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Abstract: Although the distributed generator (DG) placement and distribution network (DN)
reconfiguration techniques contribute to reduce power loss, obviously the former is a design problem
which is used for a long-term purpose while the latter is an operational problem which is used for a
short-term purpose. In this situation, the optimal value of the position and capacity of DGs is a value
which must be not affected by changing the operational configuration due to easy changes in the
status of switches compared with changes in the installed location of DG. This paper demonstrates a
methodology for choosing the position and size of DGs on the DN that takes into account re-switching
the status of switches on distribution of the DN to reduce power losses. The proposed method is
based on the runner root algorithm (RRA) which separates the problem into two states. In State-I,
RRA is used to optimize the position and size of DGs on closed-loop distribution networks which is a
mesh shape topology and power is delivered through more than one line. In State-II, RRA is used to
reconfigure the DN after placing the DGs to find the open-loop distribution network which is a tree
shape topology and power is only delivered through one line. The calculation results in DN systems
with 33 nodes and 69 nodes, showing that the proposed method is capable of solving the problem of
the optimal position and size of DGs considering distribution network reconfiguration.

Keywords: distributed generations (DGs); distribution network reconfiguration; runner-root
algorithm (RRA)

1. Introduction

The distribution system has a radial or mesh configuration but operates in radial state. The power
flow in this case flows from the system through the distribution network to the load. Therefore,
the transmission of power from the power plant to the consumer will generate losses on the
transmission and distribution network. With the new distribution grid structure, due to the
involvement of DGs, power flow is not only flowing from the transmission system but also circulating
between parts of the distribution network back to the transmission grid. With the involvement of DGs,
the distribution network performs better in the task of providing electricity to the consumer, assuring
the quality of power, the reliability of the power supply as well as reduced load on the network,
improved voltage, reduced power losses, reduced power losses and support grid.
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DGs are linked to the electric distributed system. Because of their huge economical benefit
and energy security, the appearance of DGs on distribution systems has been rising quickly [1,2].
In addition, for large-capacity DGs using renewable energy sources such as wind and solar cells are
often connected to the transmission network. As unfavorable environmental conditions such as a
lack of wind or sun can lead to power shortages on the transmission network for supplying to th
distribution network, finding solutions to compensate for this shortfall of power are very importance
for DG suppliers, especially in the competitive electricity market. One of the most effective solutions
to this problem is the installation of small-capacity DGs based on diesel fuel, heavy oil, fuel cell,
natural gas, etc. in the DN to compensate for the shortfall of power. Therefore, selection of the optimal
installation position for these types of DG to reduce power losses and improve the efficiency of the
DN is important. There are several studies which have been proposed for the problem of positioning
and size with the goal of reducing losses on the network. The main method based on analytical
approaches such as the improved analytical method [3–5] or meta-heuristic algorithms like genetic
algorithm (GA) [6,7], particle swarm optimization algorithm (PSO) [8,9] the hybrid big bang-big crunch
algorithm (HBB-BC) [10], hybrid teaching–learning-based optimization (HTLBO) [11], invasive weed
optimization (IWO) [12], cuckoo search algorithm (CSA) [13], fireworks algorithm (FWA) [14], harmony
search algorithm (HSA) [15], and adaptive weighted improved discrete particle swarm optimization
(AWIDPSO) [16]. In [3–12], the authors only focused on optimizing the position and capacity of DGs on
the DN without considering configuration of the DN which is also an effective technique for reduction
power loss in the DN system. This technique called distribution network reconfiguration (DNR) is
performed by changing the closed/open status of sectionalizing and tie switches while respecting
system constraints [17]. Merlin and Back [18] were the first authors proposed the DNR problem and
solved it by the discrete branch-and-bound type heuristic technique. The switch exchange method
for loss reduction was proposed by Civanlar et al. [19]. Due to the based on heuristics methods, it is
difficult to reach an optimal solution. In recent, new methods based on meta-heuristic have been
proposed for finding an optimal network configuration. In [20], the DNR problem for minimizing
power loss and enhancing system reliability is solved by an enhanced genetic algorithm. In the study,
the crossover and mutation operations have been improved to determine the opened switches. In [21],
a binary gravitational search algorithm was proposed for the multi-objective DNR problem. In [22],
a binary group search optimization was applied to solve the DNR problem for power loss reduction.
In [23], a fireworks algorithm has been performed to reduce power loss and enhance voltage of nodes.
In [24], a shuffled frog leaping algorithm was used for minimizing the cost of power loss and power
of distributed generators. In [8], a discrete artificial bee colony has presented for the DNR problem.
In [25], a particle swarm optimization was presented to handle the DNR problem with multi-objective
functions. In [26], a reconfiguration method based on adapted ant colony optimization was proposed
for minimization of power loss.

On the DN system-integrated DGs, the operating configuration of the DN system will be changed
by using the DNR technique. As the network configuration changes, the location of the DGs which is
defined before that can be unsuitable to reduce losses and promote voltage stability or the unsuitable
capacity of the DGs will cause large losses on the DN. Therefore, in recent years, some studies have
combined both the DG placement problems and distribution network reconfiguration to enhance the
effectiveness of the electric distribution system [13–16]. Although both techniques contribute to reduce
power loss, obviously the DG placement problem is a design problem of the distribution network
which is used for a long-term purpose while the distribution network reconfiguration problem is
an operational problem of the distribution network which is used for a short-term purpose. In this
situation, the optimal value of position and capacity of DGs is a value which must be not affected by the
changing of operational configuration because changing the status of switches is easier than changing
the location of DG as they are installed. This requirement is unnecessary by solving simultaneously
both problems because the optimal position and size of DG will be change when the location of
open switches on the DN change. In addition, by solving combined problems, the parameters of
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the optimization algorithm will be become more complex than those of solving individual problems.
An illustration for this point can be seen in that the control variables will be lengthier and it will take
more time and more iterations for finding optimal solution.

Therefore, in this article we propose the method of determining the position and size of the
DGs on the DN, considering the problem of distribution network reconfiguration with the goal of
reducing power losses. The proposed method of determining the optimal location and size of DGs and
operational configurations are implemented in two states based on the runner-root algorithm (RRA).
In State-I, RRA is used to identify the optimal position and capacity of the DGs on the closed-loop
distribution network. In State-II, the RRA is used to find the optimal operating configuration of
the system. By using the proposed method for the combined problem of placement of the DG
and re-switching, in the obtained results, the position and size of the DG is not affected by the
location of open switches. It means that the design problem which is the placement DG problem
is not be depended by the operational problem which is the re-switching problem. In addition,
by solving individual problems, it also helps the optimization algorithms be more effective at finding
the optimal solution in two states. The comparison results on 33 and 69 nodes systems with the
method of solving simultaneously the combined problem and other studied methods have shown
that the proposed method is capable of solving the problem of the optimal position and size of DGs
considering distribution network reconfiguration. In the following section, the proposed distribution
network reconfiguration method for the optimal location and size of the DG considering network
reconfiguration for power loss is presented. The overview of RRA for the problem is demonstrated in
Section 3. Section 4 presents the calculated results of the suggested algorithm and the conclusion are
presented in Section 5.

2. Problem Formulation

The distribution networks are usually designed in a mesh structure but they are operated in open
status. The change of power loss when they are transferred from the mesh status to the radial status is
described as follows:

The distribution network reconfiguration problem will be demonstrated by the simple network
shown in Figure 1. If the switch MN is closed, the system is operating in the mesh network
configuration. Calling the current on the branch ith is Ii (i = 1, . . . , nbr). When the switch MN
is opened, assuming that the current on the branches of the OM decreases by IMN, the current on the
branches of ON will increase by IMN. Then, power loss of the mesh network (∆Pmesh) and power loss
of the radial network (∆Pradial) are expressed by Equations (1) and (2) respectively.
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Figure 1. One loop distribution network.
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∆Pradial =
nbr

∑
i∈OM

Ri(Ii − IMN)
2 +

nbr

∑
i∈ON

Ri(Ii + IMN)
2 (2)

The effect of the reconfiguration (change in power losses in the loop) can be obtained by using (3):

∆Pradial − ∆Pmesh

=
nbr
∑

i∈OM
Ri
(

I2
i − 2IMN Ii + I2

MN
)
+

nbr
∑

i∈ON
Ri
(

I2
i + 2IMN Ii + I2

MN
)

−
nbr
∑

i∈OM
Ri I2

i − RMN I2
MN −

nbr
∑

i∈ON
(Ii)

2Ri

(3)

∆Pradial − ∆Pmesh

=
nbr
∑

i∈OM
Ri
(
−2IMN Ii + I2

MN
)
+

nbr
∑

i∈ON
Ri
(
2IMN Ii + I2

MN
)
− RMN I2

MN + RMN I2
MN

− RMN I2
MN

(4)

Short (4), resulting in (5):

∆Pradial − ∆Pmesh

= I2
MN

(
nbr
∑

i∈OM
Ri + RMN +

nbr
∑

i∈ON
Ri

)
− 2IMN

(
nbr
∑

i∈OM
Ri Ii + RMN IMN −

nbr
∑

i∈ON
Ri Ii

) (5)

Set RLoop = ∑nbr
i∈OM Ri + RMN + ∑nbr

i∈ON Ri and short (5), resulting in (6):

∆Pradial − ∆Pmesh = I2
MN RLoop − 2IMN

(
nbr

∑
i∈OM

Ri Ii + RMN IMN −
nbr

∑
i∈ON

Ri Ii

)
(6)

On the other hand, due to the power flow on the radial network, the current on the branches
does not depend on the impedance of the branches, it only depends on the consumed power at the
nodes. So it can be assumed that there exists a network with impedance of branches replaced by
corresponding branch resistance, and the power loss of this network still is calculated as a normal
network by (2). Therefore, when closing the switch MN, according to the Kirchhoff’s second law:

nbr

∑
i∈OM

Ri Ii + RMN IMN −
nbr

∑
i∈ON

Ri Ii = 0 (7)

So (6) will be become:
∆Pradial − ∆Pmesh = I2

MN RLoop (8)

It can be seen from (8), the power loss in the mesh network is the most minimum. In the mesh
network, if there exists a branch whose current is zero (IMN = 0) then opening this branch the power
loss in the system will be minimal and the mesh network will become a radial network. However,
this case is impossible because it is difficult to maintain power flow in the mesh network that the
current of one of the branches is zero. Therefore, only by minimizing power loss of the radial network
does this value drop nearly to the value of power loss in the mesh network. Reality has shown that in
the distribution network reconfiguration problem for power loss reduction, in the obtained optimal
configuration, the open switches are usually located on the branches with very small currents if these
switches are closed again.

Similarly, in a distribution network integrating DG, once the optimal location and size of DG
have been identified on the mesh network for minimizing power loss; the value of power loss in this
case will be the smallest that the system can achieve. Then, if the branches with the smallest current
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are identified for opening, the mesh network will become a radial network and the power loss is
approximately equal to the power loss in the mesh network with DG. Therefore, the problem can be
divided into two states. The first state will determine the optimal position and capacity of the DG on
the mesh network to minimize power loss. The second state determine the switches with minimum
currents for opening to maintain radial topology. The result obtained from the second state are also
the result of the distribution network reconfiguration for minimizing power loss. Furthermore, on the
complex network with multiple loops, it is difficult to determine the branches with minimum currents
due to the mutual effects among the loops and the order of the switch operation. So, in the second
state the problem of re-switching provides a way to find out the radial network configuration for
minimizing power loss.

In addition, in order for the position and capacity of DG to be not affected by changing the
configuration of network, the problem of optimizing the location and capacity of the DG for power
loss minimization are implemented in the mesh network. Once the optimal position and capacity of
the DG have been determined on the mesh network, the identification of the open switches will be
performed to maintain the radial operation condition. Implementing the two separate optimal phases
not only helps the long-term design problem (optimization problem of location and capacity of DG) to
not be affected by the short-term problem (problem of reconfiguration) but also supports the optimal
algorithms solving the problem in a simpler way because they do not have to perform optimally at the
same time as many variables which are different characters.

Therefore, the problem of determining the position and size of DGs considering network
reconfiguration is divided to two stages as follows:

The first stage (State-I): determine the position and size of DGs to minimize power losses on the
mesh network;

The second stage (State-II): determine the radial operating configuration of after installing DGs
on the mesh network.

The objective function for the two stages is shown in (9):

Ploss =
nbr

∑
i=1

Ri ×
(

P2
i + Q2

i
V2

i

)
(9)

There are three constraints of the problem as follows:
(1) The voltage at each node and the current at each branch must be in their acceptable limit for

each stage:
Vmin ≤ Vi ≤ Vmax; i = 1, 2, . . . , nbus (10)

0 ≤ Ii ≤ Imax,i; i = 1, 2, . . . , nbr (11)

(2) The radial configuration of electric distribution system must be satisfied and load nodes must
be connected to the power for the second stage.

(3) Distributed generation capacity limits must be maintained for the first stage:

0 ≤ PDGi ≤ PDGmax,i; i = 1, 2, . . . , ndg (12)

3. Runner Root Algorithm (RRA)

The RRA is a recently developed algorithm based on ideas from the plants bred via runners and
roots [27]. In this work RRA has outperformed other algorithms via 25 benchmark functions. In RRA,
two tools for exploitation is equipped consist of the roots mechanism and the elite selection mechanism.
The former is designed to search around the best solution of current generation. The latter is designed
to ensure the best solution of current generation is transferred to the next generation. For exploration,
RRA is also equipped two tools consist of random jump of mother plants and re-initialization. In the
former, each candidate solution is a random change to jump to any point in the search space. In the
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latter, the algorithm will be restarted after no considerable improvement in the fitness function after
certain number of generations. Two tools equipped for exploitation and exploration mechanisms help
RRA to be efficient at finding a global solution. In addition, in recently RRA has been applied for
solving the network reconfiguration problem and it has demonstrated the advantages compared to
other methods [28]. To implement the algorithm, reference [27] has used the following three rules:

— The mother plants are generated the daughter plants in new locations through their runners to
explore new resources.

— The plants generate roots (runner) and root hairs (root) randomly to exploit new resources in
new locations.

— The daughter plants grows rapidly and produce more new plants at rich resources. Otherwise,
if the daughter plants move toward poor resources, they will die.

Based on the three rules, the RRA method is implemented for optimizing of position and capacity
of DGs considering network reconfiguration as follows.

3.1. State-I: Optimizing of Position and Capacity of DGs in the Mesh Electric Distribution Network Using RRA

Step 1: Initialization
In the first stage, position and capacity of DGs is considered as a mother plant. Therefore,

the mother plants are randomly initialized at the starting point of the algorithm as follows:

Xmother,k (i) =
{

round[2 + rand× (Lomax,d − 2)], Pmin,d + rand× (Pmax,d − Pmin,d)
}

(13)

where k = 1, . . . , N, i = 1, . . . , Iter1,max and d = 1, . . . , ndg.
From the population of mother plants which are location and the size of DGs, the bus data of the

DN is updated, and the power flow is run by using the Newton–Raphson method to obtain power
loss, node voltages and branch currents. Then, the value of the fitness function is calculated by using
(9). The best plant (Xbest ) of the population is determined.

Step 2: Generation of daughter plants
In this step, each daughter plant is generated by corresponding the mother plant. Noted that,

the first plant is renewed by the best plant of the early generation. In the case of the first iteration,
the first plant is the best mother plant of the randomly initialized population.

Xdaughter,k(i) =

{
Xbest (i− 1) , k = 1
Xmother,k(i) + drunner × rand, k = 2, . . . , N

(14)

Then, the control variables represented for the location of DG are rounded to the integer values
and the bus data of the DN is updated and the power flow is run by using the Newton–Raphson
method to obtain power loss, node voltages and branch currents. The value of the fitness function is
calculated by using (9). The best plant (Xbest (i)) is determined again.

Step 3: Narrow search using big and small distance from the best plant
In step 3, if there are not a considerable improvement of the best plant in two iterations (i − 1)th

and ith which is presented by a RI index, which is calculated by Equation (15). This step will be
performed to generate new plants round the current best plant. Hence, the best plant is updated
as follows:

Xdaughter,k(i) =

{
Xbest (i− 1) , k = 1
Xmother, k(i) + drunner × rand, k = 2, . . . , N

(15)

where f (Xbest(i− 1)) and f (Xbest(i)) are the fitness function value of the best plant in the generation
(i − 1)th and the generation ith.
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Narrow the search with large distance: in this procedure NDG new plants are generated by
adjusting the current best plant based on (16):

Xperturbed,d = round[vec{1, 1 . . . , 1, 1, 1 + drunner × randd, 1, . . . , 1} × Xbest(i)] (16)

where d = 1, . . . , NDG; vec{1, 1 . . . , 1, 1, 1 + drunner × rand, 1, . . . , 1} is a vector with the dth element is
updated by 1 + drunner × randd and the remaining elements are equal to 1.

Narrow search with small distance: In this step, there are also NDG new plants produced by using (17):

Xperturbed,d = round[vec{1, 1 . . . , 1, 1, 1 + droot × randd, 1, . . . , 1} × Xbest(i)] (17)

From the 2 × NDG new daughter plants, the bus data of the DN is updated and the power flow is
run by using the Newton–Raphson method to obtain the fitness function value based on (9). At the
end of the step, the best solution (Xbest (i)) is renewed again.

Step 4: Generation of new population of plants for next iteration
At the end step of each generation, the new mother plants for the next iteration are selected from

the plants generated in step 3 based on the roulette wheel technique.

Step 5: Avoiding the local optimal solution
In this step, if there is not a considerable improvement of the best plant after the number of

predefined iterations (stallmax), the RRA is restarted by generating random mother plants similar to
step 1, otherwise it jumps to step 2.

3.2. Stage-II: Network Reconfiguration after Installing Distributed Generators (DGs) Using RRA

In the second stage, each radial configuration of the DN which is presented by position of open
switches. Therefore, the position of open switches is considered as a mother plant and the mother
plants are randomly generated as follows:

Xmother,k(i) = round
[

Xlow,d + rand×
(

Xhigh,d − Xlow,d

)]
(18)

where d = 1, . . . , NSW , Xlow,d = 1 and Xhigh,d is the number of switches in the mesh loop dth of the DN.
Noted that each fundamental loop contains the number of switches that is formed by that loop.

Similar to the step 2 of the stage-I, each daughter plant is generated by corresponding the mother
plant as (19). It is noticed that due to the daughter plant population being represented by open switches
all of daughter plants are rounded to integer value. Then the line data of the DN is updated and the
power flow is run to obtain the fitness function value based on (9). At the end of the step, the best
solution (Xbest (i)) is renewed again.

Xdaughter,k(i) =

{
Xbest (i− 1) , k = 1
round[Xmother,k(i) + drunner × rand], k = 2, . . . , N

(19)

Similar to step 3 of state-I, in the second state, 2 × Nsw new plants are generated if this step will
be performed by Equations (20) and (21). From Equations (20) and (21), it can be seen that all control
variables are also rounded to the nearest integer to represent open switches.

Xperturbed,d = round[vec{1, 1 . . . , 1, 1, 1 + drunner × randd, 1, . . . , 1} × Xbest(i)] (20)

Xperturbed,d = round[vec{1, 1 . . . , 1, 1, 1 + droot × randd, 1, . . . , 1} × Xbest(i)] (21)

The step of production of mother plants for next iteration and step of escaping the local solution
are definitely similar to them in the first stage. The flowchart of the proposed RRA for the problem
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of optimization of the position and capacity of DGs considering re-switching problem is presented
in Figure 2.Energies 2018, 11, x FOR PEER REVIEW  8 of 17 

 

Begin

Generate randomly mother plants by Eq. (13)

Generate daughter plants based on Eq. (14)

Calculate the RI index using Eq. (15)

Generate dim new plants from local search with 
large steps using Eq. (16)

 Generate dim new plants from local search with 
small steps using Eq. (17)

RI < tol
Yes

No

Generate mother plants for next generation from the 
daughter plants using the roulette wheel method

Count ≥ Stallmax

Random initialization of mother plants

i = i + 1

i > itermax

No

Yes

No

Output: the best daughter plant 
(location and size of DG)

Yes

Update the relative improvement (RI)

RI < tol

Count = Count + 1

No

Yes
Count = 0

Update the bus data of the DN and Evaluate the 
fitness function of daughter plants

Find the best plant (Xbest (i))

Update bus data of the DN and Evaluate the 
fitness function of the new plants

Update the best plant

Step 1

Step 2

Step 3

Step 4

Step 5

The Stage-I
The Stage-II

Generate randomly mother plants by Eq. (18)

Generate daughter plants based on Eq. (19)

Calculate the RI index using Eq. (15)

Generate dim new plants from local search with 
large steps using Eq. (20)

 Generate dim new plants from local search with 
small steps using Eq. (21)

RI < tol
Yes

No

Generate mother plants for next generation from the 
daughter plants using the roulette wheel method

Count ≥ Stallmax

Random initialization of mother plants

i = i + 1

i > itermax

No

Yes

No

Output: the best daughter plant (open 
switches)

Finish

Yes

Update the relative improvement (RI)

RI < tol

Count = Count + 1

No

Yes
Count = 0

Update the line data of the DN and Evaluate the 
fitness function of daughter plants

Find the best plant (Xbest (i))

Update line data of the DN and Evaluate the 
fitness function of the new plants

Update the best plant

Step 1

Step 2

Step 3

Step 4

Step 5

Update location and size DG to bus data

262 
Figure 2. The flowchart for determining the position and capacity of distributed generators (DGs) in 263 
the mesh electric distribution considering re-switching problem based on the runner root algorithm 264 
(RRA) method. 265 

4. Numerical Results 266 
The proposed method has been evaluated on two electric distribution networks including of 33 267 

nodes and 69 nodes. In each system, three DGs with maximum capacity of 2 MW are installed. The 268 
proposed method is implemented in Matlab software on a personal computer with CPU Intel Core 269 
i3 4160 @ 3.6GHz, 1 CPU, 8GB, Windows 7 SP1 (64-bit). To show the superiority of the proposed 270 
method, the method of installation of DGs and reconfiguration of network simultaneously based on 271 
RRA is also implemented and compared with the proposed method using two states. The parameters 272 
of the RRA, which are determined by numerous trial executions and applied for two systems are 273 
presented in Table 1.  274 

Table 1. The parameters of the RRA for the 33 nodes and 69 nodes distribution network system. 275 
System The 33 and 69 Nodes 

Item State-I State-II Simultaneous 
Mother plants 30 30 30 
Maximum iterations 300 150 1000 

Figure 2. The flowchart for determining the position and capacity of distributed generators (DGs) in
the mesh electric distribution considering re-switching problem based on the runner root algorithm
(RRA) method.

4. Numerical Results

The proposed method has been evaluated on two electric distribution networks including of
33 nodes and 69 nodes. In each system, three DGs with maximum capacity of 2 MW are installed.
The proposed method is implemented in Matlab software on a personal computer with CPU Intel Core
i3 4160 @ 3.6 GHz, 1 CPU, 8 GB, Windows 7 SP1 (64-bit). To show the superiority of the proposed
method, the method of installation of DGs and reconfiguration of network simultaneously based on
RRA is also implemented and compared with the proposed method using two states. The parameters
of the RRA, which are determined by numerous trial executions and applied for two systems are
presented in Table 1.
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Table 1. The parameters of the RRA for the 33 nodes and 69 nodes distribution network system.

System The 33 and 69 Nodes

Item State-I State-II Simultaneous

Mother plants 30 30 30

Maximum iterations 300 150 1000

Dimension 6 5 11

drunner 4 4 4

droot 2 2 2

stallmax 50 50 50

4.1. The 33 Nodes System

The 33 nodes system presented in Figure 3, consists 5 tie switches and 37 branches [29]. In a
normal operation, switches {33, 34, 35, 36, and 37} are opened.
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Figure 3. The 33 nodes distribution system.

From Table 2, power loss is decreased from 202.68 kW in the initial configuration to 41.9051 kW
and 53.3129 kW using State-I and the State-II, respectively. The result from State-I shows that, the power
loss is minimum because this is power loss caused by the mesh network. After using State-I to find the
position and capacity of DGs in the mesh network, State-II is used to determine the open switches for
radial operation, in which the open switches gained in the optimal configuration are {33, 34, 11, 30, 28}.
So, the power loss is increased to 53.3129 kW compared with 41.9051 kW in State-I. However, compared
with the method of simultaneous reconfiguration and placing DGs, these results are nearly the same
as the results gained by the simultaneous reconfiguration and placing DGs method. The minimum
power loss obtained by the simultaneous reconfiguration and placing DGs method is 50.825 kW
which is only 2.4879 kW lower than the power loss caused by the optimum solution gained from the
proposed method. In addition, the proposed method takes 34.39 seconds to execute the problem for
both states, which is 46.39 seconds shorter than the simultaneous reconfiguration and placing DGs
method. Moreover, it can be also be seen from Table 2 that the average values of the fitness function in
State-I and State-II are closer the minimum value of the fitness function than that in the simultaneous
reconfiguration and placing DGs method. This demonstrates that the proposed method also helps the
RRA easily determine the optimal result for the problem.

The convergence behaviors for State-I and the State-II are presented Figures 4 and 5. The voltage
profiles of the initial, State-I, State-II and the simultaneous reconfiguration and placing DGs method are
presented in Figure 6. As shown in the figure, the voltage magnitude at all nodes has been advanced
after using the suggested method and the voltage profile of State-II is nearly the same with the voltage
profile of the simultaneous reconfiguration and placing DGs method.
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Table 2. Performance of the suggested technique on the 33-node system.

Item Initial
Proposed Method Based on

RRA Simultaneous Rec. and
DG Based on RRA

State-I State-II

Switches opened 33, 34, 35, 36, 37 None 33, 34, 11, 30, 28 33, 34, 11, 30, 28

Capacity of DG in
MW (Bus number) None

1.1326 (25),
0.8146 (32),
1.1011 (8)

1.1326 (25),
0.8146 (32),
1.1011 (8)

1.12095 (25),
0.87689 (18),
0.969711 (7)

Power loss (kW) 202.68 41.9051 53.3129 50.825

% Loss reduction - 79.32 73.70 74.92

Max of fitness - 46.2885 59.5526 64.0135

Mean of fitness - 42.6949 55.4702 56.0123

Standard deviation
(STD) of fitness - 1.17681 2.50883 3.20373

CPU time (second) - 25.0779 9.3156 80.7789

Average iterations - 245.2 18.5 751.9
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Figure 6. Voltage profiles in four cases of the 33-node system.

Comparison results with some of the methods are presented in Table 3. From the table, the loss
reduction in percentage for the proposed method based on RRA is 0.05 higher than the result gained
by CSA and 0.57 higher than the result gained by AWIDPSO, which is the method of solving the
reconfiguration and simultaneous position and capacity of DGs. However, the performance of the
proposed RRA is better than HSA and FWA. The percentage loss reduction for RRA, FWA and HSA is
73.70, 66.89 and 63.95, respectively. Note that the methods based on FWA and HSA have used different
methods to pre-select the nodes for DGs installation on the initial radial network before optimization
of the size of the DGs and reconfiguration.

Table 3. Comparison of results on the 33-node system with the different methods.

Item Proposed
Method—RRA CSA [13] FWA [14] HSA [15] AWIDPSO [16]

Switches opened 33, 34, 11, 30, 28 33, 34, 11, 31, 28 7, 14, 11, 32, 28 7, 14, 10, 32, 28 7, 10, 13, 28, 32

Capacity of DG (in
MW) (Bus number)

1.1326 (25),
0.8146 (32),
1.1011 (8)

0.8968 (18),
1.4381 (25),
0.9646 (7)

0.5367 (32),
0.6158 (29),
0.5315 (18)

0.5258 (32),
0.5586 (31),
0.5840 (33)

1.1215 (22),
1.3816 (23),
0.6425 (05)

Power loss (kW) 53.3129 53.21 67.11 73.05 52.15

% Loss reduction 73.70 73.75 66.89 63.95 74.27

4.2. The 69 Nodes System

The 69 nodes distribution system shown in Figure 7 includes 73 branches and 5 tie switches [30].
The performance of the proposed approach on the 69 nodes system is presented in Table 4.Energies 2018, 11, x FOR PEER REVIEW  12 of 17 
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Table 4. Performance of the suggested technique on the 69 nodes system.

Item Initial
Proposed Method Based

on RRA Simultaneous Rec. and
DGs Based on RRA

State-I State-II

Switches opened 69, 70, 71, 72, 73 None 69, 70, 12, 55, 63 69, 70, 14, 55, 61

Size of DG (in MW)
(Bus number) None

1.6175 (61),
0.7710 (50),
0.6752 (21)

1.6175 (61),
0.7710 (50),
0.6752 (21)

0.516112 (64),
1.45167 (61)
0.53696 (11)

Power loss (kW) 224.89 28.8875 39.31 35.1929

% Loss reduction - 87.15 82.52 84.35

Max of fitness - 31.3996 42.8777 48.622

Mean of fitness - 29.3798 40.5443 40.3116

STD of fitness - 0.7229 1.46845 3.25004

CPU time (second) - 32.9654 27.2612 244.4863

Average iterations - 240.15 71.05 807.15

From the table, in the initial configuration, power loss is 224.89 kW, which is decreased to
28.8875 kW, and 39.31 kW using State-I and the State-II, respectively. It can be seen that compared with
the method of simultaneous reconfiguration and placing DGs, these results are nearly the same as the
results gained by the simultaneous reconfiguration and placing DGs method. The minimum power
loss obtained by the simultaneous reconfiguration and placing DGs method is 35.1929 kW which is
only 4.1171 kW lower than the result obtained from the proposed method. In addition, in terms of CPU
times, the proposed method takes 60.23 s to obtain the results for both states, which is 184.26 seconds
lower than the simultaneous reconfiguration and placing DGs method. In addition, Table 4 show that
the average values of the fitness function in State-I and the State-II are closer to the minimum value of
the fitness function than that in the simultaneous reconfiguration and placing DGs method.

The convergence behaviors for State-I and State-II are presented Figures 8 and 9. The voltage
profiles of four cases are contrasted and shown in Figure 10. As illustrated in this figure, it is observed
that the voltage magnitude at all nodes has been advanced after using the suggested method, and the
voltage profile of State-II is nearly the same with the voltage profile of the simultaneous reconfiguration
and placing DGs method.Energies 2018, 11, x FOR PEER REVIEW  13 of 17 
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Figure 8. The convergence of RRA in the first stage over 50 independent runs for the 69-node test system.
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Figure 9. The convergence of RRA in the second stage over 50 independent runs for the 69-node test system.
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Figure 10. Voltage profiles in four cases of the 69 nodes system.

Comparison results with FWA and HSA are presented in Table 5. The results showed that in the
69 nodes network system, the percentage loss reduction for RRA method is 1.02 higher than the result
gained by CSA and these results are nearly to the same with the results gained by the FWA method
with 82.55% and compared with HSA, it is better.

Table 5. Comparison results on the 69 nodes system with the different methods.

Item Proposed Method CSA [13] FWA [14] HSA [15]

Switches opened 69, 70, 12, 55, 63 69, 70, 14, 58, 61 69, 70, 13, 55, 63 69, 17, 13, 58, 61

Size of DG (in MW)
(Bus number)

1.6175 (61),
0.7710 (50),
0.6752 (21)

0.5413 (11),
0.5536 (65),
1.7240 (61)

1.1272 (61)
0.2750 (62)
0.4159 (65)

1.0666 (61)
0.3525 (60)
0.4257 (62)

Power loss (kW) 39.31 37.02 39.25 40.3

% Loss reduction 82.52 83.54 82.55 82.08

5. Conclusions

In this article, the method based on RRA has been successfully applied for optimizing the position
and capacity of DGs taking into account reconfiguration of the network reconfiguration. The objective
function is to minimize the power loss of the system. The main idea of the proposed method divided
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the problem into two states which consist of the optimization of the position and size of DGs on
closed-loop distribution networks and the optimization of the operating structure of the DN after
placing the DGs. In the both states, the RRA is used to determine the best solution. The calculated
results show that the suggested method is capable of determining an optimal solution and is better than
compared techniques in literature. The comparison results with the method of solving simultaneously
the combined problem show that the power loss obtained from the proposed method is very close to
that from the method of solving simultaneously the combined problem. Although the optimal results
obtained by proposed method are slightly worse than those from method of solving simultaneously
the combined problem but using the proposed method, the results of the location and size of the DG
obtained, which is the design problem, are not affected by the results of the location of open switches
on the DN, which is the operation problem. In addition, the calculated results have also shown that
the proposed method can solve the problem faster compared with the method of reconfiguration and
simultaneous position and capacity of DGs. Therefore, the suggested method is worthy of consideration
for solving the position and capacity of DGs considering the network reconfiguration problem.
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Nomenclature

round round a number to the nearest integer
Lomax,d maximum bus in the system which is able to install DG
Pmin,d minimum power of DG dth
Pmax,d maximum power of DG dth
rand random figure in the range between 0 and 1
N population of plant
Iter1,max maximum figure of iterations in the first stage
NSW number of open switches which form a radial configuration of network.
Xbest best daughter plant in population of plant
drunner length of the runner
droot length of the root
tol relative improvement of a best plant in two iterations
nbr number of branches
nbus number of buses
ndg number of DGs connected to the system
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