Max Energy and LP-Peak Load,
respectively. Their characteristics under 500 power degree are magnified and displayed on the right
part of the subfigures.

The results shown in Figure 7 are obtained based on the same training data as Figures 4 and 6.
In that case, we compare the result shown in Figure 6 with them to evaluate the performance of the
proposed method. There are some similar characteristics that are shown in the results of four methods.
For instance, Figure 7a–c reveal one or two curves with markers which are similar to the curves shown
in Figure 6b. Figure 7a,c only reveal one such curve which simply represents the characteristic of
one consumer category. Although Figure 7b reveals two such curves, they are separate and refer to
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two different consumer categories. However, this does not coincide with the actual characteristic
of consumers. According to the analysis mentioned above, such characteristic with several curves
shown in Figures 4c and 6b refer to large hotel. LP-Largest Cluster and LP-Peak Load only identify
one special load pattern curve for large hotel, and LP-Max Energy improperly divides large hotels into
two different categories. Therefore, load pattern clustering with only one selected load pattern results
in the insufficient characteristics of consumer categories or incorrect consumer grouping.
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(a) LP-Largest Cluster. (Left) The total 22 categories; and (Right) magnifying categories under 1000 power degree.
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(b) LP-Max Energy. (Left) The total 17 categories; and (Right) magnifying categories under 500 power degree.
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(c) LP-Peak Load. (Left) The total 18 categories; and (Right) magnifying categories under 500 power degree.

Figure 7. The electricity consumer characteristics obtained by three comparison methods. Each curve
in every subfigure denotes the characteristic of one consumer category. These results are obtained
based on the same training data as Figures 4–6. (a–c) (Left) show the characteristics of total consumer
categories of methods, and (a–c) (Right) magnify the characteristics of partial categories shown in the
left subfigures.
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5.3. New Consumer Classification

The former comparison of four methods are based on visual observation. In this subsection,
the accuracy of new consumer classification can provide a better comparison of these methods. Once
we obtain the identified characteristics of every consumer category, we can perform new consumer
classification by regarding those characteristics as training samples. Therefore, the accuracy of this
new consumer classification can be used to evaluate the performance of the comparison methods.

Figure 8 illustrates their average Accuracy-WIL of ten experiments based on 40%, 60% and 80%
training data in new consumer classification. The proposed method shows a significant improvement
of Accuracy-WIL in three situations. Sufficient training data can increase its average Accuracy-WIL
based on the comparison of three situations. On the other hand, although PL-Largest Cluster
shows the second highest average Accuracy-WIL, it is unable to identify consumer characteristics
that the proposed method is able to achieve due to the one representative load pattern selection
mechanism. In general, consumer characteristics with several distinct load patterns present their
electricity consumption behavior features more sufficiently than those with only one load pattern.
Therefore, the proposed method outperforms other comparison methods.
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Figure 8. Accuracy with weight of information loss (Accuracy-WIL) of comparison methods in three
situations, which are with 40%, 60% and 80% training data.

In addition, it should be noticed that all values of the Accuracy-WIL are relatively low because
of the strict measuring rule mentioned in Section 4. The values will increase dramatically if we use
consumer types as labels for measuring Accuracy-WIL in classification phase. Nevertheless, our
previous work [40] proves that such consumer types are not appropriate for being labels because
consumers in different types may have the similar electricity consumption behaviors which lead them
to be assigned into the same consumer categories.

5.4. Parameter Estimation

There is one parameter in the proposed method, which is the parameter λ in characteristic
identification. We conducted characteristic identification and new consumer classification with the
value of parameter λ ranging from 0 to 0.08 with a step size of 0.001. The result with the maximum
Accuracy-WIL was selected as the optimal identified characteristics. Figure 9 shows the curves of
average Accuracy-WIL of ten experiments based on parameter λ in three situations. The three curves
have similar trends, in which their Accuracy-WILs first rise with the increase of λ value, decrease after
they reach the peaks at around λ = 0.03, and reveal another fluctuation with the second peaks when
0.06 ≤ λ ≤ 0.07.
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Figure 9. Average Accuracy-WIL vs. value of parameter λ ranging from 0 to 0.08 with a step size of
0.001. The curves reach their peaks when 0.03 ≤ λ ≤ 0.04.

The optimal Accuracy-WIL in thirty experiments was reached by one of ten experiments with 60%
training data when λ = 0.032, whose results are shown in Figures 4–7. Apart from the curve of 40%
training data, the curves of 60% and 80% training data show similar optimal average Accuracy-WILs.
This suggests that the optimal average Accuracy-WIL tends to be stable when the training data
are sufficient.

6. Conclusions

In this work, we propose a three-phase model to categorize electricity consumers, identify their
consumption characteristics and classify new consumers, which can benefit electricity suppliers in
terms of flexible demand management and effective energy control. In the proposed model, all load
patterns gathered from load pattern extraction are employed into consumer grouping to conduct load
pattern clustering and characteristic identification. This strategy not only avoids the information loss
caused by other methods but also achieves improved consumer categorization. Moreover, the identified
characteristics are used directly as training samples in new consumer classification so that the clustering
problem becomes a simpler classifying problem. For evaluation, we conducted extensive experiments
on randomly grouped data with four comparison methods in diverse situations. Experimental results
show that our method improves the accuracy of classification and provides more sufficient electricity
consumer characteristics.

This paper is one part of the study on electricity consumer behaviors based on smart meter data.
As consumer categories contain rich knowledge, it is essential for us to improve and continue this work
in the future. Furthermore, we should take into account that electricity load data are time-series data
which can be influenced by many other extra factors. Incremental learning and association analysis
should be helpful for our future works on electricity consumer behaviors.
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